Citation: Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230203. doi: 10.3866/PKU.WHXB202302037 shu

Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction

  • Corresponding author: Jinli Qiao, qiaojl@dhu.edu.cn
  • Received Date: 23 February 2023
    Revised Date: 28 March 2023
    Accepted Date: 28 March 2023
    Available Online: 4 April 2023

    Fund Project: the "Scientific and Technical Innovation Action Plan" Hong Kong, Macao and Taiwan Science & Technology Cooperation Project of Shanghai Science and Technology Committee, China 19JC1410500the National Natural Science Foundation of China 91645110

  • Human activities primarily rely on the consumption of the fossil energy, which has led to an energy crisis and environmental pollution. Since the industrial revolution, the atmospheric CO2 concentration has been continuously increasing, and reached 414 × 10−6 in 2020, which has resulted in global warming and glacial ablation. Converting CO2 into high-value-added fuels and chemicals can alleviate environmental problems, enable the storage of intermittent renewable energy (wind and solar power), and provide a new route for fuel synthesis. The electrochemical CO2 reduction reaction (CO2RR) has attracted extensive attention owing to its mild reaction conditions, controllability, environmental friendliness, and the ability to generate various products. There are four key steps in a typical CO2RR: (1) charge transport (electrons are transported from the conductive substrate to the electrocatalyst); (2) surface conversion (CO2 is adsorbed and activated on the surface of the catalyst); (3) charge transfer (electrons are transferred from the catalyst surface to the CO2 intermediate); and (4) mass transfer (CO2 diffuses from the electrolyte to the catalyst surface, and the products diffuse in the reverse pathway). The former two steps depend on the type of membrane and the development of highly conductive catalysts with abundant active sites, while the latter two steps rely on the properties of the electrolyte and the optimization of the electrolytic cell configuration. To meet the high-selectivity (> 90%), superior-activity (> 200 mA·cm−2), and excellent-stability (> 1000 h) requirements of the CO2RR as per industrial standards, the design of efficient electrocatalysts has been a key research area in recent decades. However, other factors have rarely been investigated. In this review, we systematically summarize the development of electrocatalysts, effect of the electrolyte, progress in the development of the reactor, and type of membrane in the CO2RR from industrial and commercial perspectives. First, we discuss how first-principles calculations can be used to determine the chemical rate for CO2 reduction. Additionally, we discuss how in situ or operando techniques such as X-ray absorption measurements can reveal the theoretically proposed reaction pathway. The microenvironment (e.g., pH, anions, and cations) at the three-phase interface plays a vital role in achieving a high CO2RR performance, which can be controlled by changing the electrolyte properties. Further, the suitable design and development of the reactor is very critical for commercial CO2RR technology because CO2RR reactors must efficiently utilize the CO2 feedstock to minimize the cost of upstream CO2 capture. Finally, different types of membranes based on different ion-transfer mechanisms can affect the CO2RR performance. The development opportunities and challenges toward the practical application of the CO2RR are also highlighted.
  • 加载中
    1. [1]

      Liang, L.; Sun, J.; Yue, M.; Geng, H. World Petroleum Ind.2020,(3), 7.

    2. [2]

      https://www.carbonmonitor.org.cn (accessed on Jul 02, 2022).

    3. [3]

      https://www.noaa.gov (accessed on Jul 02, 2022).

    4. [4]

      Hö nisch, B.; Ridgwell, A.; Schmidt, D. N.; Thomas, E.; Gibbs, S. J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R. C.; Greene, S. E.; et al. Science 2012, 335 (6072), 1058. doi: 10.1126/science.1208277  doi: 10.1126/science.1208277

    5. [5]

      Dautzenberg, F. M.; Lu, Y.; Xu, B. Acta Phys.-Chim. Sin. 2021, 37 (5), 2008066.  doi: 10.3866/PKU.WHXB202008066

    6. [6]

      http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm (accessed on Jul 02, 2022).

