Citation: Ruijie Zhu, Leilei Kang, Lin Li, Xiaoli Pan, Hua Wang, Yang Su, Guangyi Li, Hongkui Cheng, Rengui Li, Xiao Yan Liu, Aiqin Wang. Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230300. doi: 10.3866/PKU.WHXB202303003 shu

Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst

  • Corresponding author: Xiao Yan Liu, xyliu2003@dicp.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 1 March 2023
    Revised Date: 9 April 2023
    Accepted Date: 10 April 2023
    Available Online: 17 April 2023

    Fund Project: the National Natural Science Foundation of China 22102180the Liaoning Revitalization Talents Program, China XLYC2007070the Dalian National Laboratory Cooperation Fund, Chinese Academy of Sciences DNL202002the Fundamental Research Funds for the Central Universities, China 20720220009

  • Catalytic oxidation is a commonly employed technology in the industry for removing volatile organic compounds (VOCs) due to its exceptional efficiency under mild operating conditions. Although supported Pt-based nano-catalysts are recognized widely as one of the most promising and extensively used industrial catalysts for VOC abatement, their practical application, and development are restricted by their exorbitant cost. Single-atom catalyst (SAC) with maximized metal utilization and exclusive electronic character has been explored extensively in various catalytic reactions. However, Pt SAC is usually deemed to be inactive in hydrocarbon oxidation reactions in thermal catalysis, compared with its nanoparticle counterpart. Here, we demonstrate that the WO3-TiO2 supported Pt SAC (Pt1/WO3-TiO2) exhibits much higher activities than the corresponding nanoparticle catalyst (PtNP/WO3-TiO2) in photo-thermo catalytic oxidation of C3H8 and C3H6, which represent different kinds of typical VOCs. A key finding is that the activities of Pt1/WO3-TiO2 and PtNP/WO3-TiO2 can be accelerated in photo-thermo catalytic C3H8 oxidation by overcoming oxygen poisoning. Upon the light irradiation, the apparent active energy (Ea) of the Pt1/WO3-TiO2 and PtNP/WO3-TiO2 decline from 116 to 60 kJ·mol−1 and from 103 to 30 kJ·mol−1, respectively, substantiating their effectiveness in photo-thermo catalysis. Notably, a substantially higher reaction rate of 3792 μmol∙gPt−1∙s−1 on the Pt1/WO3-TiO2 is achieved, which should be a benchmark for C3H8 oxidation. More intriguingly, photo-thermo catalytic C3H6 oxidation on the PtNP/WO3-TiO2 is prohibited due to the strong adsorption-induced C3H6 poisoning on the Pt nanoparticles, for which the Ea of the PtNP/WO3-TiO2 catalyst for C3H6 oxidation is maintained at approximately 55 kJ·mol−1, regardless of the light irradiation. In comparison, the C3H6 poisoning on the Pt1/WO3-TiO2 can be mitigated by light illumination, where the Ea of the Pt1/WO3-TiO2 catalyst for C3H6 oxidation dramatically reduced from 49 to 16 kJ·mol−1, signifying that the high energy barrier of C3H6 oxidation can be mediated by the light. Profiting from the apt affinity between C3H6 and Pt single atoms, the photogenerated electrons accumulated on the Pt single atoms produce repulsive force towards the electron-rich C3H6 molecules, which is conducive to the C3H6 desorption from the Pt1/WO3-TiO2. Therefore, the Pt1/WO3-TiO2 exhibits enhanced activity in photo-thermo catalytic C3H6 oxidation. This study exemplifies that the advantages of SAC are not only saving the consumption of precious metals but also discovering new catalytic reactions on the account of the specific electronic characteristic.
  • 加载中
    1. [1]

      Sadykov, I. I.; Zabilskiy, M.; Clark, A. H.; Krumeich, F.; Sushkevich, V.; van Bokhoven, J. A.; Nachtegaal, M.; Safonova, O. V. ACS Catal. 2021, 11, 11793. doi: 10.1021/acscatal.1c02795  doi: 10.1021/acscatal.1c02795

