Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study
- Corresponding author: Muhammad Faizan, Xin He, xin_he@jlu.edu.cn
Citation: Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230300. doi: 10.3866/PKU.WHXB202303004
Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005, DOESC (USDOE Office of Science (SC)).
Yin, L. C.; Liu, W. D.; Li, M.; Wang, D. Z.; Wu, H.; Wang, Y.; Zhang, L.; Shi, X. L.; Liu, Q.; Chen, Z. G. Adv. Funct. Mater. 2023, 2301750. doi: 10.1002/adfm.202301750
doi: 10.1002/adfm.202301750
Wang, D. Z.; Liu, W. D.; Li, M.; Yin, L.C.; Gao, H.; Sun, Q.; Wu, H.; Wang, Y.; Shi, X. L.; Yang, X. J. Chem. Eng. 2022, 441, 136131. doi: 10.1002/mame.202200411
doi: 10.1002/mame.202200411
Chen, W. Y.; Shi, X. L.; Zou, J.; Chen, Z. G. Mater. Sci. Eng. R-Rep. 2022, 151, 100700. doi: 10.1016/j.mser.2022.100700
doi: 10.1016/j.mser.2022.100700
Chen, Z. G.; Liu, W. D. J. Mater. Sci. Technol. 2022, 121, 256. doi: 10.1016/j.jmst.2021.12.069
doi: 10.1016/j.jmst.2021.12.069
Cao, T.; Shi, X. L.; Chen, Z. G. Prog. Mater. Sci. 2022, 131, 101003. doi: 10.1016/j.pmatsci.2022.101003
doi: 10.1016/j.pmatsci.2022.101003
Pisoni, A.; Jacimovic, J.; Barisic, O. S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. J. Phys. Chem. Lett. 2014, 5, 2488. doi: 10.1021/jz5012109
doi: 10.1021/jz5012109
Zhang, H. ACS Nano 2015, 9, 9451. doi: 10.1021/acsnano.5b05040
doi: 10.1021/acsnano.5b05040
Liu, W.; Jie, Q.; Kim, H. S.; Ren, Z. Acta Mater. 2015, 87, 357. doi: 10.1016/j.actamat.2014.12.042
doi: 10.1016/j.actamat.2014.12.042
Tritt, T. M.; Subramanian, M. MRS Bull. 2006, 31, 188. doi: 10.1557/mrs2006.44
doi: 10.1557/mrs2006.44
Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'quinn, B. Nature 2001, 413, 597. doi: 10.1038/35098012
doi: 10.1038/35098012
Goldsmid, H. J.; Douglas, R. W. Br. J. Appl. Phys. 1954, 5, 386. doi: 10.1088/0508-3443/5/11/303
doi: 10.1088/0508-3443/5/11/303
Wright, D. Nature 1958, 181, 834. doi: 10.1038/181834a0
doi: 10.1038/181834a0
Mcguire, M. A.; Reynolds, T. K.; Disalvo, F. J. Chem. Mater. 2005, 17, 2875. doi: 10.1021/cm050412c
doi: 10.1021/cm050412c
Liu, M. L.; Huang, F. Q.; Chen, L. D.; Chen, I. W. Appl. Phys. Lett. 2009, 94, 202103. doi: 10.1063/1.3130718
doi: 10.1063/1.3130718
Larson, P.; Mahanti, S.; Sportouch, S.; Kanatzidis, M. G. Phys. Rev. B 1999, 59, 15660. doi: 10.1103/PhysRevB.59.15660
doi: 10.1103/PhysRevB.59.15660
Cameron, J. M.; Hughes, R. W.; Zhao, Y.; Gregory, D. H. Chem. Soc. Rev. 2011, 40, 4099. doi: 10.1039/C0CS00132E
doi: 10.1039/C0CS00132E
Siddique, M.; Rahman, A. U.; Haq, B. U.; Iqbal, A.; Ahmad, A.; Ahmad, I. Comput. Condens. Matter 2017, 13, 111. doi: 10.1016/j.cocom.2017.10.003
doi: 10.1016/j.cocom.2017.10.003
Funahashi, R.; Matsubara, I.; Sodeoka, S. Appl. Phys. Lett. 2000, 76, 2385. doi: 10.1063/1.126354
doi: 10.1063/1.126354
Ohtaki, M.; Ogura, D.; Eguchi, K.; Arai, H. J. Mater. Chem. 1994, 4, 653. doi: 10.1039/JM9940400653
