Citation: Shaoming Dong, Yinghui Pu, Yiming Niu, Lei Zhang, Yongzhao Wang, Bingsen Zhang. Interstitial Carbon in Ni Enables High-Efficiency Hydrogenation of 1,3-Butadiene[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230101. doi: 10.3866/PKU.WHXB202301012 shu

Interstitial Carbon in Ni Enables High-Efficiency Hydrogenation of 1,3-Butadiene

  • Corresponding author: Yiming Niu, ymniu14b@imr.ac.cn Bingsen Zhang, bszhang@imr.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 8 January 2023
    Revised Date: 15 February 2023
    Accepted Date: 16 February 2023
    Available Online: 27 February 2023

    Fund Project: the National Natural Science Foundation of China 22072164the National Natural Science Foundation of China 22002173the National Natural Science Foundation of China 52161145403

  • Selective hydrogenation is an essential catalytic reaction in modern industrial chemistry. For instance, butene can be used to produce many important organic chemical products, but the catalytic cracking of naphtha to produce olefins also produces some diolefins, which contain approximately 0.2%–2.0% 1,3-butadiene. The selective hydrogenation of 1,3-butadiene is a crucial step in purifying single olefins and prevents poisoning of the catalysts used in polymerization. Currently, the most common industrially employed catalysts in the reaction are palladium-based catalysts, but drawbacks associated with these include high cost and low abundance. Transition metal Ni-based catalysts have the advantages of being low cost and having high hydrogenation activity, but they are prone to excessive hydrogenation in butadiene hydrogenation reactions. This leads to reduced selectivity and the loss of monoolefins in the feed gas. In addition, Ni-based catalysts tend to accumulate carbon on the surface, which results in catalyst deactivation. Therefore, designing Ni-based catalysts with excellent catalytic performance has been an industrial research priority. Herein, we synthesized Ni3Zn/Al2O3 catalysts by impregnation and achieved the alumina-supported Ni3ZnC0.7 structure by acetylene atmosphere treatment. Interstitial sites of the Ni3Zn intermetallic catalyst were modified by introducing interstitial carbon atoms. This enhances the catalytic performance of the 1,3-butadiene hydrogenation reaction. X-ray diffraction and transmission electron microscopy revealed that the catalyst presents a typical Ni3ZnC0.7 phase. The interstitial carbon structure can suppress excessive hydrogenation, exhibiting up to 93% butene selectivity at a 98% conversion of 1,3-butadiene, which renders it superior to the Ni3Zn/Al2O3 catalyst. More importantly, the selectivity to 1-butene is improved by approximately 40% compared to the Ni3Zn/Al2O3 intermetallic catalyst. In addition, the Ni3ZnC0.7/Al2O3 catalyst exhibits superior and stable selectivity within a wide H2/1,3-butadiene ratio range and can operate reliably under fluctuating conditions. CO-diffuse reflectance infrared Fourier transformed spectroscopy (CO-DRIFTS) demonstrated that coordinating the carbon atom in the interstitial site with the neighboring Ni atoms alters the electron structure of the Ni sites in the Ni3ZnC0.7 structure. The electrons at the surface Ni sites are transferred to the carbon atoms at the interstitial sites rendering Ni more electron-deficient and decreasing the adsorption strength of 1-butene, which inhibits the excessive hydrogenation reaction pathway. It is also noteworthy that the interstitial carbon structure can inhibit carbonaceous species formation and accumulation significantly improving the Ni3ZnC0.7/Al2O3 catalyst's stability. This work is significant for understanding the structure-performance relationship at the interstitial sites in transition metal catalysts. Furthermore, it provides new insights into the design of hydrogenation catalysts.
  • 加载中
    1. [1]

      Hu, N.; Li, X. Y.; Liu, S. M.; Wang, Z.; He, X. K.; Hou, Y. X.; Wang, Y. X.; Deng, Z.; Chen, L. H.; Su, B. L. Chin. J. Catal. 2020, 41, 1081. doi: 10.1016/S1872-2067(20)63570-7  doi: 10.1016/S1872-2067(20)63570-7

    2. [2]

      Yang, K. R.; Yang, B. J. Phys. Chem. C 2018, 122, 10883. doi: 10.1021/acs.jpcc.8b01980  doi: 10.1021/acs.jpcc.8b01980

    3. [3]

