Citation: Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230103. doi: 10.3866/PKU.WHXB202301032 shu

Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution

  • Corresponding author: Shibin Yin, yinshibin@gxu.edu.cn
  • Received Date: 24 January 2023
    Revised Date: 3 April 2023
    Accepted Date: 6 April 2023
    Available Online: 13 April 2023

    Fund Project: the National Natural Science Foundation of China 22162004the Natural Science Foundation of Guangxi Province 2022JJD120011

  • Fossil fuel depletion and environmental deterioration have created an urgent need to develop renewable and clean energy. Biomass, a sustainable organic carbon source, can meet the huge demand for energy and chemicals. Among them, 5-hydroxymethylfurfural (HMF) is an important biomass-derived platform molecule, which can be converted into various high-value chemicals. One of its oxidation products, 2,5-furandicarboxylic acid (FDCA), is expected to replace terephthalic acid as a raw material for the synthesis of bio-based degradable plastics. The electrooxidation of HMF emerges as a promising green route for preparing FDCA due to its advantages of mild conditions, fast reaction rate, and high selectivity. The theoretical potential of the HMF electrooxidation reaction (HMFOR, 0.3 V vs. reversible hydrogen electrode, RHE) is also lower than that of the oxygen evolution reaction (OER, 1.23 V vs. RHE). Coupling anodic HMFOR with cathodic hydrogen evolution reaction (HER) is expected to simultaneously produce valuable FDCA and reduce the cell voltage of hydrogen (H2) evolution. However, the construction of efficient and stable bifunctional catalysts for HMFOR-assisted H2 production is still challenging. In this study, Co-doped Ni-Mo-O porous nanorods grown on a nickel foam (Co-NiMoO/NF) is prepared by simple hydrothermal and calcination methods for both HMFOR and HER. Results of electrocatalytic studies indicate that Co-NiMoO/NF exhibits enhanced performance for HMFOR (E10/100 = 1.31/1.37 V vs. RHE) and HER (E−10/−100 = −35/−123 mV vs. RHE) and shows durable HMFOR/HER stability. In particular, Co-NiMoO/NF maintains high FDCA selectivity (~99.2%) and Faradaic efficiency (~95.7%) for 40 successive cycles at 1.36 V vs. RHE for HMFOR. Conversely, Co-NiMoO/NF maintains stable operation at −200 mA∙cm−2 for 50 h with no significant activity attenuation for HER. When coupled as a bifunctional electrode for overall HMF splitting, Co-NiMoO/NF reaches an electric flux of 50 mA∙cm−2 at 1.48 V, which is 290 mV lower than that of the overall water splitting. This confirms that the HMFOR-assisted H2 production over Co-NiMoO/NF significantly reduces the energy consumption. Moreover, the two-electrode system maintains good FDCA selectivity (97.6%) for 10 cycles at 1.45 V, implying good stability of HMFOR-assisted H2 evolution. The remarkable catalytic performance of Co-NiMoO/NF could be due to the introduction of Co, which optimizes the electronic structure of Ni-Mo-O and adsorption behaviors of the reactants, thereby enhancing the intrinsic activity and stability of the catalyst. Meanwhile, the porous nanorod structure enhanced the mass transport of substrates and desorption of bubbles, thereby elevating the HMFOR/HER kinetics. This study provides useful insights for designing efficient and durable bifunctional catalysts for HMFOR and HER.
  • 加载中
    1. [1]

      Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60, 19572. doi: 10.1002/anie.202101522  doi: 10.1002/anie.202101522

    2. [2]

      Prabhu, P.; Wan, Y.; Lee, J. M. Matter 2020, 3, 1162. doi: 10.1016/j.matt.2020.09.002  doi: 10.1016/j.matt.2020.09.002

    3. [3]

      Gérardy, R.; Debecker, D. P.; Estager, J.; Luis, P.; Monbaliu, J. C. M. Chem. Rev. 2020, 120, 7219. doi: 10.1021/acs.chemrev.9b00846  doi: 10.1021/acs.chemrev.9b00846

    4. [4]

      Zhou, H.; Jing, Y. X.; Wang, Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2203016.  doi: 10.3866/PKU.WHXB202203016

    5. [5]

      Muhammad, S.; Zhao, X. B.; Liu, D. H. Green Chem. 2018, 20, 5427. doi: 10.1039/c8gc02680g  doi: 10.1039/c8gc02680g

    6. [6]

