Citation: Jianqiao Chang, Huimin Xu, Wenjing Xie, Yang Zhang, Ling Qi, Louzhen Fan, Yong Li. Fluorescent Carbon Dots for Rapid and Highly Sensitive Detection of Nucleic Acids[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230103. doi: 10.3866/PKU.WHXB202301034 shu

Fluorescent Carbon Dots for Rapid and Highly Sensitive Detection of Nucleic Acids

  • Corresponding author: Louzhen Fan, lzfan@bnu.edu.cn Yong Li, liyongdoctor@126.com
  • Received Date: 24 January 2023
    Revised Date: 27 March 2023
    Accepted Date: 28 March 2023
    Available Online: 3 April 2023

    Fund Project: the National Natural Science Foundation of China 21872010the National Natural Science Foundation of China 22172008the Beijing Natural Science Foundation 7222153the Capital's Funds for Health Improvement and Research 2022-2Z-40212

  • Antigen tests and nucleic acid detection via the reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been widely used amid the spread of the new coronavirus disease (COVID-19). Despite its superior detection performance, RT-qPCR requires long detection times, expensive professional equipment, and detection personnel. By contrast, antigen tests can produce results within 15 min but often lack in terms of specificity and sensitivity. Therefore, the realization of accurate and rapid detection remains a crucial challenge. In this study, guanidine-modified fluorescent carbon dots (GCDs) were synthesized via a hydrothermal method using o-phenylenediamine and arginine as precursors for the rapid, highly sensitive, and specific detection of nucleic acids. The crude CDs were purified using combined silica gel and neutral alumina column chromatographies until yellow fluorescent GCDs with guanidine-modified edges were obtained. Notably, the yellow fluorescence of the GCDs, with a quantum yield of 9.8%, represents the main detection principle of this study. After incubating the GCDs with a molecular beacon (Bea) for 15 min to create hydrogen-bonded GCD-Bea pairs, a transfer of fluorescence resonance energy was initiated between the GCDs and the ROX fluorescence groups carried by the Bea. During this process, GCDs fluorescence was quenched, thus weakening the fluorescence of the GCD-Bea pairs. When the GCD-Bea pairs encountered target DNA molecules, the Beas and target DNAs underwent base complementary pairing, causing the GCDs and Bea to detach; the latter recovered the self-fluorescence of the GCDs, enabling qualitative detection of the target DNAs in the system. Fluorescence analyses revealed that the fluorescence of the target DNA group was enhanced by more than 20% compared with that of the control group. The entire fluorescence "off-on" DNA detection process described above was accomplished within 5 min, achieving a specificity of 95.45%. Furthermore, the lowest DNA detection concentration in the system was 0.005 fmol∙L−1 (approximately 300 copys∙mL−1), and no acid amplification process was required. More importantly, after replacing the Bea sequence with the DNA sequences of other viruses or diseases, the obtained GCD-Bea pairs could still detect the corresponding target DNAs, confirming their capability of identifying target DNA sequences in a mixed system without the need for nucleic acid extraction. Additionally, compared with the 2–4 h typically required by qPCR, our GCD-Bea system could achieve considerably shortened detection times while also maintaining high specificity and sensitivity after Bea sequence replacements. Collectively, these characteristics are expected to provide a convenient and effective method for the detection of multiple viruses or diseases.
  • 加载中
    1. [1]

      Quirke, P.; Taylor, G. R. J. Pathol. 1989, 159, 95. doi: 10.1002/path.1711590202  doi: 10.1002/path.1711590202

    2. [2]

      Erlich, H. A. J. Clin. Immunol. 1989, 9, 437. doi: 10.1007/BF00918012  doi: 10.1007/BF00918012

    3. [3]

      Yuan, J. Mol. Cell 2006, 23, 1. doi: 10.1016/j.molcel.2006.06.008  doi: 10.1016/j.molcel.2006.06.008

    4. [4]

      Marchand-Pinatel, S.; Planells, R.; Merten, M. D.; Kammouni, W.; Figarella, C. Anal. Biochem. 2000, 283, 200. doi: 10.1006/abio.2000.4657  doi: 10.1006/abio.2000.4657