doi: 10.1039/JM9940400653
Fu, C.; Zhu, T.; Pei, Y.; Xie, H.; Wang, H.; Snyder, G. J.; Liu, Y.; Liu, Y.; Zhao, X. Adv. Energy Mater. 2014, 4, 1400600. doi: 10.1002/aenm.201400600
doi: 10.1002/aenm.201400600
Fu, C.; Zhu, T.; Liu, Y.; Xie, H.; Zhao, X. Energy Environ. Sci. 2015, 8, 216. doi: 10.1039/C4EE03042G
doi: 10.1039/C4EE03042G
Han, C.; Li, Z.; Dou, S. Chin. Sci. Bull. 2014, 59, 2073. doi: 10.1007/s11434-014-0237-2
doi: 10.1007/s11434-014-0237-2
Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. Adv. Energy Mater. 2018, 8, 1701797. doi: 10.1002/aenm.201701797
doi: 10.1002/aenm.201701797
Hellman, O.; Abrikosov, I.; Simak, S. Phys. Rev. B 2011, 84, 180301. doi: 10.1103/PhysRevB.84.180301
doi: 10.1103/PhysRevB.84.180301
Maughan, A. E.; Ganose, A. M.; Almaker, M. A.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2018, 30, 3909. doi: 10.1021/acs.chemmater.8b01549
doi: 10.1021/acs.chemmater.8b01549
Souvatzis, P.; Eriksson, O.; Katsnelson, M.; Rudin, S. Phys. Rev. Lett. 2008, 100, 095901. doi: 10.1103/PhysRevLett.100.095901
doi: 10.1103/PhysRevLett.100.095901
Faizan, M.; Xie, J.; Murtaza, G.; Echeverría-Arrondo, C.; Alshahrani, T.; Bhamu, K. C.; Laref, A.; Mora-Seró, I.; Khan, S. H. Phys. Chem. Chem. Phys. 2021, 23, 4646. doi: 10.1039/d0cp05827k
doi: 10.1039/d0cp05827k
Jung, Y.; Lee, W.; Han, S.; Kim, B. S.; Yoo, S. J.; Jang, H. Adv. Mater. 2022, 2204872. doi: 10.1002/adma.202204872
doi: 10.1002/adma.202204872
Liu, T.; Zhao, X.; Li, J.; Liu, Z.; Liscio, F.; Milita, S.; Schroeder, B. C.; Fenwick, O. Nat. Commun. 2019, 10, 5750. doi: 10.1038/s41467-019-13773-3
doi: 10.1038/s41467-019-13773-3
Lee, C.; Hong, J.; Stroppa, A.; Whangbo, M. -H.; Shim, J. H. RSC Adv. 2015, 5, 78701. doi: 10.1039/C5RA12536G
doi: 10.1039/C5RA12536G
Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nat. Rev. Mater. 2016, 1, 1. doi: 10.1038/natrevmats.2016.50
doi: 10.1038/natrevmats.2016.50
Lin, S.; Yan, L.; Zhao, L.; Cai, Z.; Liu, Z.; Yang, B.; Yang, M.; Zhao, C. ACS Appl. Energy Mater. 2021, 4, 14508. doi: 10.1021/acsaem.1c03177
doi: 10.1021/acsaem.1c03177
Mettan, X.; Pisoni, R.; Matus, P.; Pisoni, A.; JaćImović, J. I.; Náfrádi, B.; Spina, M.; Pavuna, D.; Forró, L.; Horváth, E. J. Phys. Chem. C 2015, 119, 11506. doi: 10.1021/acs.jpcc.5b03939
doi: 10.1021/acs.jpcc.5b03939
Nozariasbmarz, A.; Poudel, B.; Li, W.; Kang, H. B.; Zhu, H.; Priya, S. iScience 2020, 23, 101340. doi: 10.1016/j.isci.2020.101340
doi: 10.1016/j.isci.2020.101340
Wu, Y.; Nan, P.; Chen, Z.; Zeng, Z.; Lin, S.; Zhang, X.; Dong, H.; Chen, Z.; Gu, H.; Li, W. Research 2020, 2020, 8151059. doi: 10.34133/2020/8151059
doi: 10.34133/2020/8151059
Mao, J.; Zhu, H.; Ding, Z.; Liu, Z.; Gamage, G. A.; Chen, G.; Ren, Z. Science 2019, 365, 495. doi: 10.1126/science.aax7792
doi: 10.1126/science.aax7792
Stoumpos, C. C.; Kanatzidis, M. G. Adv. Mater. 2016, 28, 5778. doi: 10.1002/adma.201600265