    7. [7]

      Song, Y.; Xie, W.; Shao, M. Acta Phys.-Chim. Sin. 2021, 38 (6), 2101028.  doi: 10.3866/PKU.WHXB202101028

    8. [8]

      Wang, X.; Fan, M.; Guan, Y.; Liu, Y.; Liu, M.; Karsili, T. N.; Yi, J.; Zhou, X.-D. J. Mater. Chem. A 2021, 9 (40), 22710. doi: 10.1039/D1TA05960B  doi: 10.1039/D1TA05960B

    9. [9]

      Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W.Chem 2018, 4 (11), 2571. doi: 10.1016/j.chempr.2018.08.019  doi: 10.1016/j.chempr.2018.08.019

    10. [10]

      Lan, B. Y.; Shi, H. F.Acta Phys.-Chim. Sin. 2014, 30 (12), 20.  doi: 10.3866/PKU.WHXB201409303

    11. [11]

      Jiang, H.; Ji, X.; Si, W.; Pan, J.; Cai, L. J.Civ. Eng. Manag. 2015, 37 (3), 127.  doi: 10.11835/j.issn.1674-4764.2015.03.017

    12. [12]

      Wang, Y.; Zhong, Z.; Liu, T.; Liu, G.; Hong, X.Acta Phys.-Chim. Sin. 2021, 37 (5), 2007089.  doi: 10.3866/PKU.WHXB202007089

    13. [13]

      Shi, Y.; Hou, M.; Li, J.; Li, L.; Zhang, Z. Acta Phys.-Chim. Sin. 2022, 38 (11), 2206020.  doi: 10.3866/PKU.WHXB202206020

    14. [14]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43 (2), 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    15. [15]

      Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Gö ttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4 (9), 732. doi: 10.1038/s41560-019-0450-y  doi: 10.1038/s41560-019-0450-y

    16. [16]

      Zhao, Z.; Lu, G. J. Phys. Chem. C 2019, 123 (7), 4380. doi: 10.1021/acs.jpcc.8b12449  doi: 10.1021/acs.jpcc.8b12449

    17. [17]

      Mou, S.; Wu, T.; Xie, J.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y.; Xiong, X.; Tang, B.; et al. Adv. Mater. 2019, 31 (36), 1903499. doi: 10.1002/adma.201903499  doi: 10.1002/adma.201903499

    18. [18]

      Dong, H.; Li, Y.; Jiang, D. J. Phys. Chem. C 2018, 122 (21), 11392. doi: 10.1021/acs.jpcc.8b01928  doi: 10.1021/acs.jpcc.8b01928

    19. [19]

      Huang, B.; Wu, Y.; Luo, Y.; Zhou, N. Chem. Phys. Lett. 2020, 756, 137852. doi: 10.1016/j.cplett.2020.137852  doi: 10.1016/j.cplett.2020.137852

    20. [20]

      Qiu, X.-F.; Zhu, H.-L.; Huang, J.-R.; Liao, P.-Q.; Chen, X.-M. J. Am. Chem. Soc. 2021, 143 (19), 7242-7246. doi: 10.1021/jacs.1c01466  doi: 10.1021/jacs.1c01466

    21. [21]

      Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Angew. Chem. Int. Ed. 2021, 133 (48), 25689. doi: 10.1002/anie.202111136  doi: 10.1002/anie.202111136

    22. [22]

      Calle-Vallejo, F.; Koper, M. T. Angew. Chem. Int. Ed. 2013, 125 (28), 7423. doi: 10.1002/ange.201301470  doi: 10.1002/ange.201301470

    23. [23]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39 (11–12), 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    24. [24]

      Jin, H.; Xiong, L.; Zhang, X.; Lian, Y.; Chen, S.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys.-Chim. Sin. 2021, 37 (11), 2006017.  doi: 10.3866/PKU.WHXB202006017

    25. [25]

      Meng, Y.; Kuang, S.; Liu, H.; Fan, Q.; Ma, X.; Zhang, S. Acta Phys.-Chim. Sin. 2021, 37 (5), 2006034.  doi: 10.3866/PKU.WHXB202006034

    26. [26]

      Zhang, X.; Liu, C.; Zhao, Y.; Li, L.; Chen, Y.; Raziq, F.; Qiao, L.; Guo, S.-X.; Wang, C.; Wallace, G. G. Appl. Catal. B 2021, 291, 120030. doi: 10.1016/j.apcatb.2021.120030  doi: 10.1016/j.apcatb.2021.120030

    27. [27]

      Zhang, Y.; Li, P.; Zhao, C.; Zhou, G.; Zhou, F.; Zhang, Q.; Su, C.; Wu, Y. Sci. Bull. 2022, 67 (16), 1679. doi: 10.1016/j.scib.2022.07.029  doi: 10.1016/j.scib.2022.07.029

