Citation: Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230300. doi: 10.3866/PKU.WHXB202303004 shu

Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study

  • Corresponding author: Muhammad Faizan,  Xin He, xin_he@jlu.edu.cn
  • Received Date: 1 March 2023
    Revised Date: 30 April 2023
    Accepted Date: 9 May 2023
    Available Online: 16 May 2023

    Fund Project: the National Natural Science Foundation of China 62004080

  • The increasing global demand for energy and the detrimental effects of using fossil fuels highlight the urgent need for alternative and sustainable energy sources. Metal halide perovskites have gained significant research attention over the last few years, primarily for solar energy storage, light emission, and thermoelectrics, due to their low cost and high efficiency. To understand the thermoelectric transport characteristics of halide perovskites and improve their practical applications, precise knowledge of their heat transport mechanism is necessary. In this study, we used density functional theory (DFT) and different exchange-correlation functionals, namely the Perdew-Burke-Ernzerhof (PBE) and modified Becke Johnson (mBJ) schemes, to screen three inorganic halide perovskites, Rb2SnI6, Rb2PdI6, and Cs2PtI6, in their pristine forms for thermoelectric energy conversion. Here, we report the mechanical stability, effective masses, Seebeck coefficient, power factor, and thermoelectric figure of merit. Both PBE and mBJ functionals successfully determined the most stable geometry and accurate electronic structure for each halide perovskite. Initially, we optimized the crystal structures of all three compounds using the PBE functional and obtained the corresponding lattice parameters. The optimized lattice constants are in good agreement with the experimental values. We are the first to calculate the elastic constants and other mechanical parameters, such as the elastic moduli, Poisson's ratio, Pugh index, elastic anisotropy, and Grüneisen parameter, to determine the elastic and mechanical stability of these compounds. All three compounds (Rb2SnI6, Rb2PdI6, and Cs2PtI6) are mechanically stable and ductile. The effective mass of the electrons at the conduction band minimum was smaller than that of the holes at the valence band maximum. Electronic band structure calculations showed that all three compounds are narrow band gap semiconductors (with band gaps ranging from 0.47 to 1.22 eV) with degenerate band extrema. The low effective masses and favorable band gap feature make them ideal for thermoelectric applications. Our study reveals a high Seebeck coefficient of 0.76 mV·K−1 for Cs2PtI6 for hole doping at maximum temperature. Due to the high Seebeck coefficient and maximum power factor, we found high figure of merit (ZT) of 0.98 for Cs2PtI6, 0.96 for Rb2PdI6, and 0.97 for Rb2SnI6, upon p-type doping. With this study, we provide new insights into the thermoelectric performance of halide perovskites and can offer inspiration for the experimental synthesis of these compounds. Our results may also contribute to developing practical energy conversion and storage devices, which can significantly affect the renewable energy sector.
  • 加载中
    1. [1]

      Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005, DOESC (USDOE Office of Science (SC)).

    2. [2]

      Yin, L. C.; Liu, W. D.; Li, M.; Wang, D. Z.; Wu, H.; Wang, Y.; Zhang, L.; Shi, X. L.; Liu, Q.; Chen, Z. G. Adv. Funct. Mater. 2023, 2301750. doi: 10.1002/adfm.202301750  doi: 10.1002/adfm.202301750

    3. [3]

      Wang, D. Z.; Liu, W. D.; Li, M.; Yin, L.C.; Gao, H.; Sun, Q.; Wu, H.; Wang, Y.; Shi, X. L.; Yang, X. J. Chem. Eng. 2022, 441, 136131. doi: 10.1002/mame.202200411  doi: 10.1002/mame.202200411

    4. [4]

      Chen, W. Y.; Shi, X. L.; Zou, J.; Chen, Z. G. Mater. Sci. Eng. R-Rep. 2022, 151, 100700. doi: 10.1016/j.mser.2022.100700  doi: 10.1016/j.mser.2022.100700

    5. [5]

      Chen, Z. G.; Liu, W. D. J. Mater. Sci. Technol. 2022, 121, 256. doi: 10.1016/j.jmst.2021.12.069  doi: 10.1016/j.jmst.2021.12.069

    6. [6]

      Cao, T.; Shi, X. L.; Chen, Z. G. Prog. Mater. Sci. 2022, 131, 101003. doi: 10.1016/j.pmatsci.2022.101003  doi: 10.1016/j.pmatsci.2022.101003