    2. [2]

      Chen, G.; Zhao, Y.; Fu, G.; Duchesne Paul, N.; Gu, L.; Zheng, Y.; Weng, X.; Chen, M.; Zhang, P.; Pao, C.; et al. Science 2014, 344, 495. doi: 10.1126/science.1252553  doi: 10.1126/science.1252553

    3. [3]

      Zhang, B.; Ren, L.; Xu, Z.; Cheng, N.; Lai, W.; Zhang, L.; Hao, W.; Chu, S.; Wang, Y.; Du, Y.; et al. Small 2021, 17, 2100732. doi: 10.1002/smll.202100732  doi: 10.1002/smll.202100732

    4. [4]

      Chen, C.; Tian, H.; Fu, Z.; Cui, X.; Kong, F.; Meng, G.; Chen, Y.; Qi, F.; Chang, Z.; Zhu, L.; et al. Appl. Catal. B 2022, 304, 121008. doi: 10.1016/j.apcatb.2021.121008  doi: 10.1016/j.apcatb.2021.121008

    5. [5]

      Shen, R.; Liu, Y.; Wen, H.; Wu, X.; Han, G.; Yue, X.; Mehdi, S.; Liu, T.; Cao, H.; Liang, E.; et al. Small 2021, 18, 2105588. doi: 10.1002/smll.202105588  doi: 10.1002/smll.202105588

    6. [6]

      Đukić, T.; Moriau, L. J.; Pavko, L.; Kostelec, M.; Prokop, M.; Ruiz-Zepeda, F.; Šala, M.; Dražić, G.; Gatalo, M.; Hodnik, N. ACS Catal. 2021, 12, 101. doi: 10.1021/acscatal.1c04205  doi: 10.1021/acscatal.1c04205

    7. [7]

      Kato, M.; Iguchi, Y.; Li, T.; Kato, Y.; Zhuang, Y.; Higashi, K.; Uruga, T.; Saida, T.; Miyabayashi, K.; Yagi, I. ACS Catal. 2021, 12, 259. doi: 10.1021/acscatal.1c04597  doi: 10.1021/acscatal.1c04597

    8. [8]

      Zaman, S.; Su, Y.; Dong, C.; Qi, R.; Huang, L.; Qin, Y.; Huang, Y.; Li, F.; You, B.; Guo, W.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115835. doi: 10.1002/anie.202115835  doi: 10.1002/anie.202115835

    9. [9]

      Reina, T. R.; Gonzalez-Castaño, M.; Lopez-Flores, V.; Martínez, T, L. M.; Zitolo, A.; Ivanova, S.; Xu, W.; Centeno, M. A.; Rodriguez, J. A.; Odriozola, J. A. J. Am. Chem. Soc. 2021, 144, 446. doi: 10.1021/jacs.1c10481  doi: 10.1021/jacs.1c10481

    10. [10]

      Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; et al. Science 2010, 329, 1633. doi: 10.1126/science.1192449  doi: 10.1126/science.1192449

    11. [11]

      Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m  doi: 10.1021/ar300361m

    12. [12]

      Han, B.; Guo, Y.; Huang, Y.; Xi, W.; Xu, J.; Luo, J.; Qi, H.; Ren, Y.; Liu, X.; Qiao, B.; et al. Angew. Chem. Int. Ed. 2020, 59, 11824. doi: 10.1002/anie.202003208  doi: 10.1002/anie.202003208

    13. [13]

      Kuo, C.; Lu, Y.; Kovarik, L.; Engelhard, M.; Karim, A. M. ACS Catal. 2019, 9, 11030. doi: 10.1021/acscatal.9b02840  doi: 10.1021/acscatal.9b02840

    14. [14]

      Li, W.; Yang, J.; Jing, H.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2021, 143, 15453. doi: 10.1021/jacs.1c08088  doi: 10.1021/jacs.1c08088

    15. [15]

      Wang, L.; Zhu, C.; Xu, M.; Zhao, C.; Gu, J.; Cao, L.; Zhang, X.; Sun, Z.; Wei, S.; Zhou, W.; et al. J. Am. Chem. Soc. 2021, 143, 18854. doi: 10.1021/jacs.1c09498  doi: 10.1021/jacs.1c09498

    16. [16]

      Scirè, S.; Liotta, L. F. Appl. Catal. B 2012, 125, 222. doi: 10.1016/j.apcatb.2012.05.047  doi: 10.1016/j.apcatb.2012.05.047

    17. [17]

      FAO/FAOLEX. OJEU 2004, L143, 87.