    28. [28]

      Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134 (49), 19969. doi: 10.1021/ja309317u  doi: 10.1021/ja309317u

    29. [29]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537(7620), 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    30. [30]

      Zhu, W.; Zhang, Y.-J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2014, 136 (46), 16132. doi: 10.1021/ja5095099  doi: 10.1021/ja5095099

    31. [31]

      Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 128 (33), 9900. doi: 10.1002/anie.201604654  doi: 10.1002/anie.201604654

    32. [32]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. ACS Catal. 2015, 5 (7), 4293. doi: 10.1021/acscatal.5b00840  doi: 10.1021/acscatal.5b00840

    33. [33]

      Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. Nat. Commun. 2014, 5 (1), 1. doi: 10.1038/ncomms4242  doi: 10.1038/ncomms4242

    34. [34]

      Back, S.; Yeom, M. S.; Jung, Y. ACS Catal. 2015, 5 (9), 5089. doi: 10.1021/acscatal.5b00462  doi: 10.1021/acscatal.5b00462

    35. [35]

      Hao, J.; Zhu, H.; Li, Y.; Liu, P.; Du, M. Chem. Eng. J. 2020, 404, 126523. doi: 10.1016/j.cej.2020.126523  doi: 10.1016/j.cej.2020.126523

    36. [36]

      Dai, L.; Qin, Q.; Wang, P.; Zhao, X.; Hu, C.; Liu, P.; Qin, R.; Chen, M.; Ou, D.; Xu, C.; et al. Sci. Adv. 2017, 3 (9), e1701069. doi: 10.1126/sciadv.1701069  doi: 10.1126/sciadv.1701069

    37. [37]

      Woyessa, G. W.; Cruz, J.; Rameez, M.; Hung, C. H. Appl. Catal. B 2021, 29 (15), 120052. doi: 10.1016/j.apcatb.2021.120052  doi: 10.1016/j.apcatb.2021.120052

    38. [38]

      Zeng, J.; Bejtka, K.; Ju, W.; Castellino, M.; Chiodoni, A.; Sacco, A. Appl. Catal. B 2018, 236 (15) 475-482. doi: 10.1016/j.apcatb.2018.05.056  doi: 10.1016/j.apcatb.2018.05.056

    39. [39]

      Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J.-J.; et al.J. Am. Chem. Soc.2017, 139 (12), 4290. doi: 10.1021/jacs.7b00261  doi: 10.1021/jacs.7b00261

    40. [40]

      Ju, W.; Jiang, F.; Ma, H.; Pan, Z.; Zhao, Y. B.; Pagani, F.; Rentsch, D.; Wang, J.; Battaglia, C. Adv. Energy Mater. 2019, 9 (32), 1901514. doi: 10.1002/aenm.201901514  doi: 10.1002/aenm.201901514

    41. [41]

      Chen, Y.; Wang, L.; Yao, Z.; Hao, L.; Tan, X.; Masa, J.; Robertson, A. W.; Sun, Z. Acta Phys.-Chim. Sin. 2022, 38 (11), 2207024.  doi: 10.3866/PKU.WHXB202207024

    42. [42]

      Nguyen, T. N.; Salehi, M.; Le, Q. V.; Seifitokaldani, A.; Dinh, C. T. ACS Catal. 2020, 10 (17), 10068. doi: 10.1021/acscatal.0c02643  doi: 10.1021/acscatal.0c02643

    43. [43]

      Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.;et al. J. Am. Chem. Soc. 2017, 139 (42), 14889. doi: 10.1021/jacs.7b09074  doi: 10.1021/jacs.7b09074

    44. [44]

      Huang, X.; Ma, Y.; Zhi, L.Acta Phys.-Chim. Sin. 2022, 38 (2), 2011050.  doi: 10.3866/PKU.WHXB202011050

    45. [45]

      Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S. Adv. Energy Mater. 2018, 8 (19), 1703487. doi: 10.1002/aenm.201703487  doi: 10.1002/aenm.201703487

    46. [46]

      Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140 (12), 4218-4221. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    47. [47]

      Vijay, S.; Ju, W.; Brückner, S.; Tsang, S.-C.; Strasser, P.; Chan, K. Nat. Catal. 2021, 4 (12), 1024. doi: 10.1038/s41929-021-00705-y  doi: 10.1038/s41929-021-00705-y

