Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution
- Corresponding author: Shibin Yin, yinshibin@gxu.edu.cn
Citation: Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230103. doi: 10.3866/PKU.WHXB202301032
Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60, 19572. doi: 10.1002/anie.202101522
doi: 10.1002/anie.202101522
Prabhu, P.; Wan, Y.; Lee, J. M. Matter 2020, 3, 1162. doi: 10.1016/j.matt.2020.09.002
doi: 10.1016/j.matt.2020.09.002
Gérardy, R.; Debecker, D. P.; Estager, J.; Luis, P.; Monbaliu, J. C. M. Chem. Rev. 2020, 120, 7219. doi: 10.1021/acs.chemrev.9b00846
doi: 10.1021/acs.chemrev.9b00846
Zhou, H.; Jing, Y. X.; Wang, Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2203016.
doi: 10.3866/PKU.WHXB202203016
Muhammad, S.; Zhao, X. B.; Liu, D. H. Green Chem. 2018, 20, 5427. doi: 10.1039/c8gc02680g
doi: 10.1039/c8gc02680g
Xu, S.; Zhou, P.; Zhang, Z. H.; Yang, C. J.; Zhang, B. G.; Deng, K. J.; Bottle, S.; Zhu, H. Y. J. Am. Chem. Soc. 2017, 139, 14775. doi: 10.1021/jacs.7b08861
doi: 10.1021/jacs.7b08861
Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Chem. Soc. Rev. 2020, 49, 4273. doi: 10.1039/d0cs00041h
doi: 10.1039/d0cs00041h
Giannakoudakis, D. A.; Colmenares, J. C.; Tsiplakides, D.; Triantafyllidis, K. S. ACS Sustain. Chem. Eng. 2021, 9, 1970. doi: 10.1021/acssuschemeng.0c07480
doi: 10.1021/acssuschemeng.0c07480
Yang, Y.; He, B. W.; Ma, H. L.; Yang, S.; Ren, Z. H.; Qin, T.; Lu, F. G.; Ren, L. W.; Zhang, Y. X.; Wang, T. F.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2201050.
doi: 10.3866/PKU.WHXB202201050
Pasini, T.; Piccinini, M.; Blosi, M.; Bonelli, R.; Albonetti, S.; Dimitratos, N.; Lopez-Sanchez, J. A.; Sankar, M.; He, Q.; Kiely, C. J.; et al. Green Chem. 2011, 13, 2091. doi: 10.1039/c1gc15355b
doi: 10.1039/c1gc15355b
Rass, H. A.; Essayem, N.; Besson, M. Green Chem. 2013, 15, 2240. doi: 10.1039/c3gc40727f
doi: 10.1039/c3gc40727f
Zheng, L. F.; Zhao, J. Q.; Du, Z. X.; Zong, B. N.; Liu, H. C. Sci. China Chem. 2017, 60, 950. doi: 10.1007/s11426-016-0489-3
doi: 10.1007/s11426-016-0489-3
Park, M.; Gu, M.; Kim, B. S. ACS Nano 2020, 14, 6812. doi: 10.1021/acsnano.0c00581
doi: 10.1021/acsnano.0c00581
Chadderdon, X. H.; Chadderdon, D. J.; Pfennig, T.; Shanks, B. H.; Li, W. Z. Green Chem. 2019, 21, 6210. doi: 10.1039/c9gc02264c
doi: 10.1039/c9gc02264c
Cao, G. X.; Chen, Z. J.; Yin, H.; Gan, L. Y.; Zang, M. J.; Xu, N.; Wang, P. J. Mater. Chem. A 2019, 7, 10338. doi: 10.1039/c9ta00899c
doi: 10.1039/c9ta00899c
Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Adv. Mater. 2017, 29, 1703311. doi: 10.1002/adma.201703311
doi: 10.1002/adma.201703311
An, Y. M.; Long, X.; Ma, M.; J. Hu; Lin, H.; Zhou, D.; Xing, Z.; Huang, B. L.; Yang, S. H. Adv. Energy Mater. 2019, 9, 1901454. doi: 10.1002/aenm.201901454
doi: 10.1002/aenm.201901454
Gouda, L.; Sévery, L.; Moehl, T.; Mas-Marzá, E.; Adams, P.; Fabregat-Santiago, F.; Tilley, S. D. Green Chem. 2021, 23, 8061. doi: 10.1039/d1gc02031e
doi: 10.1039/d1gc02031e
Taitt, B. J.; Nam, D. H.; Choi, K. S. ACS Catal. 2018, 9, 660. doi: 10.1021/acscatal.8b04003
doi: 10.1021/acscatal.8b04003
Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Nano Res. Energy 2022, 1, 9120029. doi: 10.26599/nre.2022.9120029
doi: 10.26599/nre.2022.9120029
Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Small Methods 2021, 5, 2000988. doi: 10.1002/smtd.202000988
doi: 10.1002/smtd.202000988
Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Chem. Soc. Rev. 2021, 50, 9817. doi: 10.1039/d1cs00330e
doi: 10.1039/d1cs00330e
Wang, H.; Chen, J. M.; Lin, Y. P.; Wang, X. H.; Li, J. M.; Li, Y.; Gao, L. J.; Zhang, L. B.; Chao, D. L.; Xiao, X.; et al. Adv. Mater. 2021, 33, 2008422. doi: 10.1002/adma.202008422
doi: 10.1002/adma.202008422
Chen, C.; Zhang, X.; Zhou, Z. Y.; Zhang, X. S.; Sun, S. G. Acta Phys. -Chim. Sin. 2017, 33, 1875.
