Citation: Weijie Jiang, Hang Jiang, Wei Liu, Xin Guan, Yunxing Li, Cheng Yang, To Ngai. Pickering Emulsion Templated Proteinaceous Microsphere with Bio-Stimuli Responsiveness[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230104. doi: 10.3866/PKU.WHXB202301041 shu

Pickering Emulsion Templated Proteinaceous Microsphere with Bio-Stimuli Responsiveness

  • Corresponding author: Hang Jiang, hangjiang@jiangnan.edu.cn Yunxing Li, yunxingli@jiangnan.edu.cn
  • Received Date: 29 January 2023
    Revised Date: 23 February 2023
    Accepted Date: 23 February 2023
    Available Online: 28 February 2023

    Fund Project: the National Natural Science Foundation of China 22202084the Natural Science Foundation of Jiangsu Province, China BK20221059the Fundamental Research Funds for the Central Universities, China JUSRP122017

  • Bio-stimuli-responsive microspheres, which can encapsulate and release actives in response to physiological triggers, have attracted increasing attention in pharmaceutical, cosmetic, food biotechnology, and agricultural industries. However, most microspheres are based on synthetic polymers and suffer from a lack of biocompatibility due to the residues of harsh organic solvents or crosslinkers used in the synthesis process. Herein, we develop a simple and sustainable method for the construction of proteinaceous microspheres templated from Pickering double emulsions. Specifically, silica nanoparticles with a diameter of 100 nm were synthesized by Stöber method and modified by reacting with dichlorodimethylsilane. The Pickering emulsions are stabilized by hydrophobic silica nanoparticles, while zein protein is dissolved in the middle phase. Subsequent ethanol removal from the emulsion template precipitated the protein skeleton. First, we stained the aqueous ethanol phase with rhodamine B and the oil phase with pyrene to demonstrate the formation of double emulsions by confocal laser scanning microscopy (CLSM). The morphology of microspheres and silica nanoparticles was characterized by scanning electron microscopy (SEM). The obtained microspheres showed high sphericity and uniformity. In addition to acting as particulate stabilizers, the silica nanoparticles could improve the mechanical strength and monodispersity of microspheres. Herein, fluorescein isothiocyanate (FITC)-labeled dextran was chosen as the model active for encapsulation into microspheres. The CLSM images showed that it was uniformly dispersed in the microspheres and had no effect on the structure of the microspheres. Next, we investigated the pH tolerance of the microspheres. Through optical microscope, it was noted that the structure was intact under pH 3–11, and thus, it has a high resistance. Finally, we investigated the bio-stimuli-responsive behavior of microspheres. Zein is rich in sulfur-containing amino acids, which can form intra- and inter-molecular disulfide bonds. Because disulfide bonds can be reduced by glutathione (GSH) and the protein itself has enzymatic hydrolysis characteristics, the proteinaceous microspheres can be triggered release in response to GSH and protease. The release profiles of FITC-dextran from microspheres at different concentrations of GSH and protease were evaluated by fluorescence spectrophotometer. The decomposition behavior of microspheres under certain concentrations of GSH and protease was further verified by CLSM and SEM. To conclude, excellent stability and tunability of emulsion templates render the resulting proteinaceous microspheres with adjustable structures. Meanwhile, the proteinaceous microspheres have high encapsulation efficiency of model actives and have shown excellent bio-stimuli-responsiveness to protease and glutathione.
  • 加载中
    1. [1]

      Kiser, P. F.; Wilson, G.; Needham, D. Nature 1998, 394, 459. doi: 10.1038/28822  doi: 10.1038/28822

    2. [2]

      Caldorera-Moore, M. E.; Liechty, W. B.; Peppas, N. A. Acc. Chem. Res. 2011, 44, 1061. doi: 10.1021/ar2001777  doi: 10.1021/ar2001777

    3. [3]