    48. [48]

      Du, Y.; Meng, X.; Wang, Z.; Zhao, X.; Qiu J. Acta Phys.-Chim. Sin. 2022, 38 (2), 2101009.  doi: 10.3866/PKU.WHXB202101009

    49. [49]

      Guo, B. D.; Liu, Q. A.; Chen, E. D.; Zhu, H. W.; Fang, L. A.; Gong, J. R. Nano Lett. 2010, 10 (12), 4975. doi: 10.1021/nl103079j  doi: 10.1021/nl103079j

    50. [50]

      Wu, J.; Yadav, R. M.; Liu, M.; Sharma, P. P.; Tiwary, C. S.; Ma, L.; Zou, X.; Zhou, X.-D.; Yakobson, B. I.; Lou, J.; et al. ACS Nano 2015, 9 (5), 5364. doi: 10.1021/acsnano.5b01079  doi: 10.1021/acsnano.5b01079

    51. [51]

      Li, H.; Xiao, N.; Hao, M.; Song, X.; Wang, Y.; Ji, Y.; Liu, C.; Li, C.; Guo, Z.; Zhang, F.; et al. Chem. Eng. J. 2018, 351, 613. doi: 10.1016/j.cej.2018.06.077  doi: 10.1016/j.cej.2018.06.077

    52. [52]

      Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4 (1), 2819. doi: 10.1038/ncomms3819  doi: 10.1038/ncomms3819

    53. [53]

      Wang, Y.; Zhou, J.; Lv, W.; Fang, H.; Wang, W. Appl. Surf. Sci. 2016, 362, 394. doi: 10.1016/j.apsusc.2015.11.255  doi: 10.1016/j.apsusc.2015.11.255

    54. [54]

      Liu, S.; Pang, F.; Zhang, Q.; Guo, R.; Wang, Z.; Wang, Y.; Zhang, W.; Ou, J. Appl. Mater. Today 2018, 13, 135. doi: 10.1016/j.apmt.2018.08.014  doi: 10.1016/j.apmt.2018.08.014

    55. [55]

      Fu, Y.; Li, Y.; Zhang, X.; Liu, Y.; Qiao, J.; Zhang, J.; Wilkinson, D. P. Appl. Energy 2016, 175, 536. doi: 10.1016/j.apenergy.2016.03.115  doi: 10.1016/j.apenergy.2016.03.115

    56. [56]

      Nguyen-Phan, T.-D.; Hu, L.; Howard, B. H.; Xu, W.; Stavitski, E.; Leshchev, D.; Rothenberger, A.; Neyerlin, K. C.; Kauffman, D. R. Sci. Rep. 2022, 12 (1), 1. doi: 10.1038/s41598-022-11890-6  doi: 10.1038/s41598-022-11890-6

    57. [57]

      Wang, X.; Zou, Y.; Zhang, Y.; Marchetti, B.; Liu, Y.; Yi, J.; Zhou, X.-D.; Zhang, J. J. Colloid Interface Sci. 2022, 626, 836. doi: 10.1016/j.jcis.2022.07.008  doi: 10.1016/j.jcis.2022.07.008

    58. [58]

      Wu, J.; Sharma, P. P.; Harris, B. H.; Zhou, X.-D. J. Power Sources 2014, 258, 189. doi: 10.1016/j.jpowsour.2014.02.014  doi: 10.1016/j.jpowsour.2014.02.014

    59. [59]

      Zou, J.; Lee, C. Y.; Wallace, G. G. Adv. Sci. 2021, 8 (15), 2004521. doi: 10.1002/advs.202004521  doi: 10.1002/advs.202004521

    60. [60]

      Li, Y.; Qiao, J.; Zhang, X.; Lei, T.; Girma, A.; Liu, Y.; Zhang, J. ChemElectroChem 2016, 3 (10), 1618. doi: 10.1002/celc.201600290  doi: 10.1002/celc.201600290

    61. [61]

      Zhang, Q.; Zhang, Y.; Mao, J.; Liu, J.; Zhou, Y.; Guay, D.; Qiao, J. ChemSusChem 2019, 12 (7), 1443. doi: 10.1002/cssc.201802725  doi: 10.1002/cssc.201802725

    62. [62]

