Citation: Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230201. doi: 10.3866/PKU.WHXB202302017 shu

Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution

  • Corresponding author: Liang Mao, maoliang@cumt.edu.cn Zaizhu Lou, zzlou@jnu.edu.cn
  • Received Date: 13 February 2023
    Revised Date: 16 March 2023
    Accepted Date: 17 March 2023
    Available Online: 23 March 2023

    Fund Project: the National Natural Science Foundation of China 22209203the National Natural Science Foundation of China 22175076the China Postdoctoral Science Foundation 2021M693419the Pengcheng Shangxue Education Fund of Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization PCSX202202the Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology CUMTMS202202the Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology CUMTMS202207the Undergraduate Training Program for Innovation and Entrepreneurship of China University of Mining and Technology 202210290200Y

  • With the exhaustion of fossil energy, the energy crisis is becoming increasingly serious, which greatly hinders the sustainable development of society. Therefore, the development of new energy technologies as a substitute for non-renewable and highly polluting fossil energy is extremely urgent. The environmental benefits and high energy density of hydrogen (H2) make it an ideal clean energy source. Photocatalytic water splitting, which was first demonstrated in the pioneering work on TiO2 photoelectrodes under UV-light irradiation, has been extensively researched and has been shown to be an effective method for addressing the global energy crisis. However, most of the photocatalysts used for H2 production still suffer from low solar energy utilization and fast photogenerated charge recombination, which seriously limit their practical applications in the field of solar-to-hydrogen energy conversion. Therefore, it is necessary yet greatly challenging to develop a visible-light-responsive photocatalyst with efficient photogenerated charge separation through reasonable modification strategy. Layered structured ZnIn2S4 (ZIS) is a promising photocatalyst to split water for H2 evolution owing to its suitable electronic structure, strong light absorption, chemical stability, and low toxicity. However, its low charge separation efficiency renders its photocatalytic performance unsatisfactory. Herein, to overcome this issue, a band structure regulation strategy that integrates solid solution formation with heterostructure construction was proposed. By growing ZnxCd1−xIn2S4 (ZCIS) nanosheets on the surface of CeO2 hollow spheres in situ, a novel hollow heterostructure CeO2/ZCIS with efficient charge separation was constructed as photocatalyst for H2 generation. The introduction of the Cd cation in ZIS upshifts the conduction band (CB) and valence band (VB) of ZCIS, enhancing the built-in electrical field on the interface. Those electronic band changes induce the S-scheme structure in CeO2/ZCIS, promoting charge separation for photocatalysis. Moreover, the upshift of the CB generates photoelectrons with high H2 generation ability. As a result, the optimal 1:6-CeO2/Zn0.9Cd0.1In2S4 heterostructure exhibits 4.09 mmol·g−1·h−1 H2 generation during photocatalysis, which is 6.8-, 3.0-, and 2.2-fold as those of ZIS, ZCIS, and CeO2/ZIS, respectively. This work provides one efficient strategy to develop highly active S-scheme photocatalysts for hydrogen generation.
  • 加载中
    1. [1]

      Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. Chin. J. Struc. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124  doi: 10.14102/j.cnki.0254-5861.2022-0124

    2. [2]

      Qi, M. -Y.; Conte, M.; Anpo, M.; Tang, Z. -R.; Xu, Y. -J. Chem. Rev. 2021, 121, 13051. doi: 10.1021/acs.chemrev.1c00197  doi: 10.1021/acs.chemrev.1c00197

    3. [3]

      Li, Y.; Hu, X.; Huang, J.; Wang, L.; She, H.; Wang, Q. Acta Phys. -Chim. Sin. 2021, 37, 2009022.  doi: 10.3866/PKU.WHXB202009022

    4. [4]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.  doi: 10.3866/PKU.WHXB202108028

    5. [5]

      Wu, K.; Jiang, R.; Zhao, Y.; Mao, L.; Gu, X.; Cai, X.; Zhu, M. J. Colloid Interface Sci. 2022, 619, 339. doi: 10.1016/j.jcis.2022.03.124  doi: 10.1016/j.jcis.2022.03.124

    6. [6]

      Cai, X.; Zeng, Z.; Liu, Y.; Li, Z.; Gu, X.; Zhao, Y.; Mao, L.; Zhang, J. Appl. Catal. B: Environ. 2021, 297, 120391. doi: 10.1016/j.apcatb.2021.120391  doi: 10.1016/j.apcatb.2021.120391

    7. [7]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    8. [8]

      Wu, K.; Mao, L.; Gu, X.; Cai, X.; Zhao, Y. Chin. Chem. Lett. 2022, 33, 926. doi: 10.1016/j.cclet.2021.07.011  doi: 10.1016/j.cclet.2021.07.011

    9. [9]

      Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/D2TA05181H  doi: 10.1039/D2TA05181H

    10. [10]

      Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7, 2100498. doi: 10.1002/adsu.202100498  doi: 10.1002/adsu.202100498

    11. [11]

      Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W. -J.; Wang, S. Acta Phys. -Chim. Sin. 2022, 38, 2111021.  doi: 10.3866/PKU.WHXB202111021

    12. [12]

      Wang, X.; Li, Y., Li, Z. Chin. J. Catal. 2021, 42, 409. doi: 10.1016/S1872-2067(20)63660-9.  doi: 10.1016/S1872-2067(20)63660-9

    13. [13]

      Shi, X.; Dai, C.; Wang, X.; Hu, J.; Zhang, J.; Zheng, L.; Mao, L.; Zheng, H.; Zhu, M. Nat. Commun. 2022, 13, 1287. doi: 10.1038/s41467-022-28995-1  doi: 10.1038/s41467-022-28995-1

    14. [14]

      Chen, P.; Zhou, Y.; Dong, F. Acta Phys. -Chim. Sin. 2021, 37, 2010010.  doi: 10.3866/PKU.WHXB202010010

    15. [15]

      Wang, J.; Sun, S.; Zhou, R.; Li, Y.; He, Z.; Ding, H.; Chen, D., Ao, W. J. Mater. Sci. Technol. 2021, 78, 1. doi: 10.1016/j.jmst.2020.09.045  doi: 10.1016/j.jmst.2020.09.045

    16. [16]

      Zou, Y.; Shi, J. -W.; Sun, L.; Ma, D.; Mao, S.; Lv, Y.; Cheng, Y. Chem. Eng. J. 2019, 378, 122192. doi: 10.1016/j.cej.2019.122192  doi: 10.1016/j.cej.2019.122192

    17. [17]

      Li, Z.; Zhong, W.; Gao, D.; Chen, F.; Yu. H. Adv. Sustain. Syst. 2023, 7, 2200030. doi: 10.1002/adsu.202200030  doi: 10.1002/adsu.202200030

    18. [18]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    19. [19]

      Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/S1872-2067(20)63560-4  doi: 10.1016/S1872-2067(20)63560-4

    20. [20]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struc. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    21. [21]

      Cai, X.; Su, M.; Zeng, Z.; Weng, H.; Cai, Z.; Zhang, J.; Mao, L. Sustain. Energy Fuels 2021, 5, 6441. doi: 10.1039/D1SE01266E  doi: 10.1039/D1SE01266E

    22. [22]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    23. [23]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    24. [24]

      Yu, J.; Li, X.; Ong, W. -J.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2012043.  doi: 10.3866/PKU.WHXB202012043

    25. [25]

      Lu, C.; You, D.; Li, J.; Wen, L.; Li, B.; Guo, T.; Lou, Z. Nat. Commun. 2022, 13, 6984. doi: 10.1038/s41467-022-34738-z  doi: 10.1038/s41467-022-34738-z

    26. [26]

      Yang, C.; Lu, Y.; Zhang, L.; Kong, Z.; Yang, T.; Tao, L.; Zou, Y.; Wang, S. Small Struct. 2021, 2, 2100058. doi: 10.1002/sstr.202100058  doi: 10.1002/sstr.202100058

    27. [27]

      Ma, Y.; Tian, Z.; Zhai, W.; Qu, Y. Nano Res. 2022, 15, 10328. doi: 10.1007/s12274-022-4666-y  doi: 10.1007/s12274-022-4666-y

    28. [28]

      Jiang, R.; Mao, L.; Zhao, Y.; Zhang, J.; Chubenko, E. B.; Bondarenko, V.; Sui, Y.; Gu, X.; Cai X. Sci. Chin. Mater. 2023, 66, 139. doi: 10.1007/s40843-022-2132-8  doi: 10.1007/s40843-022-2132-8

    29. [29]

      Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6  doi: 10.1016/S1872-2067(20)63784-6

    30. [30]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    31. [31]

      Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2539. doi: 10.1016/S1872-2067(21)64024-X  doi: 10.1016/S1872-2067(21)64024-X

    32. [32]

      Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/S1872-2067(22)64096-8  doi: 10.1016/S1872-2067(22)64096-8

    33. [33]

      Zhang, J.; Fu, J.; Dai, K. J. Mater. Sci. Technol. 2022, 116, 192. doi: 10.1016/j.jmst.2021.10.045  doi: 10.1016/j.jmst.2021.10.045

    34. [34]

      Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015  doi: 10.1016/j.jmat.2021.02.015

    35. [35]

      Luo, C.; Long, Q.; Chen, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026.  doi: 10.3866/PKU.WHXB202212026

    36. [36]

      Fei, X.; Zhuang, L.; Yu, J.; Zhu, B. Front. Nanotechnol. 2021, 3, 698351. doi: 10.3389/fnano.2021.698351  doi: 10.3389/fnano.2021.698351

    37. [37]

      Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 15145. doi: 10.1021/jacs.8b07721  doi: 10.1021/jacs.8b07721

