Citation: Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 230101. doi: 10.3866/PKU.WHXB202301019 shu

Application of Organosulfur Compounds in Lithium-Sulfur Batteries

  • Corresponding author: Sun Zhenhua, zhsun@imr.ac.cn Li Feng, fli@imr.ac.cn
  • Received Date: 12 January 2023
    Revised Date: 7 February 2023
    Accepted Date: 8 February 2023
    Available Online: 15 February 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China 51972313The project was supported by the National Natural Science Foundation of China 52020105010The project was supported by the National Natural Science Foundation of China 52188101the National Key R&D Program of China 2021YFB2800201the National Key R&D Program of China 2021YFB3800301the "Strategic Priority Research Program" of the Chinese Academy of Sciences XDA22010602the Youth Innovation Promotion Association of the Chinese Academy of Sciences Y201942Liaoning Revitalization Talents Program XLYC2007080Liaoning Revitalization Talents Program XLYC1908015

  • Lithium-sulfur batteries are one of the prospective next-generation power sources that can replace commercial lithium-ion batteries owing to their high theoretical energy density, eco-friendliness, and low cost. However, the insulating nature of the charge–discharge products, the shuttle effect of soluble lithium polysulfides, the volume expansion of the sulfur cathode, and the uncontrollable growth of lithium dendrites severely affect the actual capacity and cycling stability of lithium-sulfur batteries. Replacing the inorganic sulfur (S8) cathode with an organosulfur-based cathode is a promising strategy for resolving the aforementioned issues. By modulating the fundamental units of the organosulfur compound, including the sulfur chain, carbon chain, and their interactions, the electrochemical reaction process can be altered, the ion/electron conductivity can be increased, and the shuttle effect can be effectively suppressed. In addition, organosulfur compounds as electrolyte additives can regulate the reaction process of the sulfur cathode and protect the lithium anode by forming a stable solid electrolyte interface, and as polymer electrolyte segments, they can accelerate the conduction of lithium ions. This review provides a detailed outline of the research progress and application of organosulfur compounds as cathodes, electrolyte additives, and solid-state electrolytes in lithium-sulfur batteries. The structure, reaction mechanism, and electrochemical properties of organosulfur compounds are correlated to provide comprehensive insights that can help address the prevailing issues of lithium-sulfur batteries. Finally, future prospects, including the challenges and potential solutions, are presented to guide the design, synthesis, and mechanistic studies of high-performance organosulfur compounds to realize a practical lithium-sulfur battery.
  • 加载中
    1. [1]

      Zheng, Q.; Jian, L.; Xu, Y.; Gao, S.; Liu, T.; Qu, C.; Chen, H.; Li, X. Bulletin of Chinese Academy of Sciences 2022, 37, 529.  doi: 10.16418/j.issn.1000-3045.20220311001

    2. [2]

      hou, Y.; Yang, F.; Yu, X.; Jiang, H. Electric Power 2022, 55, 1.  doi: 10.11930/j.issn.1004-9649.202203003

    3. [3]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    4. [4]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    5. [5]

      Manthiram, A.; Song, B.; Li, W. Energy Storage Mater. 2017, 6, 125. doi: 10.1016/j.ensm.2016.10.007  doi: 10.1016/j.ensm.2016.10.007

    6. [6]

      Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Adv. Energy Mater. 2018, 8, 1702028. doi: 10.1002/aenm.201702028  doi: 10.1002/aenm.201702028

    7. [7]

      Xiao, B.; Liu, H.; Liu, J.; Sun, Q.; Wang, B.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y.; Li, R.; et al. Adv. Mater. 2017, 29, 1703764. doi: 10.1002/adma.201703764  doi: 10.1002/adma.201703764

    8. [8]

      Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54, 4440. doi: 10.1002/anie.201409262  doi: 10.1002/anie.201409262

    9. [9]

      Manthiram, A.; Fu, Y.; Chung, S.; Zu, C.; Su, Y. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    10. [10]

      Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42, 3018. doi: 10.1039/c2cs35256g  doi: 10.1039/c2cs35256g

    11. [11]

      Liang, J.; Sun, Z.-H.; Li, F.; Cheng, H.-M. Energy Storage Mater. 2016, 2, 76. doi: 10.1016/j.ensm.2015.09.007  doi: 10.1016/j.ensm.2015.09.007

    12. [12]

      Larcher, D.; Tarascon, J.-M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    13. [13]

      Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20, 9821. doi: 10.1039/b925751a  doi: 10.1039/b925751a

    14. [14]

      Li, Y.; Fan, J.; Zhang, J.; Yang, J.; Yuan, R.; Chang, J.; Zheng, M.; Dong, Q. ACS Nano 2017, 11, 11417. doi: 10.1021/acsnano.7b06061  doi: 10.1021/acsnano.7b06061

    15. [15]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605. doi: 10.1039/C5CS00410A  doi: 10.1039/C5CS00410A

    16. [16]

      Fang, R.; Zhao, S.; Sun, Z.; Wang, D.-W.; Cheng, H.-M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823  doi: 10.1002/adma.201606823

    17. [17]

      Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460  doi: 10.1038/nmat2460

    18. [18]

      Wang, L.; Li, X.; Zhang, Y.; Mao, W.; Li, Y.; Chu, P. K.; Kızılaslan, A.; Zheng, Z.; Huo, K. Chem. Eng. J. 2022, 446, 137050. doi: 10.1016/j.cej.2022.137050  doi: 10.1016/j.cej.2022.137050

    19. [19]

      Saroha, R.; Oh, J. H.; Lee, J. S.; Kang, Y. C.; Jeong, S. M.; Kang, D.-W.; Cho, C.; Cho, J. S. Chem. Eng. J. 2021, 426, 130805. doi: 10.1016/j.cej.2021.130805  doi: 10.1016/j.cej.2021.130805

    20. [20]

      Shaibani, M.; Akbari, A.; Sheath, P.; Easton, C. D.; Banerjee, P. C.; Konstas, K.; Fakhfouri, A.; Barghamadi, M.; Musameh, M. M.; Best, A. S.; et al. ACS Nano 2016, 10, 7768. doi: 10.1021/acsnano.6b03285  doi: 10.1021/acsnano.6b03285

    21. [21]

      Chen, K.; Sun, Z.; Fang, R.; Li, F.; Cheng, H. Acta Phys.-Chim. Sin. 2018, 34, 377.  doi: 10.3866/PKU.WHXB201709001

    22. [22]

      Yu, M.; Zhou, S.; Wang, Z.; Wang Y.; Zhang, N.; Wang, S.; Zhao, J.; Qiu, J. Energy Storage Mater. 2019, 20, 98. doi: 10.1016/j.ensm.2018.11.028  doi: 10.1016/j.ensm.2018.11.028

    23. [23]

      Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; Yang, Q.-H. Nano Energy 2017, 33, 306. doi: 10.1016/j.nanoen.2017.01.040  doi: 10.1016/j.nanoen.2017.01.040

    24. [24]

      Xiao, R.; Yang, S.; Yu, T.; Hu, T.; Zhang, X.; Xu, R.; Wang, Y.; Guo, X.; Sun, Z.; Li, F. Batteries Supercaps 2022, 5, e202100389. doi: 10.1002/batt.202100389  doi: 10.1002/batt.202100389

    25. [25]

      Cheng, Z.; Xiao, Z.; Pan, H.; Wang, S.; Wang, R. Adv. Energy Mater. 2018, 8, 1702337. doi: 10.1002/aenm.201702337  doi: 10.1002/aenm.201702337

    26. [26]

      Xiao, R.; Chen, K.; Zhang, X.; Hu, G.; Xie, J.; Rong, J.; Sun, Z.; Li, F. CrystEngComm 2020, 22, 1555. doi: 10.1039/C9CE01469A  doi: 10.1039/C9CE01469A

    27. [27]

      Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H.-M.; Li, F. Nat. Commun. 2017, 8, 14627. doi: 10.1038/ncomms14627  doi: 10.1038/ncomms14627

    28. [28]

      Yang, S.; Xiao, R.; Hu, T.; Fan, X.; Xu, R.; Sun, Z.; Zhong, B.; Guo, X.; Li, F. Nano Energy 2021, 90, 106584. doi: 10.1016/j.nanoen.2021.106584  doi: 10.1016/j.nanoen.2021.106584

    29. [29]

      Yu, M.; Zhou, S.; Wang, Z.; Pei, W.; Liu, X.; Liu, C.; Yan, C.; Meng, X.; Wang, S.; Zhao, J.; Qiu, J. Adv. Funct. Mater. 2019, 29, 1905986. doi: 10.1002/adfm.201905986  doi: 10.1002/adfm.201905986

