Interstitial Carbon in Ni Enables High-Efficiency Hydrogenation of 1,3-Butadiene
- Corresponding author: Yiming Niu, ymniu14b@imr.ac.cn Bingsen Zhang, bszhang@imr.ac.cn †These authors contributed equally to this work.
Citation: Shaoming Dong, Yinghui Pu, Yiming Niu, Lei Zhang, Yongzhao Wang, Bingsen Zhang. Interstitial Carbon in Ni Enables High-Efficiency Hydrogenation of 1,3-Butadiene[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230101. doi: 10.3866/PKU.WHXB202301012
Hu, N.; Li, X. Y.; Liu, S. M.; Wang, Z.; He, X. K.; Hou, Y. X.; Wang, Y. X.; Deng, Z.; Chen, L. H.; Su, B. L. Chin. J. Catal. 2020, 41, 1081. doi: 10.1016/S1872-2067(20)63570-7
doi: 10.1016/S1872-2067(20)63570-7
Yang, K. R.; Yang, B. J. Phys. Chem. C 2018, 122, 10883. doi: 10.1021/acs.jpcc.8b01980
doi: 10.1021/acs.jpcc.8b01980
Alves, J. A.; Bressa, S. P.; Martinez, O. M.; Barreto, G. F. Chem. Eng. J. 2004, 99, 45. doi: 10.1016/j.cej.2003.09.005
doi: 10.1016/j.cej.2003.09.005
Bos, A. N. R.; Westerterp, K. R. Chem. Eng. Process. 1993, 32, 1. doi: 10.1016/0255-2701(93)87001-B
doi: 10.1016/0255-2701(93)87001-B
Goetz, J.; Murzin, D. Y.; Ulischenko, M.; Touroude, R. Chem. Eng. Sci. 1996, 51, 2879. doi: 10.1016/0009-2509(96)00168-6
doi: 10.1016/0009-2509(96)00168-6
Yu, W. Y.; Mullen, G. M.; Mullins, C. B. J. Phys. Chem. C 2013, 117, 19535. doi: 10.1021/jp406736b
doi: 10.1021/jp406736b
Bridier, B.; Karhanek, D.; Perez-Ramirez, J.; Lopez, N. ChemCatChem 2012, 4, 1420. doi: 10.1002/cctc.201200021
doi: 10.1002/cctc.201200021
Xu, J.; Guo, X.; Guan, Y.; Wu, P. Chin. Chem. Lett. 2022, 33, 349. doi: 10.1016/j.cclet.2021.06.012
doi: 10.1016/j.cclet.2021.06.012
Jalal, A.; Uzun, A. Appl. Catal. A 2018, 562, 321. doi: 10.1016/j.apcata.2018.06.016
doi: 10.1016/j.apcata.2018.06.016
Bond, G. C.; Wells, P. B. Adv. Catal. 1964, 15, 91. doi: 10.1016/S0360-0564(08)60554-4
doi: 10.1016/S0360-0564(08)60554-4
Zhu, Y.; Yang, M.; Zhang, Z.; An, Z.; Zhang, J.; Shu, X.; He, J. Chin. Chem. Lett. 2022, 33, 2069. doi: 10.1016/j.cclet.2021.08.120
doi: 10.1016/j.cclet.2021.08.120
Huang, X.; Ma, Y.; Zhi, L. Acta Phys. -Chim. Sin. 2022, 38, 2011050.
doi: 10.3866/PKU.WHXB202011050
Lonergan, W. W.; Wang, T. F.; Vlachos, D. G.; Chen, J. G. G. Appl. Catal. A 2011, 408, 87. doi: 10.1016/j.apcata.2011.09.007
doi: 10.1016/j.apcata.2011.09.007
Chen, Y. J.; Chen, J. X. Appl. Surf. Sci. 2016, 387, 16. doi: 10.1016/j.apsusc.2016.06.067
doi: 10.1016/j.apsusc.2016.06.067
Armbruster, M.; Schlogl, R.; Grin, Y. Sci. Technol. Adv. Mater. 2014, 15, 034803. doi: 10.1088/1468-6996/15/3/034803
doi: 10.1088/1468-6996/15/3/034803
Li, Z.; Shen, T.; Hu, Y.; Chen, K.; Lu, Y.; Wang, D. Acta Phys. -Chim. Sin. 2021, 37, 2010029.
doi: 10.3866/PKU.WHXB202010029
Castillejos-Lopez, E.; Agostini, G.; Di Michel, M.; Iglesias-Juez, A.; Bachiller-Baeza, B. ACS Catal. 2017, 7, 796. doi: 10.1021/acscatal.6b03009
doi: 10.1021/acscatal.6b03009
Frackiewicz, A.; Janko, A. Acta Crystallogr. Sect. A 1978, 34, S377.