      Alves, J. A.; Bressa, S. P.; Martinez, O. M.; Barreto, G. F. Chem. Eng. J. 2004, 99, 45. doi: 10.1016/j.cej.2003.09.005  doi: 10.1016/j.cej.2003.09.005

    4. [4]

      Bos, A. N. R.; Westerterp, K. R. Chem. Eng. Process. 1993, 32, 1. doi: 10.1016/0255-2701(93)87001-B  doi: 10.1016/0255-2701(93)87001-B

    5. [5]

      Goetz, J.; Murzin, D. Y.; Ulischenko, M.; Touroude, R. Chem. Eng. Sci. 1996, 51, 2879. doi: 10.1016/0009-2509(96)00168-6  doi: 10.1016/0009-2509(96)00168-6

    6. [6]

      Yu, W. Y.; Mullen, G. M.; Mullins, C. B. J. Phys. Chem. C 2013, 117, 19535. doi: 10.1021/jp406736b  doi: 10.1021/jp406736b

    7. [7]

      Bridier, B.; Karhanek, D.; Perez-Ramirez, J.; Lopez, N. ChemCatChem 2012, 4, 1420. doi: 10.1002/cctc.201200021  doi: 10.1002/cctc.201200021

    8. [8]

      Xu, J.; Guo, X.; Guan, Y.; Wu, P. Chin. Chem. Lett. 2022, 33, 349. doi: 10.1016/j.cclet.2021.06.012  doi: 10.1016/j.cclet.2021.06.012

    9. [9]

      Jalal, A.; Uzun, A. Appl. Catal. A 2018, 562, 321. doi: 10.1016/j.apcata.2018.06.016  doi: 10.1016/j.apcata.2018.06.016

    10. [10]

      Bond, G. C.; Wells, P. B. Adv. Catal. 1964, 15, 91. doi: 10.1016/S0360-0564(08)60554-4  doi: 10.1016/S0360-0564(08)60554-4

    11. [11]

      Zhu, Y.; Yang, M.; Zhang, Z.; An, Z.; Zhang, J.; Shu, X.; He, J. Chin. Chem. Lett. 2022, 33, 2069. doi: 10.1016/j.cclet.2021.08.120  doi: 10.1016/j.cclet.2021.08.120

    12. [12]

      Huang, X.; Ma, Y.; Zhi, L. Acta Phys. -Chim. Sin. 2022, 38, 2011050.  doi: 10.3866/PKU.WHXB202011050

    13. [13]

      Lonergan, W. W.; Wang, T. F.; Vlachos, D. G.; Chen, J. G. G. Appl. Catal. A 2011, 408, 87. doi: 10.1016/j.apcata.2011.09.007  doi: 10.1016/j.apcata.2011.09.007

    14. [14]

      Chen, Y. J.; Chen, J. X. Appl. Surf. Sci. 2016, 387, 16. doi: 10.1016/j.apsusc.2016.06.067  doi: 10.1016/j.apsusc.2016.06.067

    15. [15]

      Armbruster, M.; Schlogl, R.; Grin, Y. Sci. Technol. Adv. Mater. 2014, 15, 034803. doi: 10.1088/1468-6996/15/3/034803  doi: 10.1088/1468-6996/15/3/034803

    16. [16]

      Li, Z.; Shen, T.; Hu, Y.; Chen, K.; Lu, Y.; Wang, D. Acta Phys. -Chim. Sin. 2021, 37, 2010029.  doi: 10.3866/PKU.WHXB202010029

    17. [17]

      Castillejos-Lopez, E.; Agostini, G.; Di Michel, M.; Iglesias-Juez, A.; Bachiller-Baeza, B. ACS Catal. 2017, 7, 796. doi: 10.1021/acscatal.6b03009  doi: 10.1021/acscatal.6b03009

    18. [18]

      Frackiewicz, A.; Janko, A. Acta Crystallogr. Sect. A 1978, 34, S377.

