Citation: Shuxia Ren, Zheng Yang, Shuailling An, Jie Meng, Xiaomin Liu, Jinjin Zhao. High-Efficiency Photoelectric Regulation of Resistive Switching Memory in Perovskite Quantum Dots[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230103. doi: 10.3866/PKU.WHXB202301033 shu

High-Efficiency Photoelectric Regulation of Resistive Switching Memory in Perovskite Quantum Dots

  • Corresponding author: Jinjin Zhao, jinjinzhao2012@163.com
  • Received Date: 24 January 2023
    Revised Date: 28 February 2023
    Accepted Date: 7 March 2023
    Available Online: 9 March 2023

    Fund Project: the National Natural Science Foundation of China U2130128the National Natural Science Foundation of China 11772207the National Natural Science Foundation of China U21A20430the Natural Science Foundation of Hebei Education Department ZD2020192the Hebei Administration for Market Supervision Science and Technology Project List 2023ZC03the Central Government Guiding Local Science and Technology Development Project 216Z4302Gthe Innovation Capability Improvement Plan Project of Hebei Province 22567604Hthe Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region H2022205047the Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region 22JCZXJC00060

  • Photoelectric resistive switching memory (RRAM) is the most promising competitor in the next generation of non-volatile memory (NVM) owing to its miniaturization, integration, and versatility advantages. A low-temperature spin coating method is deployed to synthesize inorganic CsPbBr3 quantum dots (QDs) with green fluorescence. Then, flexible photoelectrical dual-controlled Ag/CsPbBr3 QDs/indium tin oxide (ITO) RRAM devices with high efficiency are prepared, in which the switching behavior is modified by both electric field and light illumination. The as-prepared device demonstrated forming-free bipolar resistive switching behavior in the presence and absence of light. The switching voltages (VSET) show significant reductions compared to the dark condition, and the hysteresis windows considerably increase under illumination. These indicate a higher ON/OFF ratio and lower energy consumption under illumination than in the dark for the Ag/CsPbBr3 QDs /ITO device. The ON/OFF ratio of the Ag/CsPbBr3 QDs /ITO device is about 3.2×103 under illumination, about 24 times higher than that in the dark state. The VSET is 2.88 V, approximately 13.3% lower than the dark state. These results are further confirmed by the resistive switching behavior of the 36 memory cells randomly selected in the Ag/CsPbBr3 QDs /ITO device. Moreover, the devices exhibit good fatigue and retention performance. No noticeable degradation occurre in the high resistance state (HRS) and low resistance state (LRS) even after 500 consecutive cycles. The resistance remain stable for a long retention time exceeding 5000 s. The large ON/OFF ratio, good endurance, and retention properties of the Ag/CsPbBr3 QDs: GO/ITO device are sufficient for a photoelectric regulation NVM device. Based on the double logarithmic fitting curves during the switching process, it is assumed that the device has the same conduction mechanism under dark and illumination conditions, which is dominated by both ohmic behavior and space charge limited current (SCLC) mechanism in the HRS, and only by the ohmic conduction in the LRS. The primary resistive switching mechanism in the Ag/CsPbBr3 QDs/ITO devices is enabled by the formation and rupture of the hybrid conductive filament composed of Br- vacancies and Ag atom owing to both Br- and Ag+ ion migration under an electric field. The main reason for the declining LRS resistance, resulting in the increment of the ON/OFF ratio and VSET of the above devices, is derived from the increasing photocurrent promoted by the decreasing defect density in CsPbBr3 QDs films under illumination. High-efficiency photoelectronic regulatory perovskite materials will improve the development of high-density memory RRAM technology.
  • 加载中
    1. [1]

      Chang, T.; Chang, K.; Tsai, T.; Chu, T.; Sze, S. Mater Today 2016, 19, 254. doi: 10.1016/j.mattod.2015.11.009  doi: 10.1016/j.mattod.2015.11.009

    2. [2]

      Meijer, G. Science 2008, 319, 1625. doi: 10.1126/science.1153909  doi: 10.1126/science.1153909

    3. [3]

      Ren, S.; Dong, W.; Tang, H.; Tang, L.; Li, Z.; Sun, Q.; Yang, H.; Yang, Z.; Zhao, J. Appl. Surf. Sci. 2019, 488, 92. doi: 10.1016/j.apsusc.2019.05.129  doi: 10.1016/j.apsusc.2019.05.129

    4. [4]