      Liu, H.; Su, Y.; Liu, Z.; Chuai, H.; Zhang, S.; Ma, X. Nano Energy 2023, 105, 108031. doi: 10.1016/j.nanoen.2022.108031  doi: 10.1016/j.nanoen.2022.108031

    63. [63]

      Ye, K.; Zhou, Z.; Shao, J.; Lin, L.; Gao, D.; Ta, N.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2020, 59 (12), 4814. doi: 10.1002/anie.201916538  doi: 10.1002/anie.201916538

    64. [64]

      Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F. J. Am. Chem. Soc. 2017, 139 (5), 1885. doi: 10.1021/jacs.6b10435  doi: 10.1021/jacs.6b10435

    65. [65]

      Hou, X.; Cai, Y.; Zhang, D.; Li, L.; Zhang, X.; Zhu, Z.; Peng, L.; Liu, Y.; Qiao, J. J. Mater. Chem. A 2019, 7 (7), 3197. doi: 10.1039/c8ta10650a  doi: 10.1039/c8ta10650a

    66. [66]

      Liu, H.; Xia, J.; Zhang, N.; Cheng, H.; Bi, W.; Zu, X.; Chu, W.; Wu, H.; Wu, C.; Xie, Y. Nat. Catal. 2021, 4 (3), 202. doi: 10.1038/s41929-021-00576-3  doi: 10.1038/s41929-021-00576-3

    67. [67]

      Ye, K.; Cao, A.; Shao, J.; Wang, G.; Si, R.; Ta, N.; Xiao, J.; Wang, G. Sci. Bull. 2020, 65 (9), 711. doi: 10.1016/j.scib.2020.01.020  doi: 10.1016/j.scib.2020.01.020

    68. [68]

      Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 129 (40), 12387. doi: 10.1002/anie.201707098  doi: 10.1002/anie.201707098

    69. [69]

      Koh, J. H.; Won, D. H.; Eom, T.; Kim, N.-K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. ACS Catal. 2017, 7 (8), 5071. doi: 10.1021/acscatal.7b00707  doi: 10.1021/acscatal.7b00707

    70. [70]

      Chen, J.; Chen, S.; Li, Y.; Liao, X.; Zhao, T.; Cheng, F.; Wang, H. Small 2022,2201633. doi: 10.1002/smll.202201633  doi: 10.1002/smll.202201633

    71. [71]

      Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Zhao, P.; Xue, X.; Chen, R.; Yang, S.; Ma, J.; Liu, J. Nano Energy 2018, 53, 808. doi: 10.1016/j.nanoen.2018.09.053  doi: 10.1016/j.nanoen.2018.09.053

    72. [72]

      Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Nat. Commun. 2018, 9 (1), 1. doi: 10.1038/s41467-018-03712-z  doi: 10.1038/s41467-018-03712-z

    73. [73]

      Duan, J.; Liu, T.; Zhao, Y.; Yang, R.; Zhao, Y.; Wang, W.; Liu, Y.; Li, H.; Li, Y.; Zhai, T. Nat. Commun. 2022, 13 (1), 2039. doi: 10.1038/s41467-022-29699-2  doi: 10.1038/s41467-022-29699-2

    74. [74]

      Guan, Y.; Zhang, X.; Zhang, Y.; Karsili, T. N.; Fan, M.; Liu, Y.; Marchetti, B.; Zhou, X.-D. J. Colloid Interface Sci. 2022, 612, 235. doi: 10.1016/j.jcis.2021.12.174  doi: 10.1016/j.jcis.2021.12.174

    75. [75]

      Zhang, X.; Lei, T.; Liu, Y.; Qiao, J. Appl. Catal. B 2017, 218, 46. doi: 10.1016/j.apcatb.2017.06.032  doi: 10.1016/j.apcatb.2017.06.032

    76. [76]

      Zhang, X.; Hou, X.; Zhang, Q.; Cai, Y.; Liu, Y.; Qiao, J.J. Catal. 2018, 365, 63. doi: 10.1016/j.jcat.2018.06.019  doi: 10.1016/j.jcat.2018.06.019

    77. [77]

      Huang, Y.; Mao, X.; Yuan, G.; Zhang, D.; Pan, B.; Deng, J.; Shi, Y.; Han, N.; Li, C.; Zhang, L.; et al.Angew. Chem. Int. Ed. 2021, 133 (29), 15978. doi: 10.1002/anie.202105256  doi: 10.1002/anie.202105256

