Citation: Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230100. doi: 10.3866/PKU.WHXB202301009 shu

Molten Alkali Metal Batteries Based on Solid Electrolytes

  • Corresponding author: Kai Liu, liukai21@ncepu.edu.cn Hui Wu, huiwu@tsinghua.edu.cn
  • Received Date: 5 January 2023
    Revised Date: 6 February 2023
    Accepted Date: 15 February 2023
    Available Online: 27 February 2023

    Fund Project: the National Natural Science Foundation of China 51788104the Beijing Natural Science Foundation JQ19005

  • The development of energy storage technologies with high safety, low cost, and high energy densities is essential for the widespread use of renewable energy sources. Battery technology is one of the most promising candidates because of its pollution-free operation, high round-trip efficiency, flexible power and energy characteristics, long cycle life, and low maintenance cost. Although most batteries operate at room temperature, high-temperature systems are expected to perform better owing to improved electrolyte conductivity, faster reaction kinetics, and reduced interface impedance. The reported high-temperature batteries can be classified into liquid and solid electrolyte-based systems, with the latter having the potential to achieve higher energy densities while avoiding self-discharge effects. This review summarizes solid electrolyte-based liquid sodium and lithium batteries (SELS and SELL batteries). SELS batteries primarily use beta-Al2O3 and NASICON electrolytes, while SELL battery systems use garnet electrolytes. Because the microstructures and compositions of ceramic electrolytes significantly affect their conductivity and stability, novel manufacturing and element doping methods are being intensively investigated. Surface modification technology is also a major research focus to improve the wetting properties of molten alkali metals on the ceramic electrolyte, which assists to decrease interfacial resistance and increase the rate performance and power density of the battery. In addition, the selection of the cathode materials of SELS and SELL batteries has a significant impact on the energy and power densities, cycling stability, material cost, and application scenarios of the real devices. Until now, lead alloys, metal chlorides, sulfur, selenium, and iodine have been reported as potential choices. We describe in detail the reaction mechanisms, existing problems, and the latest research progress of these battery systems, with their electrochemical performance and raw material costs systematically summarized and compared. It is worth noting that the SELS and SELL batteries have different levels of technological maturity. In 2019, an energy storage system using SELS batteries with a capacity of 108 MW/648 MWh was built, whereas SELL battery research is a relatively emerging field. However, SELL batteries demonstrate promising application prospects because of their higher energy densities, lower operating temperatures, and competitive raw material costs. In addition, we believe that several research advancements and technical achievements related to these two types of batteries can be shared, with the future research directions listed in the conclusion section.
  • 加载中
    1. [1]

      Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2016, 16 (1), 16. doi: 10.1038/nmat4834  doi: 10.1038/nmat4834

    2. [2]

      Chu, S.; Majumdar, A. Nature 2012, 488 (7411), 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    3. [3]

      Dunn, B.; Kamath, H.; Tarascon, J.-M. Science 2011, 334 (6058), 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    4. [4]

      Henke, M.; Hailu, G. Energies 2020, 13 (6), 4194. doi: 10.3390/en13164194  doi: 10.3390/en13164194

    5. [5]

      Rashidi, S.; Karimi, N.; Sunden, B.; Kim, K. C.; Olabi, A. G.; Mahian, O. Prog. Energy Combust. Sci. 2022, 88, 100966. doi: 10.1016/j.pecs.2021.100966  doi: 10.1016/j.pecs.2021.100966

    6. [6]

      Lin, X.; Salari, M.; Arava, L. M. R.; Ajayan, P. M.; Grinstaff, M. W. Chem. Soc. Rev. 2016, 45 (21), 5848. doi: 10.1039/c6cs00012f  doi: 10.1039/c6cs00012f

    7. [7]

      Xu, K. Chem. Rev. 2014, 114 (23), 11503. doi: 10.1021/cr500003w  doi: 10.1021/cr500003w

    8. [8]

      Jiang, C.; Li, H.; Wang, C. Sci. Bull. 2017, 62 (21), 1473. doi: 10.1016/j.scib.2017.10.011  doi: 10.1016/j.scib.2017.10.011

    9. [9]

      Masset, P.; Guidotti, R. A. J. Power Sources 2007, 164 (1), 397. doi: 10.1016/j.jpowsour.2006.10.080  doi: 10.1016/j.jpowsour.2006.10.080

    10. [10]