    7. [7]

      Pisoni, A.; Jacimovic, J.; Barisic, O. S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. J. Phys. Chem. Lett. 2014, 5, 2488. doi: 10.1021/jz5012109  doi: 10.1021/jz5012109

    8. [8]

      Zhang, H. ACS Nano 2015, 9, 9451. doi: 10.1021/acsnano.5b05040  doi: 10.1021/acsnano.5b05040

    9. [9]

      Liu, W.; Jie, Q.; Kim, H. S.; Ren, Z. Acta Mater. 2015, 87, 357. doi: 10.1016/j.actamat.2014.12.042  doi: 10.1016/j.actamat.2014.12.042

    10. [10]

      Tritt, T. M.; Subramanian, M. MRS Bull. 2006, 31, 188. doi: 10.1557/mrs2006.44  doi: 10.1557/mrs2006.44

    11. [11]

      Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'quinn, B. Nature 2001, 413, 597. doi: 10.1038/35098012  doi: 10.1038/35098012

    12. [12]

      Goldsmid, H. J.; Douglas, R. W. Br. J. Appl. Phys. 1954, 5, 386. doi: 10.1088/0508-3443/5/11/303  doi: 10.1088/0508-3443/5/11/303

    13. [13]

      Wright, D. Nature 1958, 181, 834. doi: 10.1038/181834a0  doi: 10.1038/181834a0

    14. [14]

      Mcguire, M. A.; Reynolds, T. K.; Disalvo, F. J. Chem. Mater. 2005, 17, 2875. doi: 10.1021/cm050412c  doi: 10.1021/cm050412c

    15. [15]

      Liu, M. L.; Huang, F. Q.; Chen, L. D.; Chen, I. W. Appl. Phys. Lett. 2009, 94, 202103. doi: 10.1063/1.3130718  doi: 10.1063/1.3130718

    16. [16]

      Larson, P.; Mahanti, S.; Sportouch, S.; Kanatzidis, M. G. Phys. Rev. B 1999, 59, 15660. doi: 10.1103/PhysRevB.59.15660  doi: 10.1103/PhysRevB.59.15660

    17. [17]

      Cameron, J. M.; Hughes, R. W.; Zhao, Y.; Gregory, D. H. Chem. Soc. Rev. 2011, 40, 4099. doi: 10.1039/C0CS00132E  doi: 10.1039/C0CS00132E

    18. [18]

      Siddique, M.; Rahman, A. U.; Haq, B. U.; Iqbal, A.; Ahmad, A.; Ahmad, I. Comput. Condens. Matter 2017, 13, 111. doi: 10.1016/j.cocom.2017.10.003  doi: 10.1016/j.cocom.2017.10.003

    19. [19]

      Funahashi, R.; Matsubara, I.; Sodeoka, S. Appl. Phys. Lett. 2000, 76, 2385. doi: 10.1063/1.126354  doi: 10.1063/1.126354

    20. [20]

      Ohtaki, M.; Ogura, D.; Eguchi, K.; Arai, H. J. Mater. Chem. 1994, 4, 653. doi: 10.1039/JM9940400653  doi: 10.1039/JM9940400653

    21. [21]

      Fu, C.; Zhu, T.; Pei, Y.; Xie, H.; Wang, H.; Snyder, G. J.; Liu, Y.; Liu, Y.; Zhao, X. Adv. Energy Mater. 2014, 4, 1400600. doi: 10.1002/aenm.201400600  doi: 10.1002/aenm.201400600

    22. [22]

      Fu, C.; Zhu, T.; Liu, Y.; Xie, H.; Zhao, X. Energy Environ. Sci. 2015, 8, 216. doi: 10.1039/C4EE03042G  doi: 10.1039/C4EE03042G

    23. [23]

      Han, C.; Li, Z.; Dou, S. Chin. Sci. Bull. 2014, 59, 2073. doi: 10.1007/s11434-014-0237-2  doi: 10.1007/s11434-014-0237-2

    24. [24]

      Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. Adv. Energy Mater. 2018, 8, 1701797. doi: 10.1002/aenm.201701797  doi: 10.1002/aenm.201701797

    25. [25]

      Hellman, O.; Abrikosov, I.; Simak, S. Phys. Rev. B 2011, 84, 180301. doi: 10.1103/PhysRevB.84.180301  doi: 10.1103/PhysRevB.84.180301