    78. [78]

      Pan, B.; Yuan, G.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y.; et al.Small Sci. 2021, 1 (10), 2100029. doi: 10.1002/smsc.202100029  doi: 10.1002/smsc.202100029

    79. [79]

      Du, X.; Qin, Y.; Gao, B.; Wang, K.; Li, D.; Li, Y.; Ding, S.; Song, Z.; Su, Y.; Xiao, C. Appl. Surf. Sci. 2021, 563, 150405. doi: 10.1016/j.apsusc.2021.150405  doi: 10.1016/j.apsusc.2021.150405

    80. [80]

      Grigioni, I.; Sagar, L. K.; Li, Y. C.; Lee, G.; Yan, Y.; Bertens, K.; Miao, R. K.; Wang, X.; Abed, J.; Won, D. H.; et al.ACS Energy Lett. 2020, 6 (1), 79. doi: 10.1021/acsenergylett.0c02165  doi: 10.1021/acsenergylett.0c02165

    81. [81]

      Chi, L.-P.; Niu, Z.-Z.; Zhang, X.-L.; Yang, P.-P.; Liao, J.; Gao, F.-Y.; Wu, Z.-Z.; Tang, K.-B.; Gao, M.-R. Nat. Commun. 2021, 12 (1), 5835. doi: 10.1038/s41467-021-26124-y  doi: 10.1038/s41467-021-26124-y

    82. [82]

      Wang, H.; Wu, Y.; Zhao, Y.; Liu, Z. Acta Phys.-Chim. Sin. 2020, 37 (5), 2010022.  doi: 10.3866/PKU.WHXB202010022

    83. [83]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Perkin Trans. 1989, 85 (8), 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    84. [84]

      Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8 (8), 7445. doi: 10.1021/acscatal.8b01200  doi: 10.1021/acscatal.8b01200

    85. [85]

      Yuan, Q.; Yang, H.; Xie, M.; Cheng T. Acta Phys.-Chim. Sin. 2020, 37 (5), 2010040.  doi: 10.3866/PKU.WHXB202010040

    86. [86]

      Raciti, D.; Mao, M.; Wang, C. Nanotechnology 2017, 29 (4), 044001. doi: 10.1088/1361-6528/aa9bd7  doi: 10.1088/1361-6528/aa9bd7

    87. [87]

      Huang, J. E.; Li, F.; Ozden, A.; Sedighian Rasouli, A.; García de Arquer, F. P.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y.; et al. Science 2021, 372 (6546), 1074. doi: 10.1126/science.abg6582  doi: 10.1126/science.abg6582

    88. [88]

      Fu, Y.; Li, Y.; Zhang, X.; Liu, Y.; Zhou, X.; Qiao, J. Chin. J. Catal. 2016, 37 (7), 1081. doi: 10.1016/S1872-2067(15)61048-8  doi: 10.1016/S1872-2067(15)61048-8

    89. [89]

      Murata, A.; Hori, Y. Bull. Chem. Soc. Jpn. 1991, 64 (1), 123. doi: 10.1246/Bcsj.64.123  doi: 10.1246/Bcsj.64.123

    90. [90]

      Wu, J. J.; Risalvato, F. G.; Ke, F. S.; Pellechia, P. J.; Zhou, X. D. J. Electrochem. Soc. 2012, 159 (7), F353. doi: 10.1149/2.049207jes  doi: 10.1149/2.049207jes

    91. [91]

      Schizodimou, A.; Kyriacou, G. Electrochim. Acta 2012, 78, 171. doi: 10.1016/j.electacta.2012.05.118  doi: 10.1016/j.electacta.2012.05.118

    92. [92]

      Peng, L.; Wang, Y.; Masood, I.; Zhou, B.; Wang, Y.; Lin, J.; Qiao, J.; Zhang, F.-Y. Appl. Catal. B 2020, 264, 118447. doi: 10.1016/j.apcatb.2019.118447  doi: 10.1016/j.apcatb.2019.118447

    93. [93]

      Zhu, S.; Jiang, B.; Cai, W.-B.; Shao, M. J. Am. Chem. Soc. 2017, 139 (44), 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    94. [94]