    38. [38]

      Zhu, Q.; Xing, M.; Zhang, J. Chem. Ind. Eng. Prog. 2021, 40, 4774.  doi: 10.16085/j.issn.1000-6613.2021-0315

    39. [39]

      Fang, B.; Xing, Z.; Sun, D.; Li, Z.; Zhou, W. Adv. Powder Mater. 2021, 1, 100021. doi: 10.1016/j.apmate.2021.11.008  doi: 10.1016/j.apmate.2021.11.008

    40. [40]

      Guo, Z.; Jian, F.; Du, F. Scr. Mater. 2009, 61, 48. doi: 10.1016/j.scriptamat.2009.03.005  doi: 10.1016/j.scriptamat.2009.03.005

    41. [41]

      Tian, J.; Sang, Y.; Zhao, Z.; Zhou, W.; Wang, D.; Kang, X.; Liu, H.; Wang, J.; Chen, S.; Cai, H. Small 2013, 9, 3864. doi: 10.1002/smll.201202346  doi: 10.1002/smll.201202346

    42. [42]

      Jiang, R.; Mao, L.; Zhao, Y.; Zhang, J.; Cai, X.; Gu, X. J. Colloid Interface Sci. 2022, 606, 317. doi: 10.1016/j.jcis.2021.08.008  doi: 10.1016/j.jcis.2021.08.008

    43. [43]

      Wang, O.; Wang, L.; Li, Z.; Xu, Q.; Lin, Q.; Wang, H.; Du, Z.; Shen, H.; Li, L. S. Nanoscale 2018, 10, 5650. doi: 10.1039/C7NR09175C  doi: 10.1039/C7NR09175C

    44. [44]

      She, X.; Xu, H.; Wang, H.; Xia, J.; Song, Y.; Yan, J.; Xu, Y.; Zhang, Q.; Du, D.; Li, H. Dalton Trans. 2015, 44, 7021. doi: 10.1039/C4DT03793F  doi: 10.1039/C4DT03793F

    45. [45]

      Zhang, Y.; Zhang, N.; Tang, Z. -R.; Xu, Y. -J. ACS Sustain. Chem. Eng. 2013, 1, 1258. doi: 10.1021/sc400116k  doi: 10.1021/sc400116k

    46. [46]

      Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Appl. Catal. B: Environ. 2020, 277, 119254. doi: 10.1016/j.apcatb.2020.119254  doi: 10.1016/j.apcatb.2020.119254

    47. [47]

      Qin, Y.; Li, H.; Lu, J.; Ding, Y.; Ma, C.; Liu, X.; Liu, Z.; Huo, P.; Yan, Y. Appl. Surf. Sci. 2019, 481, 1313. doi: 10.1016/j.apsusc.2019.03.244  doi: 10.1016/j.apsusc.2019.03.244

    48. [48]

      Lou, Z.; Zhu, M.; Yang, X.; Zhang, Y.; Whangbo, M. -H.; Li, B.; Huang, B. Appl. Catal. B: Environ. 2018, 226, 10. doi: 10.1016/j.apcatb.2017.12.023  doi: 10.1016/j.apcatb.2017.12.023

    49. [49]

      Mao, L.; Cai, X.; Zhu, M. Rare Metals 2021, 40, 1067. doi: 10.1007/s12598-020-01589-w  doi: 10.1007/s12598-020-01589-w

    50. [50]

      Kumar, Y.; Kumar, R.; Raizada, P.; Khan, A. A. P.; Van, L. Q.; Singh, P.; Nguyen. V. -H. J. Mater. Sci. Technol. 2021, 87, 234. doi: 10.1016/j.jmst.2021.01.051  doi: 10.1016/j.jmst.2021.01.051

    51. [51]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    52. [52]

      Cai, X.; Mao, L.; Zhang, J.; Zhu, M.; Fujitsuka, M.; Majima, T. J. Mater. Chem. A 2017, 5, 10442. doi: 10.1039/C7TA02379K  doi: 10.1039/C7TA02379K

    53. [53]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.3866/PKU.WHXB202112037

    54. [54]

      Clément, J. -L.; Ferré, N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. J. Org. Chem. 2005, 70, 1198. doi: 10.1021/jo048518z  doi: 10.1021/jo048518z

    55. [55]

      Lee, J.; Kim, H.; Lee, T.; Jang, W.; Lee, K. H.; Soon, A. Chem. Mater. 2019, 31, 9148. doi: 10.1021/acs.chemmater.9b03539  doi: 10.1021/acs.chemmater.9b03539

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    5. [5]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    6. [6]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    7. [7]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    8. [8]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    9. [9]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    10. [10]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    11. [11]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    12. [12]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    13. [13]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    16. [16]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    17. [17]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    18. [18]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

Metrics
  • PDF Downloads(9)
  • Abstract views(1168)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return