      Ren, S.; Li, Z.; Tang, L.; Su, X.; Zhang, H.; Zhang, G.; Zhang, H.; Cao, G.; Zhao, J. Adv. Electron. Mater. 2020, 6, 2000151. doi: 10.1002/aelm.202000151  doi: 10.1002/aelm.202000151

    5. [5]

      Nili, H.; Walia, S.; Balendhran, S.; Strukov, D.; Bhaskaran, M.; Sriram, S. Adv. Funct. Mater. 2014, 24, 6733. doi: 10.1002/adfm.201470279  doi: 10.1002/adfm.201470279

    6. [6]

      Li, S.; Zeng, H.; Zhang, S.; Wei, X. Appl. Phys. Lett. 2013, 102, 1636. doi: 10.1063/1.4802209  doi: 10.1063/1.4802209

    7. [7]

      Lin, Y.; Xu, H.; Wang, Z.; Cong, T.; Liu, W.; Ma, H.; Liu, Y. Appl. Phys. Lett. 2017, 110, 193503. doi: 10.1063/1.4983382  doi: 10.1063/1.4983382

    8. [8]

      Wuttig, M.; Bhaskaran, H.; Taubner, T. Nat. Photon 2017, 11, 465. doi: 10.1038/NPHOTON.2017.126  doi: 10.1038/NPHOTON.2017.126

    9. [9]

      He, Z.; Dai, Y.; Li, X.; Guo, D.; Liu, Y.; Huang, X.; Jiang, J.; Wang, S.; Zhu, G.; Zhang, F.; et al. Small 2019, 15, 1804131. doi: 10.1002/smll.201804131  doi: 10.1002/smll.201804131

    10. [10]

      Tan, H.; Liu, G.; Zhu, X.; Yang, H.; Chen, B.; Chen, X.; Shang, J.; Lu, W. D.; Wu, Y.; Li, R.-W. Adv. Mater. 2015, 27, 2797. doi: 10.1002/adma.201500039  doi: 10.1002/adma.201500039

    11. [11]

      Im, J.; Lee, C.; Lee, J.; Park, S.; Park, N. Nanoscale 2011, 3, 4088. doi: 10.1039/C1NR10867K  doi: 10.1039/C1NR10867K

    12. [12]

      Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.; Alsari, M.; Booker, E.; Hutter, E.; Pearson, A.; et al. Nature 2018, 555, 497. doi: 10.1038/nature25989  doi: 10.1038/nature25989

    13. [13]

      Choi, J.; Han, J.; Hong, K.; Kim, S.; Jang, H. Adv. Mater. 2018, 30, 1704002. doi: 10.1002/adma.201704002  doi: 10.1002/adma.201704002

    14. [14]

      Wehrenfennig, C.; Eperon, G.; Johnston, M.; Snaith, H.; Herz, L. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    15. [15]

      Dong, Q. F., Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967. doi: 10.1126/SCIENCE.AAA5760  doi: 10.1126/SCIENCE.AAA5760

    16. [16]

      Zhao, J.; Wang, P.; Wei, L.; Liu, Z.; Fang, X.; Liu, X.; Ren, D.; Mai, Y. Dalton Trans. 2015, 44, 16914. doi: 10.1039/C5DT02388B  doi: 10.1039/C5DT02388B

    17. [17]

      Zhang, F.; Han, B.; Zeng, H. J. Inorg. Mater. 2022, 2, 117. doi: 10.15541/jim20210441  doi: 10.15541/jim20210441

    18. [18]

      Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.; Li, G.; Yang, Y. Nat. Commun. 2014, 5, 5404. doi: 10.1038/ncomms6404  doi: 10.1038/ncomms6404

    19. [19]

      Chen, Y.; Chen, G.; Zhou, Z.; Li, X.; Ma, P.; Li, L.; Yin, W.; Zeng, H.; Zou, G. Adv. Funct. Mater. 2021, 31, 2101966. doi: 10.1002/adfm.202101966  doi: 10.1002/adfm.202101966

    20. [20]

      Lin, K.; Xing, J.; Quan, L.; de Arquer, F.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Nature 2018, 562, 245. doi: 10.1038/s41586-018-0575-3  doi: 10.1038/s41586-018-0575-3

    21. [21]

      Han, B.; Yuan, S.; Cai, B.; Song, J.; Liu, W.; Zhang, F.; Fang, T.; Wei, C.; Zeng, H. Adv. Funct. Mater. 2021, 31, 2011003. doi: 10.1002/adfm.202011003  doi: 10.1002/adfm.202011003