Ziemecki, S. B.; Jones, G. A.; Swartzfager, D. G.; Harlow, R. L. J. Am. Chem. Soc. 1985, 107, 4547. doi: 10.1021/ja00301a031
doi: 10.1021/ja00301a031
Teschner, D.; Borsodi, J.; Wootsch, A.; Revay, Z.; Havecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlogl, R. Science 2008, 320, 86. doi: 10.1126/science.1155200
doi: 10.1126/science.1155200
Ludwig, W.; Savara, A.; Schauermann, S.; Freund, H. J. ChemPhysChem 2010, 11, 2319. doi: 10.1002/cphc.201000355
doi: 10.1002/cphc.201000355
Niu, Y.; Huang, X.; Wang, Y.; Xu, M.; Chen, J.; Xu, S.; Willinger, M.-G.; Zhang, W.; Wei, M.; Zhang, B. Nat. Commun. 2020, 11, 3324. doi: 10.1038/s41467-020-17188-3
doi: 10.1038/s41467-020-17188-3
Kim, K. Y.; Lee, J. H.; Lee, H.; Noh, W. Y.; Kim, E. H.; Ra, E. C.; Kim, S. K.; An, K.; Lee, J. S. ACS Catal. 2021, 11, 11091. doi: 10.1021/acscatal.1c02200
doi: 10.1021/acscatal.1c02200
Ge, X.; Dou, M.; Cao, Y.; Liu, X.; Yuwen, Q.; Zhang, J.; Qian, G.; Gong, X.; Zhou, X.; Chen, L.; et al. Nat. Commun. 2022, 13, 5534. doi: 10.1038/s41467-022-33250-8
doi: 10.1038/s41467-022-33250-8
Boitiaux, J. P.; Cosyns, J.; Robert, E. Appl. Catal. 1989, 49, 235. doi: 10.1016/S0166-9834(00)83020-1
doi: 10.1016/S0166-9834(00)83020-1
Chen, Y. M.; Qiu, B. C.; Liu, Y.; Zhang, Y. Appl. Catal. B 2020, 269, 118801. doi: 10.1016/j.apcatb.2020.118801
doi: 10.1016/j.apcatb.2020.118801
Furukawa, S.; Komatsu, T. ACS Catal. 2017, 7, 735. doi: 10.1021/acscatal.6b02603
doi: 10.1021/acscatal.6b02603
Nemeth, M.; Somodi, F.; Horvath, A. J. Phys. Chem. C 2019, 123, 27509. doi: 10.1021/acs.jpcc.9b06839
doi: 10.1021/acs.jpcc.9b06839
Blackmond, D. J. Catal. 1985, 96, 210. doi: 10.1016/0021-9517(85)90374-4
doi: 10.1016/0021-9517(85)90374-4
Ueckert, T.; Lamber, R.; Jaeger, N. I.; Schubert, U. Appl. Catal. A 1997, 155, 75. doi: 10.1016/S0926-860X(96)00384-5
doi: 10.1016/S0926-860X(96)00384-5
Liang, G. F.; He, L. M.; Arai, M.; Zhao, F. Y. ChemSusChem 2014, 7, 1415. doi: 10.1002/cssc.201301204
doi: 10.1002/cssc.201301204
Moyes, R. B.; Wells, P. B.; Grant, J.; Salman, N. Y. Appl. Catal. A 2002, 229, 251. doi: 10.1016/S0926-860X(02)00033-9
doi: 10.1016/S0926-860X(02)00033-9
Pattamakomsan, K.; Ehret, E.; Morfin, F.; Gelin, P.; Jugnet, Y.; Prakash, S.; Bertolini, J. C.; Panpranot, J.; Aires, F. J. C. S. Catal. Today 2011, 164, 28. doi: 10.1016/j.cattod.2010.10.013
doi: 10.1016/j.cattod.2010.10.013
Johnson, A. D.; Daley, S. P.; Utz, A. L.; Ceyer, S. T. Science 1992, 257, 223. doi: 10.1126/science.257.5067.223
doi: 10.1126/science.257.5067.223
Cao, Y.; Zhang, H.; Ji, S.; Sui, Z.; Jiang, Z.; Wang, D.; Zaera, F.; Zhou, X.; Duan, X.; Li, Y. Angew. Chem. Int. Edit. 2020, 59, 11647. doi: 10.1002/anie.202004966
doi: 10.1002/anie.202004966
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722