      Xu, B.; Hasan, I. M. U.; Peng, L.; Liu, J.; Xu, N.; Fan, M.; Niazi, N. K.; Qiao, J. Mater. Rep. Energy 2022, 2 (3), 100139. doi: 10.1016/j.matre.2022.100139  doi: 10.1016/j.matre.2022.100139

    95. [95]

      Gao, D.; Wei, P.; Li, H.; Lin, L.; Wang, G.; Bao, X. Acta Phys.-Chim. Sin. 2020, 37 (5), 2009021.  doi: 10.3866/PKU.WHXB202009021

    96. [96]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5 (5), 7050. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    97. [97]

      Liu, P.-X.; Peng, L.-W.; He, R.-N.; Li, L.-L.; Qiao, J.-L. J. Electrochem. 2022, 28 (1), 2104231. doi: 10.13208/j.electrochem.210423  doi: 10.13208/j.electrochem.210423

    98. [98]

      Whipple, D. T.; Finke, E. C.; Kenis, P. J. Electrochem. Solid-State Lett. 2010, 13 (9), B109. doi: 10.1149/1.3456590  doi: 10.1149/1.3456590

    99. [99]

      Tornow, C. E.; Thorson, M. R.; Ma, S.; Gewirth, A. A.; Kenis, P. J. J. Am. Chem. Soc. 2012, 134 (48), 19520. doi: 10.1021/ja308217w  doi: 10.1021/ja308217w

    100. [100]

      Jhong, H. R. M.; Brushett, F. R.; Kenis, P. J. Adv. Energy Mater. 2013, 3 (5), 589. doi: 10.1002/aenm.201200759  doi: 10.1002/aenm.201200759

    101. [101]

      Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al.Science 2018, 360 (6390), 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    102. [102]

      Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C. Prog. Energy Combust. Sci. 2017, 62, 133. doi: 10.1016/j.pecs.2017.05.005  doi: 10.1016/j.pecs.2017.05.005

    103. [103]

      Lu, X.; Wu, Y.; Yuan, X.; Huang, L.; Wu, Z.; Xuan, J.; Wang, Y.; Wang, H. ACS Energy Lett. 2018, 3 (10), 2527. doi: 10.1021/acsenergylett.8b01681  doi: 10.1021/acsenergylett.8b01681

    104. [104]

      Burdyny, T.; Smith, W. A. Energy Environ. Sci. 2019, 12 (5), 1442. doi: 10.1039/C8EE03134G  doi: 10.1039/C8EE03134G

    105. [105]

      Li, G.; Yan, T.; Chen, X.; Liu, H.; Zhang, S.; Ma, X.Energy Fuels 2022, 36 (8), 4234. doi: 10.1021/acs.energyfuels.2c00271  doi: 10.1021/acs.energyfuels.2c00271

    106. [106]

      Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. Nat. Commun. 2021, 12 (1), 136. doi: 10.1038/s41467-020-20397-5  doi: 10.1038/s41467-020-20397-5

    107. [107]

      Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B.; et al. Nat. Energy 2022, 7 (2), 130. doi: 10.1038/s41560-021-00973-9  doi: 10.1038/s41560-021-00973-9

    108. [108]

      Sacco, A.; Zeng, J.; Bejtka, K.; Chiodoni, A. J. Catal. 2019, 372, 39. doi: 10.1016/j.jcat.2019.02.016  doi: 10.1016/j.jcat.2019.02.016

    109. [109]

      Liu, C.; Wang, X.; Xu, J.; Wang, C.; Chen, H.; Liu, W.; Chen, Z.; Du, X.; Wang, S.; Wang, Z. Int. J. Hydrog. Energy 2020, 45 (1), 945. doi: 10.1016/j.ijhydene.2019.10.166  doi: 10.1016/j.ijhydene.2019.10.166

    110. [110]

      Ma, S.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A. J. Mater. Chem. A 2016, 4 (22), 8573. doi: 10.1039/C6TA00427J  doi: 10.1039/C6TA00427J

    111. [111]

      Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2019, 12 (8), 2455. doi: 10.1039/C9EE01204D  doi: 10.1039/C9EE01204D

    112. [112]

      Blommaert, M. A.; Subramanian, S.; Yang, K.; Smith, W. A.; Vermaas, D. A. ACS Appl. Mater. Interfaces 2021, 14 (1), 557. doi: 10.1021/acsami.1c16513  doi: 10.1021/acsami.1c16513

    113. [113]