    30. [30]

      Xiao, R.; Chen, K.; Zhang, X.; Yang, Z.; Hu, G.; Sun, Z.; Cheng, H.-M.; Li, F. J. Energy Chem. 2021, 54, 452. doi: 10.1016/j.jechem.2020.06.018  doi: 10.1016/j.jechem.2020.06.018

    31. [31]

      Xiao, R.; Yu, T.; Yang, S.; Chen, K.; Li, Z.; Liu, Z.; Hu, T.; Hu, G.; Li, J.; Cheng, H.-M.; Sun, Z.; Li, F. Energy Storage Mater. 2022, 51, 890. doi: 10.1016/j.ensm.2022.07.024  doi: 10.1016/j.ensm.2022.07.024

    32. [32]

      Yan, R.; Ma, T.; Cheng, M.; Tao, X.; Yang, Z.; Ran, F.; Li, S.; Yin, B.; Cheng, C.; Yang, W. Adv. Mater. 2021, 33, 2008784. doi: 10.1002/adma.202008784  doi: 10.1002/adma.202008784

    33. [33]

      Tong, Z.; Huang, L.; Liu, H.; Lei, W.; Zhang, H.; Zhang, S.; Jia, Q. Adv. Funct. Mater. 2021, 31, 2010455. doi: 10.1002/adfm.202010455  doi: 10.1002/adfm.202010455

    34. [34]

      Cheng, S.; Wang, J.; Duan, S.; Zhang, J.; Wang, Q.; Zhang, Y.; Li, L.; Liu, H.; Xiao, Q.; Lin, H. Chem. Eng. J. 2021, 417, 128172. doi: 10.1016/j.cej.2020.128172  doi: 10.1016/j.cej.2020.128172

    35. [35]

      Wang, M.; Song, Y.; Sun, Z.; Shao, Y.; Wei, C.; Xia, Z.; Tian, Z.; Liu, Z.; Sun, J. ACS Nano 2019, 13, 13235. doi: 10.1021/acsnano.9b06267  doi: 10.1021/acsnano.9b06267

    36. [36]

      Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Adv. Mater. 2021, 33, 2101204. doi: 10.1002/adma.202101204  doi: 10.1002/adma.202101204

    37. [37]

      Hu, Y.; Cheng, H.; Chen, H.; Dai, S.; Song, K.; Ma, X.; Liu, M.; Hu, H. J. Mater. Chem. A 2022, 10, 22896. doi: 10.1039/d2ta06500b  doi: 10.1039/d2ta06500b

    38. [38]

      Shadike, Z.; Tan, S.; Wang, Q.-C.; Lin, R.; Hu, E.; Qu, D.; Yang, X.-Q. Mater. Horiz. 2021, 8, 471. doi: 10.1039/D0MH01364A  doi: 10.1039/D0MH01364A

    39. [39]

      Zhou, X.; Liu, T.; Zhao, G.; Yang, X.; Guo, H. Energy Storage Mater. 2021, 40, 139. doi: 10.1016/j.ensm.2021.05.009  doi: 10.1016/j.ensm.2021.05.009

    40. [40]

      Hu, H.; Zhao, B.; Cheng, H.; Dai, S.; Kane, N.; Yu, Y.; Liu, M. Nano Energy 2019, 57, 635. doi: 10.1016/j.nanoen.2018.12.092  doi: 10.1016/j.nanoen.2018.12.092

    41. [41]

      Zhou, J.; Zhou, X.; Sun, Y.; Shen, X.; Qian, T.; Yan, C. J. Energy Chem. 2021, 56, 238. doi: 10.1016/j.jechem.2020.08.010  doi: 10.1016/j.jechem.2020.08.010

    42. [42]

      Zhang, X.; Chen, K.; Sun, Z.; Hu, G.; Xiao, R.; Cheng, H.-M.; Li, F. Energy Environ. Sci. 2020, 13, 1076. doi: 10.1039/C9EE03848E  doi: 10.1039/C9EE03848E

    43. [43]

      Chen, K.; Fang, R.; Lian, Z.; Zhang, X.; Tang, P.; Li, B.; He, K.; Wang, D.; Cheng, H.-M.; Sun, Z.; Li, F. Energy Storage Mater. 2021, 37, 224. doi: 10.1016/j.ensm.2021.02.012  doi: 10.1016/j.ensm.2021.02.012