    5. [5]

      Aarskog, N.; Vedeler, C. Hum. Genet. 2000, 107, 494. doi: 10.1007/s004390000399  doi: 10.1007/s004390000399

    6. [6]

      Stratakis, C. A.; Laybutt, D. R.; Laudet, V.; Klinge, C. M. Mol. Cell Endocrinol. 2020, 511, 110863. doi: 10.1016/j.mce.2020.110863  doi: 10.1016/j.mce.2020.110863

    7. [7]

      Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D.; et al. Nat. Biomed. Eng. 2022, 6, 276. doi: 10.1038/s41551-021-00833-7  doi: 10.1038/s41551-021-00833-7

    8. [8]

      Li, C.; Debruyne, D. N.; Spencer, J.; Kapoor, V.; Liu, L. Y.; Zhou, B.; Pandey, U.; Bootwalla, M.; Ostrow, D.; Maglinte, D. T.; et al. bioRxiv 2020, 2020.03.12.988246. doi: 10.1101/2020.03.12.988246  doi: 10.1101/2020.03.12.988246

    9. [9]

      Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; et al. Biosens. Bioelectron. 2020, 166, 112437. doi: 10.1016/j.bios.2020.112437  doi: 10.1016/j.bios.2020.112437

    10. [10]

      Wang, K.; Qin, W.; Hou, Y.; Xiao, K.; Yan, W. Nano Biomed. Eng. 2016, 8, 172. doi: 10.5101/nbe.v8i3.p172-183  doi: 10.5101/nbe.v8i3.p172-183

    11. [11]

      Kim, H.; Chung, D. R.; Kang, M. Analyst 2019, 144, 2460. doi: 10.1039/c8an02295j  doi: 10.1039/c8an02295j

    12. [12]

      Nayak, S.; Blumenfeld, N. R.; Laksanasopin, T.; Sia, S. K. Anal. Chem. 2017, 89, 102. doi: 10.1021/acs.analchem.6b04630  doi: 10.1021/acs.analchem.6b04630

    13. [13]

      Koczula, K. M.; Gallotta, A. Essays Biochem. 2016, 60, 111. doi: 10.1042/EBC20150012  doi: 10.1042/EBC20150012

    14. [14]

      Chen, Y.; Ma, Y.; Han, Y.; Diao, Z.; Chang, L.; Li, J.; Zhang, R. Microbiol. Spectrum 2022, 10, e02143. doi: 10.1128/spectrum.02143-22  doi: 10.1128/spectrum.02143-22

    15. [15]

      Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; Jones, T. C.; Vollmar, P.; Rothe, C.; et al. Nature 2020, 581, 465. doi: 10.1038/s41586-020-2196-x  doi: 10.1038/s41586-020-2196-x

    16. [16]

      Yamayoshi, S.; Sakai-Tagawa, Y.; Koga, M.; Akasaka, O.; Nakachi, I.; Koh, H.; Maeda, K.; Adachi, E.; Saito, M.; Nagai, H.; et al. Viruses 2020, 12, 1420. doi: 10.3390/v12121420  doi: 10.3390/v12121420

    17. [17]

      Shetti, N. P.; Mishra, A.; Bukkitgar, S. D.; Basu, S.; Narang, J.; Raghava Reddy, K.; Aminabhavi, T. M. ACS Appl. Bio Mater. 2021, 4, 1178. doi: 10.1021/acsabm.0c01545  doi: 10.1021/acsabm.0c01545

    18. [18]

      Yu, L.; Wang, R.; Wen, T.; Liu, L.; Wang, T.; Liu, S.; Xu, H.; Wang, C. ACS Appl. Mater. Interfaces 2022, 14, 28527. doi: 10.1021/acsami.2c03707  doi: 10.1021/acsami.2c03707

    19. [19]

      Li, S.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X.; Chen, Z.; Bao, Y.; et al. Nat. Biomed. Eng. 2020, 4, 704. doi: 10.1038/s41551-020-0540-y  doi: 10.1038/s41551-020-0540-y

    20. [20]