      Newhouse, J. M.; Sadoway, D. R. J. Electrochem. Soc. 2017, 164 (12), A2665. doi: 10.1149/2.1571712jes  doi: 10.1149/2.1571712jes

    11. [11]

      Kinzer, B.; Davis, A. L.; Krauskopf, T.; Hartmann, H.; LePage, W. S.; Kazyak, E.; Janek, J.; Dasgupta, N. P.; Sakamoto, J. Matter 2021, 4 (6), 1947. doi: 10.1016/j.matt.2021.04.016  doi: 10.1016/j.matt.2021.04.016

    12. [12]

      Wang, K.; Jiang, K.; Chung, B.; Ouchi, T.; Burke, P. J.; Boysen, D. A.; Bradwell, D. J.; Kim, H.; Muecke, U.; Sadoway, D. R. Nature 2014, 514 (7522), 348. doi: 10.1038/nature13700  doi: 10.1038/nature13700

    13. [13]

      Bradwell, D. J.; Kim, H.; Sirk, A. H. C.; Sadoway, D. R. J. Am. Chem. Soc. 2012, 134 (4), 1895. doi: 10.1021/ja209759s  doi: 10.1021/ja209759s

    14. [14]

      Ashour, R. F.; Yin, H.; Ouchi, T.; Kelley, D. H.; Sadoway, D. R. J. Electrochem. Soc. 2017, 164 (2), A535. doi: 10.1149/2.1451702jes  doi: 10.1149/2.1451702jes

    15. [15]

      Kim, J.; Shin, D.; Jung, Y.; Hwang, S. M.; Song, T.; Kim, Y.; Paik, U. J. Power Sources 2018, 377, 87. doi: 10.1016/j.jpowsour.2017.11.081  doi: 10.1016/j.jpowsour.2017.11.081

    16. [16]

      Ouchi, T.; Sadoway, D. R. J. Power Sources 2017, 357, 158. doi: 10.1016/j.jpowsour.2017.04.104  doi: 10.1016/j.jpowsour.2017.04.104

    17. [17]

      Ning, X.; Phadke, S.; Chung, B.; Yin, H.; Burke, P.; Sadoway, D. R. J. Power Sources 2015, 275, 370. doi: 10.1016/j.jpowsour.2014.10.173  doi: 10.1016/j.jpowsour.2014.10.173

    18. [18]

      Yin, H.; Chung, B.; Chen, F.; Ouchi, T.; Zhao, J.; Tanaka, N.; Sadoway, D. R. Nat. Energy 2018, 3 (2), 127. doi: 10.1038/s41560-017-0072-1  doi: 10.1038/s41560-017-0072-1

    19. [19]

      Mushtaq, K.; Zhao, J.; Weber, N.; Mendes, A.; Sadoway, D. R. J. Energy Chem. 2022, 66, 390. doi: 10.1016/j.jechem.2021.08.015  doi: 10.1016/j.jechem.2021.08.015

    20. [20]

      Xu, J.; Martinez, A. M.; Osen, K. S.; Kjos, O. S.; Kongstein, O. E.; Haarberg, G. M. J. Electrochem. Soc. 2017, 164 (12), A2335. doi: 10.1149/2.0591712jes  doi: 10.1149/2.0591712jes

    21. [21]

      Ding, W.; Gong, Q.; Liang, S.; Hoffmann, R.; Zhou, H.; Li, H.; Wang, K.; Zhang, T.; Weisenburger, A.; Müller, G.; et al. J. Power Sources 2023, 553, 232254. doi: 10.1016/j.jpowsour.2022.232254  doi: 10.1016/j.jpowsour.2022.232254

    22. [22]

      Kim, H.; Boysen, D. A.; Newhouse, J. M.; Spatocco, B. L.; Chung, B.; Burke, P. J.; Bradwell, D. J.; Jiang, K.; Tomaszowska, A. A.; Wang, K.; et al. Chem. Rev. 2013, 113 (3), 2075. doi: 10.1021/cr300205k  doi: 10.1021/cr300205k

    23. [23]

      Zhou, H.; Li, H.; Gong, Q.; Yan, S.; Zhou, X.; Liang, S.; Ding, W.; He, Y.; Jiang, K.; Wang, K. Energy Storage Mater. 2022, 50, 572. doi: 10.1016/j.ensm.2022.05.032  doi: 10.1016/j.ensm.2022.05.032

    24. [24]

      Zhao, J.; Wang, Y.; Lu, G. J. Electrochem. Soc. 2022, 169 (5), 056517. doi: 10.1149/1945-7111/ac6e0c  doi: 10.1149/1945-7111/ac6e0c