      Xu, S.; Zhou, P.; Zhang, Z. H.; Yang, C. J.; Zhang, B. G.; Deng, K. J.; Bottle, S.; Zhu, H. Y. J. Am. Chem. Soc. 2017, 139, 14775. doi: 10.1021/jacs.7b08861  doi: 10.1021/jacs.7b08861

    7. [7]

      Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Chem. Soc. Rev. 2020, 49, 4273. doi: 10.1039/d0cs00041h  doi: 10.1039/d0cs00041h

    8. [8]

      Giannakoudakis, D. A.; Colmenares, J. C.; Tsiplakides, D.; Triantafyllidis, K. S. ACS Sustain. Chem. Eng. 2021, 9, 1970. doi: 10.1021/acssuschemeng.0c07480  doi: 10.1021/acssuschemeng.0c07480

    9. [9]

      Yang, Y.; He, B. W.; Ma, H. L.; Yang, S.; Ren, Z. H.; Qin, T.; Lu, F. G.; Ren, L. W.; Zhang, Y. X.; Wang, T. F.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2201050.  doi: 10.3866/PKU.WHXB202201050

    10. [10]

      Pasini, T.; Piccinini, M.; Blosi, M.; Bonelli, R.; Albonetti, S.; Dimitratos, N.; Lopez-Sanchez, J. A.; Sankar, M.; He, Q.; Kiely, C. J.; et al. Green Chem. 2011, 13, 2091. doi: 10.1039/c1gc15355b  doi: 10.1039/c1gc15355b

    11. [11]

      Rass, H. A.; Essayem, N.; Besson, M. Green Chem. 2013, 15, 2240. doi: 10.1039/c3gc40727f  doi: 10.1039/c3gc40727f

    12. [12]

      Zheng, L. F.; Zhao, J. Q.; Du, Z. X.; Zong, B. N.; Liu, H. C. Sci. China Chem. 2017, 60, 950. doi: 10.1007/s11426-016-0489-3  doi: 10.1007/s11426-016-0489-3

    13. [13]

      Park, M.; Gu, M.; Kim, B. S. ACS Nano 2020, 14, 6812. doi: 10.1021/acsnano.0c00581  doi: 10.1021/acsnano.0c00581

    14. [14]

      Chadderdon, X. H.; Chadderdon, D. J.; Pfennig, T.; Shanks, B. H.; Li, W. Z. Green Chem. 2019, 21, 6210. doi: 10.1039/c9gc02264c  doi: 10.1039/c9gc02264c

    15. [15]

      Cao, G. X.; Chen, Z. J.; Yin, H.; Gan, L. Y.; Zang, M. J.; Xu, N.; Wang, P. J. Mater. Chem. A 2019, 7, 10338. doi: 10.1039/c9ta00899c  doi: 10.1039/c9ta00899c

    16. [16]

      Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Adv. Mater. 2017, 29, 1703311. doi: 10.1002/adma.201703311  doi: 10.1002/adma.201703311

    17. [17]

      An, Y. M.; Long, X.; Ma, M.; J. Hu; Lin, H.; Zhou, D.; Xing, Z.; Huang, B. L.; Yang, S. H. Adv. Energy Mater. 2019, 9, 1901454. doi: 10.1002/aenm.201901454  doi: 10.1002/aenm.201901454

    18. [18]

      Gouda, L.; Sévery, L.; Moehl, T.; Mas-Marzá, E.; Adams, P.; Fabregat-Santiago, F.; Tilley, S. D. Green Chem. 2021, 23, 8061. doi: 10.1039/d1gc02031e  doi: 10.1039/d1gc02031e

    19. [19]

      Taitt, B. J.; Nam, D. H.; Choi, K. S. ACS Catal. 2018, 9, 660. doi: 10.1021/acscatal.8b04003  doi: 10.1021/acscatal.8b04003

    20. [20]

      Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Nano Res. Energy 2022, 1, 9120029. doi: 10.26599/nre.2022.9120029  doi: 10.26599/nre.2022.9120029

    21. [21]

      Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Small Methods 2021, 5, 2000988. doi: 10.1002/smtd.202000988  doi: 10.1002/smtd.202000988

    22. [22]

      Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Chem. Soc. Rev. 2021, 50, 9817. doi: 10.1039/d1cs00330e  doi: 10.1039/d1cs00330e

    23. [23]

      Wang, H.; Chen, J. M.; Lin, Y. P.; Wang, X. H.; Li, J. M.; Li, Y.; Gao, L. J.; Zhang, L. B.; Chao, D. L.; Xiao, X.; et al. Adv. Mater. 2021, 33, 2008422. doi: 10.1002/adma.202008422  doi: 10.1002/adma.202008422