    26. [26]

      Maughan, A. E.; Ganose, A. M.; Almaker, M. A.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2018, 30, 3909. doi: 10.1021/acs.chemmater.8b01549  doi: 10.1021/acs.chemmater.8b01549

    27. [27]

      Souvatzis, P.; Eriksson, O.; Katsnelson, M.; Rudin, S. Phys. Rev. Lett. 2008, 100, 095901. doi: 10.1103/PhysRevLett.100.095901  doi: 10.1103/PhysRevLett.100.095901

    28. [28]

      Faizan, M.; Xie, J.; Murtaza, G.; Echeverría-Arrondo, C.; Alshahrani, T.; Bhamu, K. C.; Laref, A.; Mora-Seró, I.; Khan, S. H. Phys. Chem. Chem. Phys. 2021, 23, 4646. doi: 10.1039/d0cp05827k  doi: 10.1039/d0cp05827k

    29. [29]

      Jung, Y.; Lee, W.; Han, S.; Kim, B. S.; Yoo, S. J.; Jang, H. Adv. Mater. 2022, 2204872. doi: 10.1002/adma.202204872  doi: 10.1002/adma.202204872

    30. [30]

      Liu, T.; Zhao, X.; Li, J.; Liu, Z.; Liscio, F.; Milita, S.; Schroeder, B. C.; Fenwick, O. Nat. Commun. 2019, 10, 5750. doi: 10.1038/s41467-019-13773-3  doi: 10.1038/s41467-019-13773-3

    31. [31]

      Lee, C.; Hong, J.; Stroppa, A.; Whangbo, M. -H.; Shim, J. H. RSC Adv. 2015, 5, 78701. doi: 10.1039/C5RA12536G  doi: 10.1039/C5RA12536G

    32. [32]

      Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nat. Rev. Mater. 2016, 1, 1. doi: 10.1038/natrevmats.2016.50  doi: 10.1038/natrevmats.2016.50

    33. [33]

      Lin, S.; Yan, L.; Zhao, L.; Cai, Z.; Liu, Z.; Yang, B.; Yang, M.; Zhao, C. ACS Appl. Energy Mater. 2021, 4, 14508. doi: 10.1021/acsaem.1c03177  doi: 10.1021/acsaem.1c03177

    34. [34]

      Mettan, X.; Pisoni, R.; Matus, P.; Pisoni, A.; JaćImović, J. I.; Náfrádi, B.; Spina, M.; Pavuna, D.; Forró, L.; Horváth, E. J. Phys. Chem. C 2015, 119, 11506. doi: 10.1021/acs.jpcc.5b03939  doi: 10.1021/acs.jpcc.5b03939

    35. [35]

      Nozariasbmarz, A.; Poudel, B.; Li, W.; Kang, H. B.; Zhu, H.; Priya, S. iScience 2020, 23, 101340. doi: 10.1016/j.isci.2020.101340  doi: 10.1016/j.isci.2020.101340

    36. [36]

      Wu, Y.; Nan, P.; Chen, Z.; Zeng, Z.; Lin, S.; Zhang, X.; Dong, H.; Chen, Z.; Gu, H.; Li, W. Research 2020, 2020, 8151059. doi: 10.34133/2020/8151059  doi: 10.34133/2020/8151059

    37. [37]

      Mao, J.; Zhu, H.; Ding, Z.; Liu, Z.; Gamage, G. A.; Chen, G.; Ren, Z. Science 2019, 365, 495. doi: 10.1126/science.aax7792  doi: 10.1126/science.aax7792

    38. [38]

      Stoumpos, C. C.; Kanatzidis, M. G. Adv. Mater. 2016, 28, 5778. doi: 10.1002/adma.201600265  doi: 10.1002/adma.201600265

    39. [39]

      Filippetti, A.; Caddeo, C.; Delugas, P.; Mattoni, A. J. Phys. Chem. C. 2016, 120, 28472. doi: 10.1021/acs.jpcc.6b10278  doi: 10.1021/acs.jpcc.6b10278

    40. [40]

      Feng, X.; Fan, Y.; Nomura, N.; Kikuchi, K.; Wang, L.; Jiang, W.; Kawasaki, A. Carbon 2017, 112, 169. doi: 10.1016/j.carbon.2016.11.012  doi: 10.1016/j.carbon.2016.11.012

