Citation: Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230102. doi: 10.3866/PKU.WHXB202301024 shu

Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes

  • Corresponding author: Ping Chen, pingchen@swu.edu.cn Qi Chen, qchen2011@sinano.ac.cn Liwei Chen, lwchen2018@sjtu.edu.cn
  • Received Date: 14 January 2023
    Revised Date: 13 February 2023
    Accepted Date: 14 February 2023
    Available Online: 28 February 2023

    Fund Project: the Ministry of Science and Technology of China 2021YFA1202802the National Natural Science Foundation of China 21875280the National Natural Science Foundation of China 21991150the National Natural Science Foundation of China 21991153the National Natural Science Foundation of China 22022205the CAS Project for Young Scientists in Basic Research YSBR-054the Special Foundation for Carbon Peak Neutralization Technology Innovation Program of Jiangsu Province BE2022026the Natural Science Foundation Project of Chongqing CSTB2022NSCQ-MSX0438

  • Quasi-two-dimensional (quasi-2D) perovskites are one of the most promising luminescent layer candidates for light-emitting diodes (LEDs) because of their excellent optoelectronic properties such as large exciton binding energy, efficient energy transfer, high photoluminescence quantum yield, and adjustable band gap. However, the formation of a large number of low-dimensional phases and surface/interface defects during solution processing of quasi-two-dimensional perovskite films gives rise to an increase in non-radiative recombination, resulting in deteriorated light-emitting diode performance. It is highly desirable to simultaneously realize low-dimensional phase formation inhibition and surface/interface defect passivation during quasi-two-dimensional perovskite film formation. Herein, we report a multifunctional additive, 1, 6-bis(acryloyloxy)-2, 2, 3, 3, 4, 4, 5, 5-octafluorohexane (OFHDODA), which has strong physical and chemical interactions with the PEA2Cs2Pb3Br10 precursor that can effectively suppress non-radiative recombination in the perovskite films. The distinct C=C peak in the Fourier transform infrared spectroscopy (FTIR) spectra and the F 1s peak in the X-ray photoelectron spectroscopy (XPS) spectra showed that OFHDODA molecules were successfully incorporated into the perovskite films, and most OFHDODA molecules existed as monomers. With the addition of OFHDODA, the photoluminescence quantum yield (PLQY) of the perovskite film increased from 19.7% to 49.0%, and the PL emission wavelength red-shifted from 508 to 511 nm. It was demonstrated that hydrogen bond interactions between the polyfluorine structure and PEA+ can tune perovskite crystallization dynamics, which inhibit the formation of low-dimensional phases, as shown by the reduced peak intensities at 403 nm (n = 1), 434 nm (n = 2), and 465 nm (n = 3) in the absorption spectra. The strong Lewis base moiety of the ester groups passivates the unsaturated Pb2+ defects at the surface and grain boundaries of the perovskite films, as evidenced by the Pb 4f peak shift in the XPS spectra and the C=O shift in the FTIR spectra. The trap-filled limiting voltage (VTFL) decreased in both hole-only and electron-only devices, which also proves the reduction of Pb2+ defects. At the optimized OFHDODA concentration, the scanning electron microscopy (SEM) and atomic force microscopy (AFM) results from the perovskite films show lower roughness and smoother surface potential, which promotes superior interfacial contact. As a result, perovskite LEDs with a device structure of indium tin oxide glass/poly (9-vinylcarbazole)/perovskite/1, 3, 5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene/8-hydroxyquinolinolato-lithium/Al exhibited an improved maximum external quantum efficiency (EQE) from 8.55% to 13.76%, improved maximum brightness from 16400 to 17620 cd∙m−2, and increased lifetime from 8 min to 12 min. This process provides an effective way to suppress non-radiative recombination in quasi-2D perovskites via additive molecular structure design, leading to superior electroluminescence performance.
  • 加载中
    1. [1]

      Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P.; et al. Nat. Nanotechnol. 2016, 11 (10), 872. doi: 10.1038/nnano.2016.110  doi: 10.1038/nnano.2016.110

    2. [2]

      Wang, N. N.; Cheng, L.; Ge, R.; Zhang, S. T.; Miao, Y. F.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; et al. Nat. Photonics 2016, 10 (11), 699. doi: 10.1038/nphoton.2016.185  doi: 10.1038/nphoton.2016.185