    18. [18]

      He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Chem. Rev. 2019, 119, 4471. doi: 10.1021/acs.chemrev.8b00408  doi: 10.1021/acs.chemrev.8b00408

    19. [19]

      Fang, Y.; Li, H.; Zhang, Q.; Wang, C.; Xu, J.; Shen, H.; Yang, J.; Pan, C.; Zhu, Y.; Luo, Z.; et al. Environ. Sci. Technol. 2022, 56, 3245. doi: 10.1021/acs.est.1c07573  doi: 10.1021/acs.est.1c07573

    20. [20]

      Zhang, L.; Xue, L.; Lin, B.; Zhao, Q.; Wan, S.; Wang, Y.; Jia, H.; Xiong, H. ChemSusChem 2022, 15, e202102494. doi: 10.1002/cssc.202102494  doi: 10.1002/cssc.202102494

    21. [21]

      Liu, Y.; Li, X.; Liao, W.; Jia, A.; Wang, Y.; Luo, M.; Lu, J. ACS Catal. 2019, 9, 1472. doi: 10.1021/acscatal.8b03666  doi: 10.1021/acscatal.8b03666

    22. [22]

      Yang, A.; Zhu, H.; Li, Y.; Cargnello, M. ACS Catal. 2021, 11, 6672. doi: 10.1021/acscatal.1c01280  doi: 10.1021/acscatal.1c01280

    23. [23]

      Kim, J.; Kim, Y.; Wiebenga, M. H.; Oh, S. H.; Kim, D. H. Appl. Catal. B 2019, 251, 283. doi: 10.1016/j.apcatb.2019.04.001  doi: 10.1016/j.apcatb.2019.04.001

    24. [24]

      Avgouropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016  doi: 10.1016/j.apcatb.2005.12.016

    25. [25]

      Yu, X.; He, J.; Wang, D.; Hu, Y.; Tian, H.; He, Z. J. Phys. Chem. C 2012, 116, 851. doi: 10.1021/jp208947e  doi: 10.1021/jp208947e

    26. [26]

      Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Angew. Chem. Int. Ed. 2012, 51, 9628. doi: 10.1002/anie.201202034  doi: 10.1002/anie.201202034

    27. [27]

      Jeong, H.; Lee, G.; Kim, B.; Bae, J.; Han, J. W.; Lee, H. J. Am. Chem. Soc. 2018, 140, 9558. doi: 10.1021/jacs.8b04613  doi: 10.1021/jacs.8b04613

    28. [28]

      Jeong, H.; Kwon, O.; Kim, B.; Bae, J.; Shin, S.; Kim, H.; Kim, J.; Lee, H. Nat. Catal. 2020, 3, 368. doi: 10.1038/s41929-020-0427-z  doi: 10.1038/s41929-020-0427-z

    29. [29]

      Wang, Z.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020, 59, 8016. doi: 10.1002/anie.201907443  doi: 10.1002/anie.201907443

    30. [30]

      Christopher, P.; Xin, H.; Marimuthu, A.; Linic, S. Nat. Mater. 2012, 11, 1044. doi: 10.1038/nmat3454  doi: 10.1038/nmat3454

    31. [31]

      Tan, T. H.; Scott, J.; Ng, Y. H.; Taylor, R. A.; Aguey-Zinsou, K. -F.; Amal, R. ACS Catal. 2016, 6, 1870. doi: 10.1021/acscatal.5b02785  doi: 10.1021/acscatal.5b02785

    32. [32]