doi: 10.1002/adma.201600265
Filippetti, A.; Caddeo, C.; Delugas, P.; Mattoni, A. J. Phys. Chem. C. 2016, 120, 28472. doi: 10.1021/acs.jpcc.6b10278
doi: 10.1021/acs.jpcc.6b10278
Feng, X.; Fan, Y.; Nomura, N.; Kikuchi, K.; Wang, L.; Jiang, W.; Kawasaki, A. Carbon 2017, 112, 169. doi: 10.1016/j.carbon.2016.11.012
doi: 10.1016/j.carbon.2016.11.012
Al-Anazy, M. M.; Ali, M. A.; Bouzgarrou, S.; Murtaza, G.; Al-Muhimeed, T. I.; Alobaid, A. A.; Mera, A.; Mahmood, Q.; Nazir, G. Phys. Scr. 2021, 96, 125828. doi: 10.1088/1402-4896/ac297a
doi: 10.1088/1402-4896/ac297a
Bhui, A.; Ghosh, T.; Pal, K.; Rana, K. S; Kundu, K.; Soni, A.; Biswas, K. Chem. Mater. 2022, 34, 3301. doi: 10.1021/acs.chemmater.2c00084
doi: 10.1021/acs.chemmater.2c00084
Albalawi, H.; Mustafa, G. M.; Saba, S.; Kattan, N. A.; Mahmood, Q.; Somaily, H. H.; Morsi, M.; Alharthi, S.; Amin, M. A. Mater. Today Commun. 2022, 32, 104083. doi: 10.1016/j.mtcomm.2022.104083
doi: 10.1016/j.mtcomm.2022.104083
Fallah, M.; Milani Moghaddam, H. Mater. Sci. Semicond. Process. 2021, 133, 105984. doi: 10.1016/j.mssp.2021.105984
doi: 10.1016/j.mssp.2021.105984
Li, J.; Hu, W.; Yang, J. J. Am. Chem. Soc. 2022, 144, 4448. doi: 10.1021/jacs.1c11887
doi: 10.1021/jacs.1c11887
Bousahla, M. A.; Faizan, M.; Seddik, T.; Omran, S. B.; Khachai, H.; Laref, A.; Khenata, R.; Znaidia, S.; Boukhris, I.; Khan, S. H. Mater. Today Commun. 2022, 30, 103061. doi: 10.1016/j.mtcomm.2021.103061
doi: 10.1016/j.mtcomm.2021.103061
Zeng, X.; Jiang, J.; Niu, G.; Sui, L.; Zhang, Y.; Wang, X.; Liu, X.; Chen, A.; Jin, M.; Yuan, K. J. Phys. Chem. Lett. 2022, 13, 9736. doi: 10.1021/acs.jpclett.2c02350
doi: 10.1021/acs.jpclett.2c02350
Wu, H.; Shi, X. L.; Liu, W. D.; Gao, H.; Wang, D. Z.; Yin, L. C.; Liu, Q.; Chen, Z. G. Appl. Mater. Today 2022, 29, 101580. doi: 10.1016/j.apmt.2022.101580
doi: 10.1016/j.apmt.2022.101580
Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E.; Kanatzidis, M. G. Science 2004, 303, 818. doi: 10.1126/science.1092963
doi: 10.1126/science.1092963
Disalvo, F. J. Science 1999, 285, 703. doi: 10.1126/science.285.5428.703
doi: 10.1126/science.285.5428.703
Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. Science 2008, 320, 634. doi: 10.1126/science.1156446
doi: 10.1126/science.1156446
Van Roekeghem, A.; Carrete, J.; Oses, C.; Curtarolo, S.; Mingo, N. Phys. Rev. X 2016, 6, 041061. doi: 10.1103/PhysRevX.6.041061
doi: 10.1103/PhysRevX.6.041061
Faizan, M.; Bhamu, K.; Murtaza, G.; He, X.; Kulhari, N.; Al-Anazy, M. M.; Khan, S. H. Sci. Rep. 2021, 11, 1. doi: 10.1038/s41598-021-86145-x
doi: 10.1038/s41598-021-86145-x
Haque, M. A.; Kee, S.; Villalva, D. R.; Ong, W. L.; Baran, D. Adv. Sci. 2020, 7, 1903389. doi: 10.1002/advs.201903389
doi: 10.1002/advs.201903389
Blaha, P.; Schwarz, K.; Madsen, G. K.; Kvasnicka, D.; Luitz, J. An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001; pp. 1–302.