    3. [3]

      Zhang, L.; Sun, C. J.; He, T. W.; Jiang, Y. Z.; Wei, J. L.; Huang, Y. M.; Yuan, M. J. Light. Sci. Appl. 2021, 10 (1), 61. doi: 10.1038/s41377-021-00501-0  doi: 10.1038/s41377-021-00501-0

    4. [4]

      Liu, Y.; Cui, J. Y.; Du, K.; Tian, H.; He, Z. F.; Zhou, Q. H.; Yang, Z. L.; Deng, Y. Z.; Chen, D.; Zuo, X. B.; et al. Nat. Photonics 2019, 13 (11), 760. doi: 10.1038/s41566-019-0505-4  doi: 10.1038/s41566-019-0505-4

    5. [5]

      Zou, G. R. X.; Chen, Z. M.; Li, Z. C.; Yip, H. L. Acta Phys. - Chim. Sin. 2021, 37 (4), 2009002.  doi: 10.3866/PKU.WHXB202009002

    6. [6]

      Karlsson, M.; Yi, Z. Y.; Reichert, S.; Luo, X. Y.; Lin, W. H.; Zhang, Z. Y.; Bao, C. X.; Zhang, R.; Bai, S.; Zheng, G. H. J.; et al. Nat. Commun. 2021, 12 (1), 361. doi: 10.1038/s41467-020-20582-6  doi: 10.1038/s41467-020-20582-6

    7. [7]

      Guo, Z. Y.; Zhou, H. P. Acta Chim. Sin. 2021, 79 (3), 223.  doi: 10.6023/a20100463

    8. [8]

      Pang, P. Y.; Jin, G. R.; Liang, C.; Wang, B. Z.; Xiang, W.; Zhang, D. L.; Xu, J. W.; Hong, W.; Xiao, Z. W.; Wang, L.; et al. ACS Nano 2020, 14 (9), 11420. doi: 10.1021/acsnano.0c03765  doi: 10.1021/acsnano.0c03765

    9. [9]

      Ban, M. Y.; Zou, Y. T.; Rivett, J. P. H.; Yang, Y. G.; Thomas, T. H.; Tan, Y. S.; Song, T.; Gao, X. Y.; Credgington, D.; Deschler, F.; et al. Nat. Commun. 2018, 9 (1), 3892. doi: 10.1038/s41467-018-06425-5  doi: 10.1038/s41467-018-06425-5

    10. [10]

      Wang, C. H.; Han, D. B.; Wang, J. H.; Yang, Y. G.; Liu, X. Y.; Huang, S.; Zhang, X.; Chang, S.; Wu, K. F.; Zhong, H. Z. Nat. Commun. 2020, 11 (1), 6428. doi: 10.1038/s41467-020-20163-7  doi: 10.1038/s41467-020-20163-7

    11. [11]

      Ma, D. X.; Lin, K. B.; Dong, Y. T.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y. K.; Chen, B.; Li, P. C.; Fan, J. Z.; et al. Nature 2021, 599 (7886), 594. doi: 10.1038/s41586-021-03997-z  doi: 10.1038/s41586-021-03997-z

    12. [12]

      Fu, Y. X.; Zhang, D. Z.; Zhan, H. M.; Zhao, C. Y.; Cheng, Y. X.; Qin, C. J.; Wang, L. X. J. Phys. Chem. Lett. 2021, 12 (48), 11645. doi: 10.1021/acs.jpclett.1c03413  doi: 10.1021/acs.jpclett.1c03413

    13. [13]

      Jiang, J.; Chu, Z. M.; Yin, Z. G.; Li, J. Z.; Yang, Y. G.; Chen, J. R.; Wu, J. L.; You, J. B.; Zhang, X. W. Adv. Mater. 2022, 34 (36), 2204460. doi: 10.1002/adma.202204460  doi: 10.1002/adma.202204460

    14. [14]

      Xiang, T.; Li, T.; Wang, M. S.; Zhang, W.; Ahmadi, M.; Wu, X. Y.; Xu, T. F.; Xiao, M. Q.; Xu, L.; Chen, P. Nano Energy 2022, 95, 10700. doi: 10.1016/j.nanoen.2022.107000  doi: 10.1016/j.nanoen.2022.107000

    15. [15]