    22. [22]

      Chen, J.; Mukherjee, S.; Li, W.; Zeng, H.; Fischer, R. Nat. Rev. Mater. 2022, 7, 677. doi: 10.1038/s41578-022-00476-3  doi: 10.1038/s41578-022-00476-3

    23. [23]

      Wei, C.; Su, W.; Li, J.; Xu, B.; Shan, Q.; Wu, Y.; Zhang, F.; Luo, M.; Xiang, H.; Cui, Z.; Zeng, H. Adv. Mater. 2022, 34, 2107798. doi: 10.1002/adma.202107798  doi: 10.1002/adma.202107798

    24. [24]

      Zhang, Q.; Tavakoli, M.; Gu, L.; Zhang, D.; Tang, L.; Gao, Y.; Guo, J.; Lin, Y.; Leung, S.; Poddar, S.; et al. Nat. Commun. 2019, 10, 727. doi: 10.1038/s41467-019-08561-y  doi: 10.1038/s41467-019-08561-y

    25. [25]

      Chin, X.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Nat. Commun. 2015, 6, 7383. doi: 10.1038/ncomms8383  doi: 10.1038/ncomms8383

    26. [26]

      Chen, Q.; Zhang, Y.; Liu, S.; Han, T.; Chen, X.; Xu, Y.; Meng, Z.; Zhang, G.; Zheng, X.; Zhao, J.; et al. Adv. Intell. Syst. 2020, 2, 2000122. doi: 10.1002/aisy.202000122  doi: 10.1002/aisy.202000122

    27. [27]

      Yoo, E.; Lyu, M.; Yun, J.; Kang, C.; Choi, Y.; Wang, L. Adv. Mater. 2015, 27, 6170. doi: 10.1002/adma.201502889  doi: 10.1002/adma.201502889

    28. [28]

      Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D.; Moon, C.; Park, G.; Suh, J.; Hwang, J.; Kim, S.; et al. Adv. Mater. 2016, 28, 6562. doi: 10.1002/adma.201600859  doi: 10.1002/adma.201600859

    29. [29]

      Kim, D.; Tak, Y.; Kim, W.; Kim, J.; Kim, J.; Kim, H. Adv. Mater. Interfaces 2017, 4, 1601035. doi: 10.1002/admi.201601035  doi: 10.1002/admi.201601035

    30. [30]

      Hwang, B.; Lee, J.-S. Adv. Mater. 2017, 29, 1701048. doi: 10.1002/adma.201701048  doi: 10.1002/adma.201701048

    31. [31]

      Zhu, X.; Lee, J.; Lu, W. Adv. Mater. 2017, 29, 1700527. doi: 10.1002/adma.201700527  doi: 10.1002/adma.201700527

    32. [32]

      Zhou, F.; Liu, Y.; Shen, X.; Wang, M.; Yuan, F.; Chai, Y. Adv. Funct. Mater. 2018, 28, 1800080. doi: 10.1002/adfm.201800080  doi: 10.1002/adfm.201800080

    33. [33]

      Xiao, Z.; Huang, J. Adv. Electron. Mater. 2016, 2, 1600100. doi: 10.1002/aelm.201600100  doi: 10.1002/aelm.201600100

    34. [34]

      Chen, S.; Zhang, Y.; Zhao, J.; Mi, Z.; Zhang, J.; Cao, J.; Feng, J.; Zhang, G.; Qi, J.; Li, J.; et al. Sci. Bull 2020, 65, 1643. doi: 10.1016/j.scib.2020.05.020  doi: 10.1016/j.scib.2020.05.020

    35. [35]

      Younis, A.; Lin, C.; Guan, X.; Shahrokhi, S.; Huang, C.; Wang, Y.; He, T.; Singh, S.; Hu, L.; Retamal, J.; et al. Adv. Mater. 2021, 33, 2005000. doi: 10.1002/adma.202005000  doi: 10.1002/adma.202005000

    36. [36]

      Futscher, M.; Mili, J. Front. Energy Res. 2021, 9, 629074. doi: 10.3389/fenrg.2021.629074  doi: 10.3389/fenrg.2021.629074

    37. [37]

      Wang, Y.; Lv, Z.; Liao, Q.; Shan, H.; Chen, J.; Zhou, Y.; Zhou, L.; Chen, X.; Roy, V.; Wang, Z.; et al. Adv. Mater. 2018, 30, 1800327. doi: 10.1002/adma.201800327  doi: 10.1002/adma.201800327