    41. [41]

      Al-Anazy, M. M.; Ali, M. A.; Bouzgarrou, S.; Murtaza, G.; Al-Muhimeed, T. I.; Alobaid, A. A.; Mera, A.; Mahmood, Q.; Nazir, G. Phys. Scr. 2021, 96, 125828. doi: 10.1088/1402-4896/ac297a  doi: 10.1088/1402-4896/ac297a

    42. [42]

      Bhui, A.; Ghosh, T.; Pal, K.; Rana, K. S; Kundu, K.; Soni, A.; Biswas, K. Chem. Mater. 2022, 34, 3301. doi: 10.1021/acs.chemmater.2c00084  doi: 10.1021/acs.chemmater.2c00084

    43. [43]

      Albalawi, H.; Mustafa, G. M.; Saba, S.; Kattan, N. A.; Mahmood, Q.; Somaily, H. H.; Morsi, M.; Alharthi, S.; Amin, M. A. Mater. Today Commun. 2022, 32, 104083. doi: 10.1016/j.mtcomm.2022.104083  doi: 10.1016/j.mtcomm.2022.104083

    44. [44]

      Fallah, M.; Milani Moghaddam, H. Mater. Sci. Semicond. Process. 2021, 133, 105984. doi: 10.1016/j.mssp.2021.105984  doi: 10.1016/j.mssp.2021.105984

    45. [45]

      Li, J.; Hu, W.; Yang, J. J. Am. Chem. Soc. 2022, 144, 4448. doi: 10.1021/jacs.1c11887  doi: 10.1021/jacs.1c11887

    46. [46]

      Bousahla, M. A.; Faizan, M.; Seddik, T.; Omran, S. B.; Khachai, H.; Laref, A.; Khenata, R.; Znaidia, S.; Boukhris, I.; Khan, S. H. Mater. Today Commun. 2022, 30, 103061. doi: 10.1016/j.mtcomm.2021.103061  doi: 10.1016/j.mtcomm.2021.103061

    47. [47]

      Zeng, X.; Jiang, J.; Niu, G.; Sui, L.; Zhang, Y.; Wang, X.; Liu, X.; Chen, A.; Jin, M.; Yuan, K. J. Phys. Chem. Lett. 2022, 13, 9736. doi: 10.1021/acs.jpclett.2c02350  doi: 10.1021/acs.jpclett.2c02350

    48. [48]

      Wu, H.; Shi, X. L.; Liu, W. D.; Gao, H.; Wang, D. Z.; Yin, L. C.; Liu, Q.; Chen, Z. G. Appl. Mater. Today 2022, 29, 101580. doi: 10.1016/j.apmt.2022.101580  doi: 10.1016/j.apmt.2022.101580

    49. [49]

      Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E.; Kanatzidis, M. G. Science 2004, 303, 818. doi: 10.1126/science.1092963  doi: 10.1126/science.1092963

    50. [50]

      Disalvo, F. J. Science 1999, 285, 703. doi: 10.1126/science.285.5428.703  doi: 10.1126/science.285.5428.703

    51. [51]

      Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. Science 2008, 320, 634. doi: 10.1126/science.1156446  doi: 10.1126/science.1156446

    52. [52]

      Van Roekeghem, A.; Carrete, J.; Oses, C.; Curtarolo, S.; Mingo, N. Phys. Rev. X 2016, 6, 041061. doi: 10.1103/PhysRevX.6.041061  doi: 10.1103/PhysRevX.6.041061

    53. [53]

      Faizan, M.; Bhamu, K.; Murtaza, G.; He, X.; Kulhari, N.; Al-Anazy, M. M.; Khan, S. H. Sci. Rep. 2021, 11, 1. doi: 10.1038/s41598-021-86145-x  doi: 10.1038/s41598-021-86145-x

    54. [54]

      Haque, M. A.; Kee, S.; Villalva, D. R.; Ong, W. L.; Baran, D. Adv. Sci. 2020, 7, 1903389. doi: 10.1002/advs.201903389  doi: 10.1002/advs.201903389

    55. [55]

      Blaha, P.; Schwarz, K.; Madsen, G. K.; Kvasnicka, D.; Luitz, J. An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001; pp. 1–302.