      Kureha, T.; Aoki, D.; Hiroshige, S.; Iijima, K.; Aoki, D.; Takata, T.; Suzuki, D. Angew. Chem. Int. Ed. 2017, 56, 15393. doi: 10.1002/anie.201709633  doi: 10.1002/anie.201709633

    4. [4]

      Zhao, C.; Tian, S.; Liu, Q.; Xiu, K.; Lei, I.; Wang, Z.; Ma, P. X. Adv. Funct. Mater. 2020, 30 (21). doi: 10.1002/adfm.202000776  doi: 10.1002/adfm.202000776

    5. [5]

      Ruan, L.; Su, M.; Qin, X.; Ruan, Q.; Lang, W.; Wu, M.; Chen, Y.; Lv, Q. Mater. Today Bio 2022, 16, 100394. doi: 10.1016/j.mtbio.2022.100394  doi: 10.1016/j.mtbio.2022.100394

    6. [6]

      Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Nat. Commun. 2018, 9, 1410. doi: 10.1038/s41467-018-03705-y  doi: 10.1038/s41467-018-03705-y

    7. [7]

      Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Nat. Rev. Mater. 2016, 2, 16075. doi: 10.1038/natrevmats.2016.75  doi: 10.1038/natrevmats.2016.75

    8. [8]

      Wu, C.; Schwibbert, K.; Achazi, K.; Landsberger, P.; Gorbushina, A.; Haag, R. Biomacromolecules 2017, 18, 210. doi: 10.1021/acs.biomac.6b01527  doi: 10.1021/acs.biomac.6b01527

    9. [9]

      Huang, X.; Patil, A. J.; Li, M.; Mann, S. J. Am. Chem. Soc. 2014, 136, 9225. doi: 10.1021/ja504213m  doi: 10.1021/ja504213m

    10. [10]

      Li, J.; Zhang, L.; Liu, Y.; Wen, J.; Wu, D.; Xu, D.; Segura, T.; Jin, J.; Lu, Y.; Wang, H. Chem. Commun. 2016, 52, 13608. doi: 10.1039/c6cc05099a  doi: 10.1039/c6cc05099a

    11. [11]

      Sun, Z.; Zhao, Q.; Haag, R.; Wu, C. Angew. Chem. Int. Ed. 2021, 60, 8410. doi: 10.1002/anie.202013737  doi: 10.1002/anie.202013737

    12. [12]

      Ju, S.; Shin, G.; Lee, M.; Koo, J. M.; Jeon, H.; Ok, Y. S.; Hwang, D. S.; Hwang, S. Y.; Oh, D. X.; Park, J. Green Chem. 2021, 23, 6953. doi: 10.1039/d1gc01588e  doi: 10.1039/d1gc01588e

    13. [13]

      Jo, Y. K.; Lee, D. Small 2020, 16 (Suppl. 9), 1903736. doi: 10.1002/smll.201903736  doi: 10.1002/smll.201903736

    14. [14]

      Wang, Y.; Liu, Y.; Xu, S.; Liu, H. Acta Phys. -Chim. Sin. 2019, 35, 876.  doi: 10.3866/PKU.WHXB201901019

    15. [15]

      Liao, Y.; Fan, Z.; Du, J. Acta Phys. -Chim. Sin. 2021, 37, 1912053.  doi: 10.3866/PKU.WHXB201912053

    16. [16]

      Stoppel, W. L.; Ghezzi, C. E.; McNamara, S. L.; Black, L. D., Ⅲ; Kaplan, D. L. Ann. Biomed. Eng. 2015, 43, 657. doi: 10.1007/s10439-014-1206-2  doi: 10.1007/s10439-014-1206-2

    17. [17]

      Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomás, H. Chem. Rev. 2015, 115, 8564. doi: 10.1021/cr500131f  doi: 10.1021/cr500131f

    18. [18]