      Yin, Y.; Guo, Z. D.; Chen, G. Y.; Zhang, H. F.; Yin, W. J. Acta Phys. -Chim. Sin. 2021, 37 (4), 2008048.  doi: 10.3866/PKU.WHXB202008048

    16. [16]

      Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; David, F.; Xu, G. W.; Selbi, N.; Huang, T. Y.; Zhao, Y. P.; et al. Science 2019, 366, 1509. doi: 10.1126/science.aay9698  doi: 10.1126/science.aay9698

    17. [17]

      Shi, Y. R.; Wang, K. L.; Lou, Y. H.; Zhang, D. B.; Chen, C. H.; Chen, J.; Ni, Y. X.; Öz, S.; Wang, Z. K.; Liao, L. S. Nano Energy 2022, 97, 17200. doi: 10.1016/j.nanoen.2022.107200  doi: 10.1016/j.nanoen.2022.107200

    18. [18]

      Xu, L. M.; Li, J. H.; Cai, B.; Song, J. Z.; Zhang, F. J.; Fang, T.; Zeng, H. B. Nat. Commun. 2020, 11 (1), 3902. doi: 10.1038/s41467-020-17633-3  doi: 10.1038/s41467-020-17633-3

    19. [19]

      Li, M. L.; Zhao, Y. P.; Qin, X. Q.; Ma, Q. S.; Lu, J. X.; Lin, K. B.; Xu, P.; Li, Y. Q.; Feng, W. J.; Zhang, W. H.; Wei, Z. H. Nano. Lett. 2022, 22 (6), 2490. doi: 10.1021/acs.nanolett.2c00276  doi: 10.1021/acs.nanolett.2c00276

    20. [20]

      Shen, D. Y.; Ren, Z. W.; Li, Q. Y.; Luo, C. Z.; Xia, W. L.; Zheng, Z. S.; Ma, W. C.; Li, J.; Chen, Y. ACS Appl. Mater. Inter. 2022, 14 (18), 21636. doi: 10.1021/acsami.2c01859  doi: 10.1021/acsami.2c01859

    21. [21]

      Jiang, X. Y.; Wang, F.; Wei, Q.; Li, H. S.; Shang, Y. Q.; Zhou, W. J.; Wang, C.; Cheng, P. H.; Chen, Q.; Chen, L. W.; et al. Nat. Commun. 2020, 11 (1), 1245. doi: 10.1038/s41467-020-15078-2  doi: 10.1038/s41467-020-15078-2

    22. [22]

      Zhang, M. Y.; Chen, Q.; Xue, R. M.; Zhan, Y.; Wang, C.; Lai, J. Q.; Yang, J.; Lin, H. Z.; Yao, J. L.; Li, Y. W.; et al. Nat. Commun. 2019, 10 (1), 4593. doi: 10.1038/s41467-019-12613-8  doi: 10.1038/s41467-019-12613-8

    23. [23]

      Lim, D. J.; Marks, N. A.; Rowles, M. R. Carbon 2020, 162, 475. doi: 10.1016/j.carbon.2020.02.064  doi: 10.1016/j.carbon.2020.02.064

    24. [24]

      Tang, F.; Chen, Q.; Chen, L.; Ye, F. Y.; Cai, J. H.; Chen, L. W. Appl. Phys. Lett. 2016, 109 (12), 123301. doi: 10.1063/1.4963269  doi: 10.1063/1.4963269

    25. [25]

      Chen, Q.; Chen, L.; Ye, F. Y.; Zhao, T.; Tang, F.; Rajagopal, A.; Jiang, Z.; Jiang, S. L.; Jen, A. K.; Xie, Y.; et al. Nano Lett. 2017, 17 (5), 3231. doi: 10.1021/acs.nanolett.7b00847  doi: 10.1021/acs.nanolett.7b00847

    26. [26]

      Liu, J. C.; Tang, F.; Ye, F. Y.; Chen, Q.; Chen, L. W. Acta Phys. -Chim. Sin. 2017, 33 (10), 1934.  doi: 10.3866/PKU.WHXB201715185

    27. [27]

      Wang, C.; Zhang, C.; Li, R. F.; Chen, Q.; Qian, L.; Chen, L. W. Acta Phys. - Chim. Sin. 2022, 38 (8), 2104030.  doi: 10.3866/PKU.WHXB202104030

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    3. [3]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(8)
  • Abstract views(1039)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return