doi: 10.3866/PKU.WHXB201705088
Li, J. X.; Feng, L. G. J. Electrochem. 2022, 28, 2214001.
doi: 10.13208/j.electrochem.2214001
Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. J. Mater. Chem. A 2018, 6, 167. doi: 10.1039/c7ta07956g
doi: 10.1039/c7ta07956g
You, B.; Liu, X.; Liu, X.; Sun, Y. J. ACS Catal. 2017, 7, 4564. doi: 10.1021/acscatal.7b00876
doi: 10.1021/acscatal.7b00876
Ou, J. Z.; Campbell, J. L.; Yao, D.; Wlodarski, W.; Kalantar-Zadeh, K. J. Phys. Chem. C 2011, 115, 10757. doi: 10.1021/jp202123a
doi: 10.1021/jp202123a
Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Adv. Funct. Mater. 2016, 26, 4839. doi: 10.1002/adfm.201601315
doi: 10.1002/adfm.201601315
Wu, K.; Sun, Y. H.; Liu, J.; Xiong, J. X.; Wu, J. L.; Zhang, J.; Fu, M. L.; Chen, L. M.; Huang, H. M.; Ye, D. Q. J. Hazard. Mater. 2021, 405, 124156. doi: 10.1016/j.jhazmat.2020.124156
doi: 10.1016/j.jhazmat.2020.124156
Zhang, X.; Yi, H.; Jin, M. T.; Lian, Q.; Huang, Y.; Ai, Z.; Huang, R. Q.; Zuo, Z. T.; Tang, C. M.; Amini, A.; et al. Small 2022, 18, 2203710. doi: 10.1002/smll.202203710
doi: 10.1002/smll.202203710
Shen, B. X.; Zhu, S. W.; Zhang, X.; Chi, G. L.; Patel, D.; Si, M.; Wu, C. F. Fuel 2018, 224, 241. doi: 10.1016/j.fuel.2018.03.080
doi: 10.1016/j.fuel.2018.03.080
Wang, H.; Wang, H. J.; Huang, J. S.; Zhou, X. L.; Wu, Q. X.; Luo, Z. K.; Wang, F. ACS Appl. Mater. Interfaces 2019, 11, 44556. doi: 10.1021/acsami.9b13329
doi: 10.1021/acsami.9b13329
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Nano Res. Energy 2022, 1, 9120027. doi: 10.26599/nre.2022.9120027
doi: 10.26599/nre.2022.9120027
Yang, C. M.; Wang, C. T.; Zhou, L. H.; Duan, W.; Song, Y. Y.; Zhang, F. C.; Zhen, Y. Z.; Zhang, J. J.; Bao, W. W.; Lu, Y. X.; et al. Chem. Eng. J. 2021, 422, 130125. doi: 10.1016/j.cej.2021.130125
doi: 10.1016/j.cej.2021.130125
Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Adv. Mater. 2021, 33, 2007056. doi: 10.1002/adma.202007056
doi: 10.1002/adma.202007056
Sun, Y.; Wang, J.; Qi, Y. F.; Li, W. J.; Wang, C. Adv. Sci. 2022, 9, 2200957. doi: 10.1002/advs.202200957
doi: 10.1002/advs.202200957
Wang, H. L.; Li, C.; An, J. T.; Zhuang, Y.; Tao, S. Y. J. Mater. Chem. A 2021, 9, 18421. doi: 10.1039/d1ta05425b
doi: 10.1039/d1ta05425b
Zhou, Z. Y.; Xie, Y. N.; Sun, L. Z.; Wang, Z. M.; Wang, W. K.; Jiang, L. Z.; Tao, X.; Li, L. N.; Li, X. H.; Zhao, G. H. Appl. Catal. B 2022, 305, 121072. doi: 10.1016/j.apcatb.2022.121072
doi: 10.1016/j.apcatb.2022.121072
Luo, R. P.; Li, Y. Y.; Xing, L. X.; Wang, N.; Zhong, R. Y.; Qian, Z. Y.; Du, C. Y.; Yin, G. P.; Wang, Y. C.; Du, L. Appl. Catal. B 2022, 311, 121357. doi: 10.1016/j.apcatb.2022.121357