    44. [44]

      Chen, S.; Dai, F.; Gordin, M. L.; Yu, Z.; Gao, Y.; Song, J.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 4231. doi: 10.1002/anie.201511830  doi: 10.1002/anie.201511830

    45. [45]

      Lian, J.; Guo, W.; Fu, Y. J. Am. Chem. Soc. 2021, 143, 11063. doi: 10.1021/jacs.1c04222  doi: 10.1021/jacs.1c04222

    46. [46]

      Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. Nat. Chem. 2013, 5, 518. doi: 10.1038/nchem.1624  doi: 10.1038/nchem.1624

    47. [47]

      Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J. Prog. Polym. Sci. 2016, 58, 90. doi: 10.1016/j.progpolymsci.2016.04.003  doi: 10.1016/j.progpolymsci.2016.04.003

    48. [48]

      Simmonds, A. G.; Griebel, J. J.; Park, J.; Kim, K. R.; Chung, W. J.; Oleshko, V. P.; Kim, J.; Kim, E. T.; Glass, R. S.; Soles, C. L.; et al. ACS Macro Lett. 2014, 3, 229. doi: 10.1021/mz400649w  doi: 10.1021/mz400649w

    49. [49]

      Hoefling, A.; Nguyen, D. T.; Partovi-Azar, P.; Sebastiani, D.; Theato, P.; Song, S.-W.; Lee, Y. J. Chem. Mater. 2018, 30, 2915. doi: 10.1021/acs.chemmater.7b05105  doi: 10.1021/acs.chemmater.7b05105

    50. [50]

      Hu, G.; Sun, Z.; Shi, C.; Fang, R.; Chen, J.; Hou, P.; Liu, C.; Cheng, H.-M.; Li, F. Adv. Mater. 2017, 29, 1603835. doi: 10.1002/adma.201603835  doi: 10.1002/adma.201603835

    51. [51]

      Dong, F.; Peng, C.; Xu, H.; Zheng, Y.; Yao, H.; Yang, J.; Zheng, S. ACS Nano 2021, 15, 20287. doi: 10.1021/acsnano.1c08449  doi: 10.1021/acsnano.1c08449

    52. [52]

      Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. J. Mater. Chem. A 2014, 2, 9280. doi: 10.1039/c4ta00779d  doi: 10.1039/c4ta00779d

    53. [53]

      Liu, X.; Xu, N.; Qian, T.; Liu, J.; Shen, X.; Yan, C. Small 2017, 13, 1702104. doi: 10.1002/smll.201702104  doi: 10.1002/smll.201702104

    54. [54]

      Zeng, S. Li, L.; Xie, L.; Zhao, D.; Zhou, N.; Wang, N.; Chen, S. Carbon 2017, 122, 106. doi: 10.1016/j.carbon.2017.06.036  doi: 10.1016/j.carbon.2017.06.036

    55. [55]

      Bhargav, A.; Chang, C.-H.; Fu, Y.; Manthiram, A. ACS Appl. Mater. Inter. 2019, 11, 6136. doi: 10.1021/acsami.8b21395  doi: 10.1021/acsami.8b21395

    56. [56]

      Zhou, H.; Yu, F.; Wei, M.; Su, Y.; Ma, Y.; Wang, D.; Shen, Q. Chem. Commun. 2019, 55, 3729. doi: 10.1039/C8CC09972C  doi: 10.1039/C8CC09972C

    57. [57]

      Evers, S.; Nazar, L. F. Acc. Chem. Res. 2013, 46, 1135. doi: 10.1021/ar3001348  doi: 10.1021/ar3001348

    58. [58]

      Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    59. [59]

      Hu, H.; Hu, Y.; Cheng, H.; Dai, S.; Song, K.; Liu, M. J. Power Sources 2021, 491, 229617. doi: 10.1016/j.jpowsour.2021.229617  doi: 10.1016/j.jpowsour.2021.229617

    60. [60]

      Je, S. H.; Hwang, T. H.; Talapaneni, S. N.; Buyukcakir, O.; Kim, H. J.; Yu, J.-S.; Woo, S.-G.; Jang, M. C.; Son, B. K.; Coskun, A.; et al. ACS Energy Lett. 2016, 1, 566. doi: 10.1021/acsenergylett.6b00245  doi: 10.1021/acsenergylett.6b00245

    61. [61]