    38. [38]

      Yen, M.; Lee, C.; Liu, K.; Peng, Y.; Leng, J.; Chang, T.; Chang, C.; Tamada, K.; Lee, Y. Nat. Commun. 2021, 12, 4460. doi: 10.1038/s41467-021-24762-w  doi: 10.1038/s41467-021-24762-w

    39. [39]

      Liu, Q.; Yue, W.; Li, Y.; Wang, W.; Xu, L.; Wang, Y.; Gao, S.; Zhang, C.; Kan, H.; Li, C. Adv. Electron. Mater. 2021, 7, 2100366. doi: 10.1002/aelm.202100366  doi: 10.1002/aelm.202100366

    40. [40]

      Liu, X.; Ren, S.; Li, Z.; Guo, J.; Yi, S.; Yang, Z.; Hao, W.; Li, R.; Zhao, J. Adv. Funct. Mater. 2022, 32, 2202951. doi: 10.1002/adfm.202202951  doi: 10.1002/adfm.202202951

    41. [41]

      Zhang, G.; Xu, Y.; Yang, S.; Ren, S.; Jiao, Y.; Wang, Y.; Ma, X.; Li, H.; Hao, W.; He, C.; Liu, X.; Zhao, J. Nano Energy 2023, 106, 108074. doi: 10.1016/j.nanoen.2022.108074  doi: 10.1016/j.nanoen.2022.108074

    42. [42]

      Du, X.; Wu, G.; Cheng, J.; Dang, H.; Ma, K.; Zhang, Y.; Tan, P.; Chen, S. RSC Adv. 2017, 7, 10391. doi: 10.1039/C6RA27665B  doi: 10.1039/C6RA27665B

    43. [43]

      Zhu, Y.; Cheng, P.; Shi, J.; Wang, H.; Liu, Y.; Xiong, R.; Ma, H.; Ma, H. Adv. Electron. Mater. 2019, 6, 1900754. doi: 10.1002/aelm.201900754  doi: 10.1002/aelm.201900754

    44. [44]

      Wang, F.; Yu, M.; Chen, X.; Li, J.; Zhang, Z.; Li, Y.; Zhang, G.; Shi, K.; Shi, L.; Zhang, M.; et al. SmartMat 2022, 4, e1135. doi: 10.1002/smm2.1135  doi: 10.1002/smm2.1135

    45. [45]

      Wu, G.; Liang, R.; Ge, M.; Sun, G.; Zhang, Y.; Xing, G. Adv. Mater. 2022, 34, 2105635. doi: 10.1002/adma.202105635  doi: 10.1002/adma.202105635

    46. [46]

      Baranowski, M.; Plochocka, P. Adv. Energy Mater. 2020, 1903659. doi: 10.1002/aenm.201903659  doi: 10.1002/aenm.201903659

    47. [47]

      Jong, U.; Yu, C.; Ri, G.; McMahon, A.; Harrison, N; Barnes, P.; Walsh, A. J. Mater. Chem. A 2018, 6, 1067. doi: 10.1039/C7TA09112E  doi: 10.1039/C7TA09112E

    48. [48]

      Cai, H.; Lao, M.; Xu, J.; Chen, Y.; Zhong, C.; Lu, S.; Hao, A.; Chen, R. Ceram. Int. 2019, 45 5724. doi: 10.1016/j.ceramint.2018.12.038  doi: 10.1016/j.ceramint.2018.12.038

    49. [49]

      Zhao, X.; Fan, Z.; Xu, H.; Wang, Z.; Xu, J.; Ma, J.; Liu, Y. J. Mater. Chem. C 2018, 6, 7195. doi: 10.1039/C8TC01844H  doi: 10.1039/C8TC01844H

    50. [50]

      Yoo, E.; Lyu, M.; Yun, J.; Kang, C.; Choi, Y.; Wang, L. J. Mater. Chem. C 2016, 4, 7824. doi: 10.1039/C6TC02503J  doi: 10.1039/C6TC02503J

    51. [51]

      Huang, Y.; Shen, Z.; Wu, Y.; Wang, X.; Zhang, S.; Shi, X.; Zeng, H. RSC Adv. 2016, 6, 17867. doi: 10.1039/C5RA22728C  doi: 10.1039/C5RA22728C

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    19. [19]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(13)
  • Abstract views(1332)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return