    56. [56]

      Mokrousov. Y, Bihlmayer, G, Blugel, S. Phys. Rev. B 2006, 72, 045402. doi: 10.1103/PhysRevB.72.045402  doi: 10.1103/PhysRevB.72.045402

    57. [57]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    58. [58]

      Tran, F.; Blaha, P. Phys. Rev. Lett. 2009, 102, 226401. doi: 10.1103/PhysRevLett.102.226401  doi: 10.1103/PhysRevLett.102.226401

    59. [59]

      Camargo-Martínez, J.; Baquero, R. Phys. Rev. B 2012, 86, 195106. doi: 10.1103/PhysRevB.86.195106  doi: 10.1103/PhysRevB.86.195106

    60. [60]

      Koller, D.; Tran, F.; Blaha, P. Phys. Rev. B 2012, 85, 155109. doi: 10.1103/PhysRevB.85.155109  doi: 10.1103/PhysRevB.85.155109

    61. [61]

      Ziman, J. M. Principles of the Theory of Solids, 2nd ed.; Cambridge University Press: Cambridge, England, 1972; pp. 1–435.

    62. [62]

      Madsen, G. K.; Singh, D. J. Comput. Phys. Commun. 2006, 175, 67. doi: 10.1016/j.cpc.2006.03.007  doi: 10.1016/j.cpc.2006.03.007

    63. [63]

      Ashcroft, N. W.; Mermin, N. D. Solid State Physics, 1st ed.; Cengage Learning: Boston, United States, 1976; pp. 1–833.

    64. [64]

      Werker, W. Recueil des Travaux Chimiques des Pays-Bas 1939, 58, 257. doi: 10.1002/recl.19390580309  doi: 10.1002/recl.19390580309

    65. [65]

      Schüpp, B.; Heines, P.; Keller, H. L. Z. Anorg. Allg. Chem 2000, 626, 202. doi: 10.1002/(SICI)1521-3749(200001)626:1  doi: 10.1002/(SICI)1521-3749(200001)626:1

    66. [66]

      Thiele, G.; Mrozek, C.; Kämmerer, D.; Wittmann, K. Z. fur Naturforsch. B 1983, 38, 905. doi: 10.1515/znb-1983-0802  doi: 10.1515/znb-1983-0802

    67. [67]

      Cai, Y.; Xie, W.; Ding, H.; Chen, Y.; Thirumal, K.; Wong, L. H.; Mathews, N.; Mhaisalkar, S. G.; Sherburne, M.; Asta, M. Chem. Mater. 2017, 29, 7740. doi: 10.1021/acs.chemmater.7b02013  doi: 10.1021/acs.chemmater.7b02013

    68. [68]

      Born, M.; Huang, K.; Lax, M. Am. J. Phys. 1955, 23, 474. doi: 10.1119/1.1934059  doi: 10.1119/1.1934059

    69. [69]

      Voigt, W. Ann. Phys. 1889, 274, 573. doi: 10.1002/andp.18892741206  doi: 10.1002/andp.18892741206

    70. [70]

      Reuß, A. J. Appl. Math. Mech. 1929, 9, 49. doi: 10.1002/zamm.19290090104  doi: 10.1002/zamm.19290090104

    71. [71]

      Hill, R. Sect. A 1952, 65, 349. doi: 10.1088/0370-1298/65/5/307  doi: 10.1088/0370-1298/65/5/307

    72. [72]

      Pugh, S. London Edinburgh Philos. Mag. J. Sci. 1954, 45, 823. doi: 10.1080/14786440808520496  doi: 10.1080/14786440808520496

    73. [73]

      Tvergaard, V.; Hutchinson, J. W. J. Am. Ceram. Soc. 1988, 71, 157. doi: 10.1111/j.1151-2916.1988.tb05022.x  doi: 10.1111/j.1151-2916.1988.tb05022.x

    74. [74]

      Pettifor, D. Mater. Sci. Technol. 1992, 8, 345. doi: 10.1179/mst.1992.8.4.345  doi: 10.1179/mst.1992.8.4.345

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    4. [4]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    5. [5]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    6. [6]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    7. [7]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    8. [8]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    9. [9]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    10. [10]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    11. [11]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    12. [12]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    13. [13]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    14. [14]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    15. [15]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    16. [16]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    17. [17]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    18. [18]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    19. [19]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    20. [20]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

Metrics
  • PDF Downloads(23)
  • Abstract views(1287)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return