    24. [24]

      Chen, C.; Zhang, X.; Zhou, Z. Y.; Zhang, X. S.; Sun, S. G. Acta Phys. -Chim. Sin. 2017, 33, 1875.  doi: 10.3866/PKU.WHXB201705088

    25. [25]

      Li, J. X.; Feng, L. G. J. Electrochem. 2022, 28, 2214001.  doi: 10.13208/j.electrochem.2214001

    26. [26]

      Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. J. Mater. Chem. A 2018, 6, 167. doi: 10.1039/c7ta07956g  doi: 10.1039/c7ta07956g

    27. [27]

      You, B.; Liu, X.; Liu, X.; Sun, Y. J. ACS Catal. 2017, 7, 4564. doi: 10.1021/acscatal.7b00876  doi: 10.1021/acscatal.7b00876

    28. [28]

      Ou, J. Z.; Campbell, J. L.; Yao, D.; Wlodarski, W.; Kalantar-Zadeh, K. J. Phys. Chem. C 2011, 115, 10757. doi: 10.1021/jp202123a  doi: 10.1021/jp202123a

    29. [29]

      Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Adv. Funct. Mater. 2016, 26, 4839. doi: 10.1002/adfm.201601315  doi: 10.1002/adfm.201601315

    30. [30]

      Wu, K.; Sun, Y. H.; Liu, J.; Xiong, J. X.; Wu, J. L.; Zhang, J.; Fu, M. L.; Chen, L. M.; Huang, H. M.; Ye, D. Q. J. Hazard. Mater. 2021, 405, 124156. doi: 10.1016/j.jhazmat.2020.124156  doi: 10.1016/j.jhazmat.2020.124156

    31. [31]

      Zhang, X.; Yi, H.; Jin, M. T.; Lian, Q.; Huang, Y.; Ai, Z.; Huang, R. Q.; Zuo, Z. T.; Tang, C. M.; Amini, A.; et al. Small 2022, 18, 2203710. doi: 10.1002/smll.202203710  doi: 10.1002/smll.202203710

    32. [32]

      Shen, B. X.; Zhu, S. W.; Zhang, X.; Chi, G. L.; Patel, D.; Si, M.; Wu, C. F. Fuel 2018, 224, 241. doi: 10.1016/j.fuel.2018.03.080  doi: 10.1016/j.fuel.2018.03.080

    33. [33]

      Wang, H.; Wang, H. J.; Huang, J. S.; Zhou, X. L.; Wu, Q. X.; Luo, Z. K.; Wang, F. ACS Appl. Mater. Interfaces 2019, 11, 44556. doi: 10.1021/acsami.9b13329  doi: 10.1021/acsami.9b13329

    34. [34]

      Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Nano Res. Energy 2022, 1, 9120027. doi: 10.26599/nre.2022.9120027  doi: 10.26599/nre.2022.9120027

    35. [35]

      Yang, C. M.; Wang, C. T.; Zhou, L. H.; Duan, W.; Song, Y. Y.; Zhang, F. C.; Zhen, Y. Z.; Zhang, J. J.; Bao, W. W.; Lu, Y. X.; et al. Chem. Eng. J. 2021, 422, 130125. doi: 10.1016/j.cej.2021.130125  doi: 10.1016/j.cej.2021.130125

    36. [36]

      Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Adv. Mater. 2021, 33, 2007056. doi: 10.1002/adma.202007056  doi: 10.1002/adma.202007056

    37. [37]

      Sun, Y.; Wang, J.; Qi, Y. F.; Li, W. J.; Wang, C. Adv. Sci. 2022, 9, 2200957. doi: 10.1002/advs.202200957  doi: 10.1002/advs.202200957

    38. [38]

      Wang, H. L.; Li, C.; An, J. T.; Zhuang, Y.; Tao, S. Y. J. Mater. Chem. A 2021, 9, 18421. doi: 10.1039/d1ta05425b  doi: 10.1039/d1ta05425b

    39. [39]

      Zhou, Z. Y.; Xie, Y. N.; Sun, L. Z.; Wang, Z. M.; Wang, W. K.; Jiang, L. Z.; Tao, X.; Li, L. N.; Li, X. H.; Zhao, G. H. Appl. Catal. B 2022, 305, 121072. doi: 10.1016/j.apcatb.2022.121072  doi: 10.1016/j.apcatb.2022.121072

    40. [40]