      Liu, J.; Peng, L.; Zhou, Y.; Lv, L.; Fu, J.; Lin, J.; Guay, D.; Qiao, J. ACS Sustain. Chem. Eng. 2019, 7 (18), 15739. doi: 10.1021/acssuschemeng.9b03892  doi: 10.1021/acssuschemeng.9b03892

    114. [114]

      Yang, H.; Kaczur, J. J.; Sajjad, S. D.; Masel, R. I. J. CO2 Util. 2017, 20, 208. doi: 10.1016/j.jcou.2017.04.011  doi: 10.1016/j.jcou.2017.04.011

    115. [115]

      Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W.; Stavitski, E.; Alshareef, H. N.; Wang, H. Nat. Energy 2019, 4 (9), 776. doi: 10.1038/s41560-019-0451-x  doi: 10.1038/s41560-019-0451-x

    116. [116]

      Delacourt, C.; Ridgway, P. L.; Kerr, J. B.; Newman, J. J. Electrochem. Soc. 2007, 155 (1), B42. doi: 10.1149/1.2801871  doi: 10.1149/1.2801871

    117. [117]

      Kutz, R. B.; Chen, Q.; Yang, H.; Sajjad, S. D.; Liu, Z.; Masel, I. R. Energy Technol. 2017, 5 (6), 929. doi: 10.1002/ente.201600636  doi: 10.1002/ente.201600636

    118. [118]

      Peng, L.; Wang, Y.; Wang, Y.; Xu, N.; Lou, W.; Liu, P.; Cai, D.; Huang, H.; Qiao, J. Appl. Catal. B 2021, 288, 120003. doi: 10.1016/j.apcatb.2021.120003  doi: 10.1016/j.apcatb.2021.120003

    119. [119]

      Wang, M.; Preston, N.; Xu, N.; Wei, Y.; Liu, Y.; Qiao, J. ACS Appl. Mater. Interfaces 2019, 11(7), 6881. doi: 10.1021/acsami.8b11845  doi: 10.1021/acsami.8b11845

    120. [120]

      Wang, M.; Zou, Q.; Dong, X.; Xu, N.; Shao, R.; Ding, J.; Zhang, Y.; Qiao, J. Green Energy Environ. 2021, 8 (3), 893. doi: 10.1016/j.gee.2021.12.003  doi: 10.1016/j.gee.2021.12.003

    121. [121]

      Wu, H.; Guo, X.; Gao, L.; Zhou, T.; Niu, Z.; Dong, X.; Zhou, Y.; Li, Z.; Hong, F. F.; Qiao, J. Chem. Eng. J. 2023, 454, 139807. doi: 10.1016/j.cej.2022.139807  doi: 10.1016/j.cej.2022.139807

    122. [122]

      Wang, M.; Xu, B.; Zou, Q.; Dong, X.; Shao, R.; Qiao, J. Sep. Purif. Technol. 2023, 307, 122792. doi: 10.1016/j.seppur.2022.122792  doi: 10.1016/j.seppur.2022.122792

    123. [123]

      Vargas-Barbosa, N. M.; Geise, G. M.; Hickner, M. A.; Mallouk, T. E. ChemSusChem 2014, 7 (11), 3017. doi: 10.1002/cssc.201402535  doi: 10.1002/cssc.201402535

    124. [124]

      Simons, R. Electrochim. Acta 1986, 31 (9), 1175. doi: 10.1016/0013-4686(86)80130-X  doi: 10.1016/0013-4686(86)80130-X

    125. [125]

      Yan, Z.; Hitt, J. L.; Zeng, Z.; Hickner, M. A.; Mallouk, T. E. Nat. Chem. 2021, 13 (1), 33. doi: 10.1038/s41557-020-00602-0  doi: 10.1038/s41557-020-00602-0

    126. [126]

      Vermaas, D. A.; Smith, W. A. ACS Energy Lett. 2016, 1 (6), 1143. doi: 10.1021/acsenergylett.6b00557  doi: 10.1021/acsenergylett.6b00557

    127. [127]

      Peng, L.; Chen, C.; He, R.; Xu, N.; Qiao, J.; Lin, Z.; Zhu, Y.; Huang, H. EcoMat 2022, 4 (6), e12260. doi: 10.1002/eom2.12260  doi: 10.1002/eom2.12260

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(50)
  • Abstract views(1590)
  • HTML views(374)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return