      Zhou, L.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H.; Henderson, L.; Dong, L.; Christopher, P.; Carter, E. A.; Nordlander, P.; et al. Science 2018, 362, 69. doi: 10.1126/science.aat6967  doi: 10.1126/science.aat6967

    33. [33]

      Kang, L.; Liu, X. Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al. Angew. Chem. Int. Ed. 2020, 59, 12909. doi: 10.1002/anie.202001701  doi: 10.1002/anie.202001701

    34. [34]

      Feng, Y.; Dai, L.; Wang, Z.; Peng, Y.; Duan, E.; Liu, Y.; Jing, L.; Wang, X.; Rastegarpanah, A.; Dai, H.; et al. Environ. Sci. Technol. 2022, 56, 8722. doi: 10.1021/acs.est.1c08643  doi: 10.1021/acs.est.1c08643

    35. [35]

      Wang, Y.; Dai, J.; Wang, M.; Qi, F.; Jin, X.; Zhang, L. J. Colloid Interface Sci. 2023, 636, 577. doi: 10.1016/j.jcis.2023.01.053  doi: 10.1016/j.jcis.2023.01.053

    36. [36]

      Lang, R.; Xi, W.; Liu, J.; Cui, Y.; Li, T.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L.; et al. Nat. Commun. 2019, 10, 234. doi: 10.1038/s41467-018-08136-3  doi: 10.1038/s41467-018-08136-3

    37. [37]

      DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X.; Christopher, P. J. Am. Chem. Soc. 2017, 139, 14150. doi: 10.1021/jacs.7b07093  doi: 10.1021/jacs.7b07093

    38. [38]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    39. [39]

      Kale, M. J.; Christopher, P. ACS Catal. 2016, 6, 5599. doi: 10.1021/acscatal.6b01128  doi: 10.1021/acscatal.6b01128

    40. [40]

      Lu, Y.; Wang, Y.; Tang, Q.; Cao, Q.; Fang, W. Appl. Catal. B 2022, 300, 120746. doi: 10.1016/j.apcatb.2021.120746  doi: 10.1016/j.apcatb.2021.120746

    41. [41]

      Yazawa, Y.; Kagi, N.; Komai, S. -I.; Satsuma, A.; Murakami, Y.; Hattori, T. Catal. Lett. 2001, 72, 157. doi: 10.1023/A:1009027926457  doi: 10.1023/A:1009027926457

    42. [42]

      Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Angew. Chem. Int. Ed. 2012, 51, 6223. doi: 10.1002/anie.201202191  doi: 10.1002/anie.201202191

    43. [43]

      Qiu, C.; Shen, J.; Lin, J.; Liu, D.; Li, D.; Zhang, J.; Zhang, Z.; Lin, H.; Wang, X.; Fu, X. ACS Appl. Energy Mater. 2021, 4, 10172. doi: 10.1021/acsaem.1c02066  doi: 10.1021/acsaem.1c02066

    44. [44]

      Caretti, I.; Keulemans, M.; Verbruggen, S. W.; Lenaerts, S.; Van Doorslaer, S. Top. Catal. 2015, 58, 776. doi: 10.1007/s11244-015-0419-4  doi: 10.1007/s11244-015-0419-4

    45. [45]

      Zhang, T.; Lang, X.; Dong, A.; Wan, X.; Gao, S.; Wang, L.; Wang, L.; Wang, W. ACS Catal. 2020, 10, 7269. doi: 10.1021/acscatal.0c00703  doi: 10.1021/acscatal.0c00703

    46. [46]

      Liu, S.; Huang, S. Carbon 2017, 115, 11. doi: 10.1016/j.carbon.2016.12.094  doi: 10.1016/j.carbon.2016.12.094

  • 加载中
    1. [1]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    2. [2]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    3. [3]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    4. [4]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    5. [5]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    6. [6]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    7. [7]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    8. [8]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    9. [9]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    10. [10]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    14. [14]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    17. [17]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    18. [18]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    19. [19]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    20. [20]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

Metrics
  • PDF Downloads(13)
  • Abstract views(783)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return