      Wu, H.; Xu, H.; Shi, Y.; Yuan, T.; Meng, T.; Zhang, Y.; Xie, W.; Li, X.; Li, Y.; Fan, L. Chin. J. Chem. 2021, 39, 1364. doi: 10.1002/cjoc.202000609  doi: 10.1002/cjoc.202000609

    21. [21]

      Wu, H.; Su, W.; Xu, H.; Zhang, Y.; Li, Y.; Li, X.; Fan, L. View 2021, 2, 20200061. doi: 10.1002/viw.20200061  doi: 10.1002/viw.20200061

    22. [22]

      Su, W.; Guo, R.; Yuan, F.; Li, Y.; Li, X.; Zhang, Y.; Zhou, S.; Fan, L. J. Phys. Chem. Lett. 2020, 11, 1357. doi: 10.1021/acs.jpclett.9b03891  doi: 10.1021/acs.jpclett.9b03891

    23. [23]

      Bao, L.; Pang, D. J. Electrochem. 2020, 26, 639. doi: 10.13208/j.electrochem.200644  doi: 10.13208/j.electrochem.200644

    24. [24]

      Tang, X.; Chen, M.; Kamath, A.; Ackerman, M. M.; Guyot-Sionnest, P. ACS Photonics 2020, 7, 1117. doi: 10.1021/acsphotonics.0c00247  doi: 10.1021/acsphotonics.0c00247

    25. [25]

      Cen, M.; Cao, Y.; Zhu, Y.; Peng, W.; Li, Y.; Zhang, F.; Xia, Q.; Fan, X. Ind. Eng. Chem. Res. 2022, 61, 11484. doi: 10.1021/acs.iecr.2c01635  doi: 10.1021/acs.iecr.2c01635

    26. [26]

      Bai, W.; Qiao, X.; Wang, T. J. Electrochem. 2019, 25, 185. doi: 10.13208/j.electrochem.181041  doi: 10.13208/j.electrochem.181041

    27. [27]

      Su, R.; Yan, H.; Jiang, X.; Zhang, Y.; Li, P.; Su, W. J. Mater. Chem. B 2022, 10, 1250. doi: 10.1039/d1tb02457d  doi: 10.1039/d1tb02457d

    28. [28]

      Guo, Y.; Liu, D.; Yang, Q.; Shi, W.; Yang, Z.; Chen, J.; Xiang, J. Anal. Lett. 2022, 55, 1453. doi: 10.1080/00032719.2021.2008950  doi: 10.1080/00032719.2021.2008950

    29. [29]

      Huang, J.; Wang, D.; Li, S.; Fan, H.; Fan, L. Acta Phys. -Chim. Sin. 2021, 37, 1905067.  doi: 10.3866/PKU.WHXB201905067

    30. [30]

      Han, C.; Zhang, X.; Wang, F.; Yu, Q.; Chen, F.; Shen, D.; Yang, Z.; Wang, T.; Jiang, M.; Deng, T.; et al. Carbon 2021, 183, 789. doi: 10.1016/j.carbon.2021.07.063  doi: 10.1016/j.carbon.2021.07.063

    31. [31]

      Kundu, S.; Ghosh, M.; Sarkar, N. Langmuir 2021, 37, 9281. doi: 10.1021/acs.langmuir.1c00732  doi: 10.1021/acs.langmuir.1c00732

    32. [32]

      Fattahi Nafchi, R.; Ahmadi, R.; Heydari, M.; Rahimipour, M. R.; Molaei, M. J.; Unsworth, L. Langmuir 2022, 38, 3804. doi: 10.1021/acs.langmuir.1c03458  doi: 10.1021/acs.langmuir.1c03458

    33. [33]

      Hobza, P.; Kabeláč, M.; Šponer, J.; Mejzlík, P.; Vondrášek, J. J. Comput. Chem. 1997, 18, 1136. doi: 10.1002/(SICI)1096-987X(19970715)18:9<1136::AID-JCC3>3.0.CO;2-S  doi: 10.1002/(SICI)1096-987X(19970715)18:9<1136::AID-JCC3>3.0.CO;2-S

  • 加载中
    1. [1]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    12. [12]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(8)
  • Abstract views(841)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return