      Je, S. H.; Kim, H. J.; Kim, J.; Choi, J. W.; Coskun, A. Adv. Funct. Mater. 2017, 27, 1703947. doi: 10.1002/adfm.201703947  doi: 10.1002/adfm.201703947

    62. [62]

      Zhou, J.; Qian, T.; Xu, N.; Wang, M.; Ni, X.; Liu, X.; Shen, X.; Yan, C. Adv. Mater. 2017, 29, 1701294. doi: 10.1002/adma.201701294  doi: 10.1002/adma.201701294

    63. [63]

      Gomez, I.; Mantione, D.; Leonet, O.; Blazquez, J. A.; Mecerreyes, D. ChemElectroChem 2018, 5, 260. doi: 10.1002/celc.201700882  doi: 10.1002/celc.201700882

    64. [64]

      Sang, P.; Song, J.; Guo, W.; Fu, Y. Chem. Eng. J. 2021, 415, 129043. doi: 10.1016/j.cej.2021.129043  doi: 10.1016/j.cej.2021.129043

    65. [65]

      Shen, K.; Mei, H.; Li, B.; Ding, J.; Yang, S. Adv. Energy Mater. 2018, 8, 1701527. doi: 10.1002/aenm.201701527  doi: 10.1002/aenm.201701527

    66. [66]

      Zhang, T.; Hu, F.; Shao, W.; Liu, S.; Peng, H.; Song, Z.; Song, C.; Li, N.; Jian, X. ACS Nano 2021, 15, 15027. doi: 10.1021/acsnano.1c05330  doi: 10.1021/acsnano.1c05330

    67. [67]

      Yan, W.; Yan, K.-Y.; Kuang, G.-C.; Jin, Z. Chem. Eng. J. 2021, 424, 130316. doi: 10.1016/j.cej.2021.130316  doi: 10.1016/j.cej.2021.130316

    68. [68]

      Sang, P.; Si, Y.; Fu, Y. Chem. Commun. 2019, 55, 4857. doi: 10.1039/C9CC01495K  doi: 10.1039/C9CC01495K

    69. [69]

      Li, X.; Yuan, L.; Liu, D.; Li, Z.; Chen, J.; Yuan, K.; Xiang, J.; Huang, Y. Energy Storage Mater. 2020, 26, 570. doi: 10.1016/j.ensm.2019.11.030  doi: 10.1016/j.ensm.2019.11.030

    70. [70]

      Xu, N.; Qian, T.; Liu, X.; Liu, J.; Chen, Y.; Yan, C. Nano Lett. 2017, 17, 538. doi: 10.1021/acs.nanolett.6b04610  doi: 10.1021/acs.nanolett.6b04610

    71. [71]

      Talapaneni, S. N.; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.; Coskun, A. Angew. Chem. Int. Ed. 2016, 55, 3106. doi: 10.1002/anie.201511553  doi: 10.1002/anie.201511553

    72. [72]

      Wu, F.; Chen, S.; Srot, V.; Huang, Y.; Sinha, S. K.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2018, 30, 1706643. doi: 10.1002/adma.201706643  doi: 10.1002/adma.201706643

    73. [73]

      Wang, J.; Yang, J.; Xie, J.; Xu, N. Adv. Mater. 2002, 14, 963. doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P  doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P

    74. [74]

      Yu, X.; Xie, J.; Yang, J.; Huang, H.; Wang, K.; Wen, Z. J. Electroanal. Chem. 2004, 573, 121. doi: 10.1016/j.jelechem.2004.07.004  doi: 10.1016/j.jelechem.2004.07.004

    75. [75]

      Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, A.; Buchmeiser, M. R. Chem. Mater. 2011, 23, 5024. doi: 10.1021/cm202467u  doi: 10.1021/cm202467u

    76. [76]

      Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A. J. Am. Chem. Soc. 2015, 137, 12143. doi: 10.1021/jacs.5b08113  doi: 10.1021/jacs.5b08113

    77. [77]

      Weret, M. A.; Jeffrey Kuo, C.-F.; Zeleke, T. S.; Beyene, T. T.; Tsai, M.-C.; Huang, C.-J.; Berhe, G. B.; Su, W.-N.; Hwang, B.-J. Energy Storage Mater. 2020, 26, 483. doi: 10.1016/j.ensm.2019.11.022  doi: 10.1016/j.ensm.2019.11.022

    78. [78]