doi: 10.1016/j.apcatb.2022.121357
Gao, L. F.; Bao, Y.; Gan, S. Y.; Sun, Z. H.; Song, Z. Q.; Han, D. X.; Li, F. H.; Niu, L. ChemSusChem 2018, 11, 2547. doi: 10.1002/cssc.201800695
doi: 10.1002/cssc.201800695
Gao, L. F.; Liu, Z. B.; Ma, J. L.; Zhong, L. J.; Song, Z. Q.; Xu, J. A.; Gan, S. Y.; Han, D. X.; Niu, L. Appl. Catal. B 2020, 261, 118235. doi: 10.1016/j.apcatb.2019.118235
doi: 10.1016/j.apcatb.2019.118235
Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B.; et al. Angew. Chem. Int. Ed. 2019, 58, 9155. doi: 10.1002/anie.201903936
doi: 10.1002/anie.201903936
Liu, Q. Q.; Huang, J. F.; Cao, L. Y.; Kajiyoshi, K.; Li, K.; Feng, Y. Q.; Fu, C. L.; Kou, L. J.; Feng, L. L. ACS Sustain. Chem. Eng. 2020, 8, 6222. doi: 10.1021/acssuschemeng.9b06959.
doi: 10.1021/acssuschemeng.9b06959
Qiu, Z.; Ma, Y.; Edvinsson, T. Nano Energy 2019, 66, 104118. doi: 10.1016/j.nanoen.2019.104118
doi: 10.1016/j.nanoen.2019.104118
Yu, T. Q.; Xu, Q. L.; Luo, L.; Liu, C. R.; Yin, S. B. Chem. Eng. J. 2022, 430, 133117. doi: 10.1016/j.cej.2021.133117
doi: 10.1016/j.cej.2021.133117
Wu, T.; Xu, Z. A.; Wang, X. L.; Luo, M. J.; Xia, Y.; Zhang, X. C.; Li, J. T.; Liu, J.; Wang, J. C.; Wang, H. L.; et al. Appl. Catal. B 2023, 323, 122126. doi: 10.1016/j.apcatb.2022.122126
doi: 10.1016/j.apcatb.2022.122126
Tong, X.; Li, Y.; Pang, N.; Qu, Y. H.; Yan, C. H.; Xiong, D. Y.; Xu, S. H.; Wang, L. W.; Chu, P. K. Chem. Eng. J. 2021, 425, 130455. doi: 10.1016/j.cej.2021.130455
doi: 10.1016/j.cej.2021.130455
Ding, M. Y.; Jiang, W. J.; Yu, T. Q.; Zhuo, X. Y.; Qin, X. J.; Yin, S. B. J. Electrochem. 2022, 28, 2214012.
doi: 10.13208/j.electrochem.2208121
Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Energy Environ. Sci. 2012, 5, 5577. doi: 10.1039/c2ee02618j
doi: 10.1039/c2ee02618j
Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2007054.
doi: 10.3866/PKU.WHXB202007054
Zhang, L. Y.; Zheng, Y. J.; Wang, J. C.; Geng, Y.; Zhang, B.; He, J. J.; Xue, J. M.; Frauenheim, T.; Li, M. Small 2021, 17, 2006730. doi: 10.1002/smll.202006730
doi: 10.1002/smll.202006730
Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. ACS Catal. 2017, 7, 2357. doi: 10.1021/acscatal.6b03192
doi: 10.1021/acscatal.6b03192
Wu, X. L.; Han, S.; He, D. H.; Yu, C. L.; Lei, C. J.; Liu, W.; Zheng, G. K.; Zhang, X. W.; Lei, L. C. ACS Sustain. Chem. Eng. 2018, 6, 8672. doi: 10.1021/acssuschemeng.8b00968
doi: 10.1021/acssuschemeng.8b00968
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209