      Sun, M.; Yin, W.; Chen, J.; Wang, W.; Guo, T.; Meng, T. Green Chem. 2021, 23, 740. doi: 10.1039/d0gc02999h  doi: 10.1039/d0gc02999h

    19. [19]

      Yang, X.; Wang, Y.; Bai, R.; Ma, H.; Wang, W.; Sun, H.; Dong, Y.; Qu, F.; Tang, Q.; Guo, T.; et al. Green Chem. 2019, 21, 2229. doi: 10.1039/c8gc03573c  doi: 10.1039/c8gc03573c

    20. [20]

      Patel, A. R.; Remijn, C.; Cabero, A. -i. M.; Heussen, P. C. M.; ten Hoorn, J. W. M. S.; Velikov, K. P. Adv. Funct. Mater. 2013, 23, 4710. doi: 10.1002/adfm.201300320  doi: 10.1002/adfm.201300320

    21. [21]

      Reddy, N.; Yang, Y. Trends Biotechnol. 2011, 29, 490. doi: 10.1016/j.tibtech.2011.05.003  doi: 10.1016/j.tibtech.2011.05.003

    22. [22]

      Lawton, J. W. Cereal Chem. 2002, 79, 1. doi: 10.1094/CCHEM.2002.79.1.1  doi: 10.1094/CCHEM.2002.79.1.1

    23. [23]

      Argos, P.; Pedersen, K.; Marks, M. D.; Larkins, B. A. J. Biol. Chem. 1982, 257, 9984. doi: 10.1016/s0021-9258(18)33974-7  doi: 10.1016/s0021-9258(18)33974-7

    24. [24]

      Giteru, S. G.; Ali, M. A.; Oey, I. Food Hydrocolloids 2021, 120, 106948. doi: 10.1016/j.foodhyd.2021.106948  doi: 10.1016/j.foodhyd.2021.106948

    25. [25]

      Dong, S.; Wang, J. -M.; Cheng, L. -M.; Lu, Y. -L.; Li, S. -H.; Chen, Y. J. Agric. Food Chem. 2017, 65, 7352. doi: 10.1021/acs.jafc.7b02205  doi: 10.1021/acs.jafc.7b02205

    26. [26]

      Manickam, D. S.; Li, J.; Putt, D. A.; Zhou, Q. H.; Wu, C.; Lash, L. H.; Oupicky, D. J. Control. Release 2010, 141, 77. doi: 10.1016/j.jconrel.2009.08.022  doi: 10.1016/j.jconrel.2009.08.022

    27. [27]

      Zhang, M.; Liu, J.; Kuang, Y.; Li, Q.; Chen, H.; Ye, H.; Guo, L.; Xu, Y.; Chen, X.; Li, C.; et al. J. Mater. Chem. B 2016, 4, 3387. doi: 10.1039/c5tb02548f  doi: 10.1039/c5tb02548f

    28. [28]

      Zhang, P.; Wu, J.; Xiao, F.; Zhao, D.; Luan, Y. Med. Res. Rev. 2018, 38, 1485. doi: 10.1002/med.21485  doi: 10.1002/med.21485

    29. [29]

      Su, L.; Li, R.; Khan, S.; Clanton, R.; Zhang, F.; Li, Y. N.; Song, Y.; Wang, H.; Fan, J.; Hernandez, S.; et al. J. Am. Chem. Soc. 2018, 140, 1438. doi: 10.1021/jacs.7b11462  doi: 10.1021/jacs.7b11462

    30. [30]

      Ding, Y.; Kang, Y.; Zhang, X. Chem. Commun. 2015, 51, 996. doi: 10.1039/c4cc05878j  doi: 10.1039/c4cc05878j

    31. [31]

      de la Rica, R.; Aili, D.; Stevens, M. M. Adv. Drug Delivery Rev. 2012, 64, 967. doi: 10.1016/j.addr.2012.01.002  doi: 10.1016/j.addr.2012.01.002