    19. [19]

      Ziemecki, S. B.; Jones, G. A.; Swartzfager, D. G.; Harlow, R. L. J. Am. Chem. Soc. 1985, 107, 4547. doi: 10.1021/ja00301a031  doi: 10.1021/ja00301a031

    20. [20]

      Teschner, D.; Borsodi, J.; Wootsch, A.; Revay, Z.; Havecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlogl, R. Science 2008, 320, 86. doi: 10.1126/science.1155200  doi: 10.1126/science.1155200

    21. [21]

      Ludwig, W.; Savara, A.; Schauermann, S.; Freund, H. J. ChemPhysChem 2010, 11, 2319. doi: 10.1002/cphc.201000355  doi: 10.1002/cphc.201000355

    22. [22]

      Niu, Y.; Huang, X.; Wang, Y.; Xu, M.; Chen, J.; Xu, S.; Willinger, M.-G.; Zhang, W.; Wei, M.; Zhang, B. Nat. Commun. 2020, 11, 3324. doi: 10.1038/s41467-020-17188-3  doi: 10.1038/s41467-020-17188-3

    23. [23]

      Kim, K. Y.; Lee, J. H.; Lee, H.; Noh, W. Y.; Kim, E. H.; Ra, E. C.; Kim, S. K.; An, K.; Lee, J. S. ACS Catal. 2021, 11, 11091. doi: 10.1021/acscatal.1c02200  doi: 10.1021/acscatal.1c02200

    24. [24]

      Ge, X.; Dou, M.; Cao, Y.; Liu, X.; Yuwen, Q.; Zhang, J.; Qian, G.; Gong, X.; Zhou, X.; Chen, L.; et al. Nat. Commun. 2022, 13, 5534. doi: 10.1038/s41467-022-33250-8  doi: 10.1038/s41467-022-33250-8

    25. [25]

      Boitiaux, J. P.; Cosyns, J.; Robert, E. Appl. Catal. 1989, 49, 235. doi: 10.1016/S0166-9834(00)83020-1  doi: 10.1016/S0166-9834(00)83020-1

    26. [26]

      Chen, Y. M.; Qiu, B. C.; Liu, Y.; Zhang, Y. Appl. Catal. B 2020, 269, 118801. doi: 10.1016/j.apcatb.2020.118801  doi: 10.1016/j.apcatb.2020.118801

    27. [27]

      Furukawa, S.; Komatsu, T. ACS Catal. 2017, 7, 735. doi: 10.1021/acscatal.6b02603  doi: 10.1021/acscatal.6b02603

    28. [28]

      Nemeth, M.; Somodi, F.; Horvath, A. J. Phys. Chem. C 2019, 123, 27509. doi: 10.1021/acs.jpcc.9b06839  doi: 10.1021/acs.jpcc.9b06839

    29. [29]

      Blackmond, D. J. Catal. 1985, 96, 210. doi: 10.1016/0021-9517(85)90374-4  doi: 10.1016/0021-9517(85)90374-4

    30. [30]

      Ueckert, T.; Lamber, R.; Jaeger, N. I.; Schubert, U. Appl. Catal. A 1997, 155, 75. doi: 10.1016/S0926-860X(96)00384-5  doi: 10.1016/S0926-860X(96)00384-5

    31. [31]

      Liang, G. F.; He, L. M.; Arai, M.; Zhao, F. Y. ChemSusChem 2014, 7, 1415. doi: 10.1002/cssc.201301204  doi: 10.1002/cssc.201301204

    32. [32]

      Moyes, R. B.; Wells, P. B.; Grant, J.; Salman, N. Y. Appl. Catal. A 2002, 229, 251. doi: 10.1016/S0926-860X(02)00033-9  doi: 10.1016/S0926-860X(02)00033-9

    33. [33]

      Pattamakomsan, K.; Ehret, E.; Morfin, F.; Gelin, P.; Jugnet, Y.; Prakash, S.; Bertolini, J. C.; Panpranot, J.; Aires, F. J. C. S. Catal. Today 2011, 164, 28. doi: 10.1016/j.cattod.2010.10.013  doi: 10.1016/j.cattod.2010.10.013

    34. [34]

      Johnson, A. D.; Daley, S. P.; Utz, A. L.; Ceyer, S. T. Science 1992, 257, 223. doi: 10.1126/science.257.5067.223  doi: 10.1126/science.257.5067.223

    35. [35]

      Cao, Y.; Zhang, H.; Ji, S.; Sui, Z.; Jiang, Z.; Wang, D.; Zaera, F.; Zhou, X.; Duan, X.; Li, Y. Angew. Chem. Int. Edit. 2020, 59, 11647. doi: 10.1002/anie.202004966  doi: 10.1002/anie.202004966

  • 加载中
    1. [1]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    4. [4]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    5. [5]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    8. [8]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    9. [9]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    10. [10]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    11. [11]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    12. [12]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    13. [13]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    14. [14]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    15. [15]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    16. [16]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(10)
  • Abstract views(1549)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return