Mokrousov. Y, Bihlmayer, G, Blugel, S. Phys. Rev. B 2006, 72, 045402. doi: 10.1103/PhysRevB.72.045402
doi: 10.1103/PhysRevB.72.045402
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
doi: 10.1103/PhysRevLett.77.3865
Tran, F.; Blaha, P. Phys. Rev. Lett. 2009, 102, 226401. doi: 10.1103/PhysRevLett.102.226401
doi: 10.1103/PhysRevLett.102.226401
Camargo-Martínez, J.; Baquero, R. Phys. Rev. B 2012, 86, 195106. doi: 10.1103/PhysRevB.86.195106
doi: 10.1103/PhysRevB.86.195106
Koller, D.; Tran, F.; Blaha, P. Phys. Rev. B 2012, 85, 155109. doi: 10.1103/PhysRevB.85.155109
doi: 10.1103/PhysRevB.85.155109
Ziman, J. M. Principles of the Theory of Solids, 2nd ed.; Cambridge University Press: Cambridge, England, 1972; pp. 1–435.
Madsen, G. K.; Singh, D. J. Comput. Phys. Commun. 2006, 175, 67. doi: 10.1016/j.cpc.2006.03.007
doi: 10.1016/j.cpc.2006.03.007
Ashcroft, N. W.; Mermin, N. D. Solid State Physics, 1st ed.; Cengage Learning: Boston, United States, 1976; pp. 1–833.
Werker, W. Recueil des Travaux Chimiques des Pays-Bas 1939, 58, 257. doi: 10.1002/recl.19390580309
doi: 10.1002/recl.19390580309
Schüpp, B.; Heines, P.; Keller, H. L. Z. Anorg. Allg. Chem 2000, 626, 202. doi: 10.1002/(SICI)1521-3749(200001)626:1
doi: 10.1002/(SICI)1521-3749(200001)626:1
Thiele, G.; Mrozek, C.; Kämmerer, D.; Wittmann, K. Z. fur Naturforsch. B 1983, 38, 905. doi: 10.1515/znb-1983-0802
doi: 10.1515/znb-1983-0802
Cai, Y.; Xie, W.; Ding, H.; Chen, Y.; Thirumal, K.; Wong, L. H.; Mathews, N.; Mhaisalkar, S. G.; Sherburne, M.; Asta, M. Chem. Mater. 2017, 29, 7740. doi: 10.1021/acs.chemmater.7b02013
doi: 10.1021/acs.chemmater.7b02013
Born, M.; Huang, K.; Lax, M. Am. J. Phys. 1955, 23, 474. doi: 10.1119/1.1934059
doi: 10.1119/1.1934059
Voigt, W. Ann. Phys. 1889, 274, 573. doi: 10.1002/andp.18892741206
doi: 10.1002/andp.18892741206
Reuß, A. J. Appl. Math. Mech. 1929, 9, 49. doi: 10.1002/zamm.19290090104
doi: 10.1002/zamm.19290090104
Hill, R. Sect. A 1952, 65, 349. doi: 10.1088/0370-1298/65/5/307
doi: 10.1088/0370-1298/65/5/307
Pugh, S. London Edinburgh Philos. Mag. J. Sci. 1954, 45, 823. doi: 10.1080/14786440808520496
doi: 10.1080/14786440808520496
Tvergaard, V.; Hutchinson, J. W. J. Am. Ceram. Soc. 1988, 71, 157. doi: 10.1111/j.1151-2916.1988.tb05022.x
doi: 10.1111/j.1151-2916.1988.tb05022.x
Pettifor, D. Mater. Sci. Technol. 1992, 8, 345. doi: 10.1179/mst.1992.8.4.345
doi: 10.1179/mst.1992.8.4.345
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
Xin Dong , Tianqi Chen , Jing Liang , Lei Wang , Huajie Wu , Zhijin Xu , Junhua Luo , Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
Kuangdi Luo , Yang Qin , Xuehao Zhang , Hanxu Ji , Heao Zhang , Jiangtian Li , Xianjin Xiao , Xinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296