      Wang, W.; Cao, Z.; Elia, G. A.; Wu, Y.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A.-H.; Cavallo, L.; Li, L.-J.; Ming, J. ACS Energy Lett. 2018, 3, 2899. doi: 10.1021/acsenergylett.8b01945  doi: 10.1021/acsenergylett.8b01945

    79. [79]

      Zhao, X.; Wang, C.; Li, Z.; Hu, X.; Abdul Razzaq, A.; Deng, Z. J. Mater. Chem. A 2021, 9, 19282. doi: 10.1039/D1TA03300J  doi: 10.1039/D1TA03300J

    80. [80]

      Razzaq, A. A.; Yuan, X.; Chen, Y.; Hu, J.; Mu, Q.; Ma, Y.; Zhao, X.; Miao, L.; Ahn, J. H.; Peng, Y.; et al. J. Mater. Chem. A 2020, 8, 1298. doi: 10.1039/c9ta11390h  doi: 10.1039/c9ta11390h

    81. [81]

      Abdul Razzaq, A.; Chen, G.; Zhao, X.; Yuan, X.; Hu, J.; Li, Z.; Chen, Y.; Xu, J.; Shah, R.; Zhong, J.; et al. J. Energy Chem. 2021, 61, 170. doi: 10.1016/j.jechem.2021.01.012  doi: 10.1016/j.jechem.2021.01.012

    82. [82]

      Wang, T.; Zhang, Q.; Zhong, J.; Chen, M.; Deng, H.; Cao, J.; Wang, L.; Peng, L.; Zhu, J.; Lu, B. Adv. Energy Mater. 2021, 11, 2100448. doi: 10.1002/aenm.202100448  doi: 10.1002/aenm.202100448

    83. [83]

      He, B.; Rao, Z.; Cheng, Z.; Liu, D.; He, D.; Chen, J.; Miao, Z.; Yuan, L.; Li, Z.; Huang, Y. Adv. Energy Mater. 2021, 11, 2003690. doi: 10.1002/aenm.202003690  doi: 10.1002/aenm.202003690

    84. [84]

      Wang, X.; Qian, Y.; Wang, L.; Yang, H.; Li, H.; Zhao, Y.; Liu, T. Adv. Funct. Mater. 2019, 29, 1902929. doi: 10.1002/adfm.201902929  doi: 10.1002/adfm.201902929

    85. [85]

      Chen, X.; Peng, L.; Wang, L.; Yang, J.; Hao, Z.; Xiang, J.; Yuan, K.; Huang, Y.; Shan, B.; Yuan, L.; et al. Nat. Commun. 2019, 10, 1021. doi: 10.1038/s41467-019-08818-6  doi: 10.1038/s41467-019-08818-6

    86. [86]

      Yang, H.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H. Angew. Chem. Int. Ed. 2021, 60, 17726. doi: 10.1002/anie.202106788  doi: 10.1002/anie.202106788

    87. [87]

      Zhang, Y.; Sun, Y.; Peng, L.; Yang, J.; Jia, H.; Zhang, Z.; Shan, B.; Xie, J. Energy Storage Mater. 2019, 21, 287. doi: 10.1016/j.ensm.2018.12.010  doi: 10.1016/j.ensm.2018.12.010

    88. [88]

      Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y. Energy Environ. Sci. 2012, 5, 6966. doi: 10.1039/c2ee03495f  doi: 10.1039/c2ee03495f

    89. [89]

      Abdul Razzaq, A.; Yao, Y.; Shah, R.; Qi, P.; Miao, L.; Chen, M.; Zhao, X.; Peng, Y.; Deng, Z. Energy Storage Mater. 2019, 16, 194. doi: 10.1016/j.ensm.2018.05.006  doi: 10.1016/j.ensm.2018.05.006

    90. [90]

      Preefer, M. B.; Oschmann, B.; Hawker, C. J.; Seshadri, R.; Wudl, F. Angew. Chem. 2017, 129, 15314. doi: 10.1002/ange.201708746  doi: 10.1002/ange.201708746

    91. [91]

      Zhang, X.; Hu, G.; Chen, K.; Shen, L.; Xiao, R.; Tang, P.; Yan, C.; Cheng, H.-M.; Sun, Z.; Li, F. Energy Storage Mater. 2021, 45, 1144. doi: 10.1016/j.ensm.2021.11.014  doi: 10.1016/j.ensm.2021.11.014

    92. [92]