    32. [32]

      Luo, Y.; Wang, Q. J Appl. Polym. Sci. 2014, 131, 40696. doi: 10.1002/app.40696  doi: 10.1002/app.40696

    33. [33]

      Zhang, Y.; Cui, L.; Li, F.; Shi, N.; Li, C.; Yu, X.; Chen, Y.; Kong, W. Int. J. Pharm. 2016, 513, 191. doi: 10.1016/j.ijpharm.2016.09.023  doi: 10.1016/j.ijpharm.2016.09.023

    34. [34]

      Jiang, H.; Hu, X.; Li, Y.; Ngai, T. Mater. Chem. Front. 2021, 5, 3897. doi: 10.1039/d0qm01010c  doi: 10.1039/d0qm01010c

    35. [35]

      Jiang, H.; Hu, X.; Li, Y.; Yang, C.; Ngai, T. Chem. Sci. 2021, 12, 12463. doi: 10.1039/d1sc03693a  doi: 10.1039/d1sc03693a

    36. [36]

      Jiang, H.; Hu, X.; Jiang, W.; Guan, X.; Li, Y.; Ngai, T. Langmuir 2022, 38, 12273. doi: 10.1021/acs.langmuir.2c01904  doi: 10.1021/acs.langmuir.2c01904

    37. [37]

      Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62. doi: 10.1016/0021-9797(68)90272-5  doi: 10.1016/0021-9797(68)90272-5

    38. [38]

      Binks, B. P.; Fletcher, P. D. I.; Thompson, M. A.; Elliott, R. P. Langmuir 2013, 29, 5723. doi: 10.1021/la4008697  doi: 10.1021/la4008697

    39. [39]

      Sun, G.; Yi, Z.; Ngai, T. Acta Phys. -Chim. Sin. 2020, 36, 1910005.  doi: 10.3866/PKU.WHXB201910005

    40. [40]

      Zou, H.; Ettelaie, R.; Yan, S.; Xue, N.; Yang, H. Acta Phys. -Chim. Sin. 2020, 36, 1910006.  doi: 10.3866/PKU.WHXB201910006

    41. [41]

      Jiang, H.; Sheng, Y.; Ngai, T. Curr. Opin. Colloid Interface Sci. 2020, 49, 1. doi: 10.1016/j.cocis.2020.04.010  doi: 10.1016/j.cocis.2020.04.010

    42. [42]

      Huang, D.; Sun, M.; Bu, Y.; Luo, F.; Lin, C.; Lin, Z.; Weng, Z.; Yang, F.; Wu, D. J. Mater. Chem. B 2019, 7, 2330. doi: 10.1039/c8tb02928h  doi: 10.1039/c8tb02928h

    43. [43]

      Vian, A.; Amstad, E. Soft Matter 2019, 15, 1290. doi: 10.1039/c8sm02047g  doi: 10.1039/c8sm02047g

    44. [44]

      Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Nat. Mater. 2016, 15, 13. doi: 10.1038/nmat4474  doi: 10.1038/nmat4474

    45. [45]

      Zhou, Y.; Song, J.; Wang, L.; Xue, X.; Liu, X.; Xie, H.; Huang, X. Biomacromolecules 2017, 18, 2446. doi: 10.1021/acs.biomac.7b00598  doi: 10.1021/acs.biomac.7b00598

  • 加载中
    1. [1]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    2. [2]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    3. [3]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    4. [4]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    5. [5]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    6. [6]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    7. [7]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    8. [8]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    9. [9]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    12. [12]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    13. [13]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    14. [14]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    15. [15]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    16. [16]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    17. [17]

      Jingting WangYuanyuan ChenLinlin HanShasha XiaXingyao ZhangPeng XueYuejun KangJian MingZhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029

    18. [18]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    19. [19]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    20. [20]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

Metrics
  • PDF Downloads(6)
  • Abstract views(979)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return