      Luo, R. P.; Li, Y. Y.; Xing, L. X.; Wang, N.; Zhong, R. Y.; Qian, Z. Y.; Du, C. Y.; Yin, G. P.; Wang, Y. C.; Du, L. Appl. Catal. B 2022, 311, 121357. doi: 10.1016/j.apcatb.2022.121357  doi: 10.1016/j.apcatb.2022.121357

    41. [41]

      Gao, L. F.; Bao, Y.; Gan, S. Y.; Sun, Z. H.; Song, Z. Q.; Han, D. X.; Li, F. H.; Niu, L. ChemSusChem 2018, 11, 2547. doi: 10.1002/cssc.201800695  doi: 10.1002/cssc.201800695

    42. [42]

      Gao, L. F.; Liu, Z. B.; Ma, J. L.; Zhong, L. J.; Song, Z. Q.; Xu, J. A.; Gan, S. Y.; Han, D. X.; Niu, L. Appl. Catal. B 2020, 261, 118235. doi: 10.1016/j.apcatb.2019.118235  doi: 10.1016/j.apcatb.2019.118235

    43. [43]

      Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B.; et al. Angew. Chem. Int. Ed. 2019, 58, 9155. doi: 10.1002/anie.201903936  doi: 10.1002/anie.201903936

    44. [44]

      Liu, Q. Q.; Huang, J. F.; Cao, L. Y.; Kajiyoshi, K.; Li, K.; Feng, Y. Q.; Fu, C. L.; Kou, L. J.; Feng, L. L. ACS Sustain. Chem. Eng. 2020, 8, 6222. doi: 10.1021/acssuschemeng.9b06959.  doi: 10.1021/acssuschemeng.9b06959

    45. [45]

      Qiu, Z.; Ma, Y.; Edvinsson, T. Nano Energy 2019, 66, 104118. doi: 10.1016/j.nanoen.2019.104118  doi: 10.1016/j.nanoen.2019.104118

    46. [46]

      Yu, T. Q.; Xu, Q. L.; Luo, L.; Liu, C. R.; Yin, S. B. Chem. Eng. J. 2022, 430, 133117. doi: 10.1016/j.cej.2021.133117  doi: 10.1016/j.cej.2021.133117

    47. [47]

      Wu, T.; Xu, Z. A.; Wang, X. L.; Luo, M. J.; Xia, Y.; Zhang, X. C.; Li, J. T.; Liu, J.; Wang, J. C.; Wang, H. L.; et al. Appl. Catal. B 2023, 323, 122126. doi: 10.1016/j.apcatb.2022.122126  doi: 10.1016/j.apcatb.2022.122126

    48. [48]

      Tong, X.; Li, Y.; Pang, N.; Qu, Y. H.; Yan, C. H.; Xiong, D. Y.; Xu, S. H.; Wang, L. W.; Chu, P. K. Chem. Eng. J. 2021, 425, 130455. doi: 10.1016/j.cej.2021.130455  doi: 10.1016/j.cej.2021.130455

    49. [49]

      Ding, M. Y.; Jiang, W. J.; Yu, T. Q.; Zhuo, X. Y.; Qin, X. J.; Yin, S. B. J. Electrochem. 2022, 28, 2214012.  doi: 10.13208/j.electrochem.2208121

    50. [50]

      Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Energy Environ. Sci. 2012, 5, 5577. doi: 10.1039/c2ee02618j  doi: 10.1039/c2ee02618j

    51. [51]

      Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2007054.  doi: 10.3866/PKU.WHXB202007054

    52. [52]

      Zhang, L. Y.; Zheng, Y. J.; Wang, J. C.; Geng, Y.; Zhang, B.; He, J. J.; Xue, J. M.; Frauenheim, T.; Li, M. Small 2021, 17, 2006730. doi: 10.1002/smll.202006730  doi: 10.1002/smll.202006730

    53. [53]

      Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. ACS Catal. 2017, 7, 2357. doi: 10.1021/acscatal.6b03192  doi: 10.1021/acscatal.6b03192

    54. [54]

      Wu, X. L.; Han, S.; He, D. H.; Yu, C. L.; Lei, C. J.; Liu, W.; Zheng, G. K.; Zhang, X. W.; Lei, L. C. ACS Sustain. Chem. Eng. 2018, 6, 8672. doi: 10.1021/acssuschemeng.8b00968  doi: 10.1021/acssuschemeng.8b00968

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    3. [3]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    8. [8]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    9. [9]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    12. [12]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    13. [13]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    14. [14]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    15. [15]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    16. [16]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    17. [17]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    18. [18]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(10)
  • Abstract views(992)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return