      Zhang, X.; Chen, K.; Tang, P.; Xiao, R.; Xu, R.; Yu, T.; Hu, G.; Cheng, H.-M.; Sun, Z.; Li, F. J. Mater. Chem. A 2022, 10, 23562. doi: 10.1039/D2TA07251C  doi: 10.1039/D2TA07251C

    93. [93]

      Liang, Y.; Tao, Z.; Chen, J. Adv. Energy Mater. 2012, 2, 742. doi: 10.1002/aenm.201100795  doi: 10.1002/aenm.201100795

    94. [94]

      Guo, W.; Wawrzyniakowski, Z. D.; Cerda, M. M.; Bhargav, A.; Pluth, M. D.; Ma, Y.; Fu, Y. Chem. Eur. J. 2017, 23, 16941. doi: 10.1002/chem.201703895  doi: 10.1002/chem.201703895

    95. [95]

      Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Angew. Chem. 2016, 128, 10181. doi: 10.1002/ange.201603897  doi: 10.1002/ange.201603897

    96. [96]

      Li, F.; Si, Y.; Liu, B.; Li, Z.; Fu, Y. Adv. Funct. Mater. 2019, 29, 1902223. doi: 10.1002/adfm.201902223  doi: 10.1002/adfm.201902223

    97. [97]

      Cui, Y.; Ackerson, J. D.; Ma, Y.; Bhargav, A.; Karty, J. A.; Guo, W.; Zhu, L.; Fu, Y. Adv. Funct. Mater. 2018, 28, 1801791. doi: 10.1002/adfm.201801791  doi: 10.1002/adfm.201801791

    98. [98]

      Lv, X.; Guo, W.; Song, J.; Fu, Y. Small 2022, 18, 2105071. doi: 10.1002/smll.202105071  doi: 10.1002/smll.202105071

    99. [99]

      Wang, D.; Si, Y.; Guo, W.; Fu, Y. Adv. Sci. 2020, 7, 1902646. doi: 10.1002/advs.201902646  doi: 10.1002/advs.201902646

    100. [100]

      Wang, D.-Y.; Si, Y.; Guo, W.; Fu, Y. Nat. Commun. 2021, 12, 3220. doi: 10.1038/s41467-021-23521-1  doi: 10.1038/s41467-021-23521-1

    101. [101]

      Zhao, J.; Si, Y.; Han, Z.; Li, J.; Guo, W.; Fu, Y. Angew. Chem. Int. Ed. 2020, 59, 2654. doi: 10.1002/anie.201913243  doi: 10.1002/anie.201913243

    102. [102]

      Xie, J.; Song, Y.; Li, B.; Peng, H.; Huang, J.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 22150. doi: 10.1002/anie.202008911  doi: 10.1002/anie.202008911

    103. [103]

      Li, G.; Gao, Y.; He, X.; Huang, Q.; Chen, S.; Kim, S. H.; Wang, D. Nat. Commun. 2017, 8, 850. doi: 10.1038/s41467-017-00974-x  doi: 10.1038/s41467-017-00974-x

    104. [104]

      Guo, W.; Zhang, W.; Si, Y.; Wang, D.; Fu, Y.; Manthiram, A. Nat. Commun. 2021, 12, 3031. doi: 10.1038/s41467-021-23155-3  doi: 10.1038/s41467-021-23155-3

    105. [105]

      Johansson, P. Polymer 2001, 42, 4367. doi: 10.1016/S0032-3861(00)00731-X  doi: 10.1016/S0032-3861(00)00731-X

    106. [106]

      Sarapas, J. M.; Tew, G. N. Macromolecules 2016, 49, 1154. doi: 10.1021/acs.macromol.5b02513  doi: 10.1021/acs.macromol.5b02513

    107. [107]

      Wang, H.; Wang, Q.; Cao, X.; He, Y.; Wu, K.; Yang, J.; Zhou, H.; Liu, W.; Sun, X. Adv. Mater. 2020, 32, 2001259. doi: 10.1002/adma.202001259  doi: 10.1002/adma.202001259

    108. [108]

      Xu, R.; Xu, S.; Wang, F.; Xiao, R.; Tang, P.; Zhang, X.; Bai, S.; Sun, Z.; Li, F. Small Structures 2023, 4, 2200206. doi: 10.1002/sstr.202200206  doi: 10.1002/sstr.202200206

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(27)
  • Abstract views(558)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return