    25. [25]

      Wang, Y.; Wang, Y.; Wang, Y. X.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Cao, Y. Chem 2019, 5 (10), 2547. doi: 10.1016/j.chempr.2019.05.026  doi: 10.1016/j.chempr.2019.05.026

    26. [26]

      Yung-Fang Yu Yao; Kummer, J. T. J. Inorg. Nucl. Chem. 1967, 29 (9), 2453. doi: 10.1016/0022-1902(67)80301-4  doi: 10.1016/0022-1902(67)80301-4

    27. [27]

      Jinzhi, W.; Xiaolei, H. A. N.; Chaofeng, X. U.; Jingwen, Z.; Yue, T.; Guanglei, C. U. I. Energy Storage Sci. Technol. 2022, 11 (9), 2834. doi: 10.19799/j.cnki.2095-4239.2022.0424  doi: 10.19799/j.cnki.2095-4239.2022.0424

    28. [28]

      Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. J. Power Sources 2014, 247, 975. doi: 10.1016/j.jpowsour.2013.09.051  doi: 10.1016/j.jpowsour.2013.09.051

    29. [29]

      Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Nano Res. 2017, 10 (12), 4082. doi: 10.1007/s12274-017-1602-7  doi: 10.1007/s12274-017-1602-7

    30. [30]

      Hueso, K. B.; Armand, M.; Rojo, T. Energy Environ. Sci. 2013, 6 (3), 734. doi: 10.1039/c3ee24086j  doi: 10.1039/c3ee24086j

    31. [31]

      Fertig, M. P.; Skadell, K.; Schulz, M.; Dirksen, C.; Adelhelm, P.; Stelter, M. Batter. Supercaps 2022, 5 (1), e202100131. doi: 10.1002/batt.202100131  doi: 10.1002/batt.202100131

    32. [32]

      Ma, Q.; Tietz, F. ChemElectroChem 2020, 7 (13), 2693. doi: 10.1002/celc.202000164  doi: 10.1002/celc.202000164

    33. [33]

      Zhang, C.; Zhang, L.; Zhang, X.; Zheng, P.; Li, F. Ceram. Int. 2020, 46 (3), 3009. doi: 10.1016/j.ceramint.2019.09.300  doi: 10.1016/j.ceramint.2019.09.300

    34. [34]

      Bay, M. C.; Heinz, M. V. F.; Figi, R.; Schreiner, C.; Basso, D.; Zanon, N.; Vogt, U. F.; Battaglia, C. ACS Appl. Energy Mater. 2019, 2 (1), 687. doi: 10.1021/acsaem.8b01715  doi: 10.1021/acsaem.8b01715

    35. [35]

      Li, K.; Yang, Y.; Zhang, X.; Liang, S. J. Mater. Sci. 2020, 55 (20), 8435. doi: 10.1007/s10853-020-04423-x  doi: 10.1007/s10853-020-04423-x

    36. [36]

      Heinz, M. V. F.; Bay, M. C.; Vogt, U. F.; Battaglia, C. Acta Mater. 2021, 213, 116940. doi: 10.1016/j.actamat.2021.116940  doi: 10.1016/j.actamat.2021.116940

    37. [37]

      Mortalò, C.; Rosa, R.; Veronesi, P.; Fasolin, S.; Zin, V.; Deambrosis, S. M.; Miorin, E.; Dimitrakis, G.; Fabrizio, M.; Leonelli, C. Ceram. Int. 2020, 46 (18), 28767. doi: 10.1016/j.ceramint.2020.08.039  doi: 10.1016/j.ceramint.2020.08.039

    38. [38]

      Moghadam, H. A.; Paydar, M. H. Adv. Appl. Ceram. 2021, 120 (3), 156. doi: 10.1080/17436753.2021.1911582  doi: 10.1080/17436753.2021.1911582

    39. [39]

      Kim, Y. H.; Lee, D. H.; Lee, D. G.; Jung, K.; Lim, S. K. Mater. Res. Bull. 2022, 145, 111524. doi: 10.1016/j.materresbull.2021.111524  doi: 10.1016/j.materresbull.2021.111524

    40. [40]

      Li, H.; Fan, H.; Wang, B.; Wang, C.; Zhang, M.; Chen, G.; Jiang, X.; Zhao, N.; Lu, J.; Zhang, J. J. Eur. Ceram. Soc. 2020, 40 (8), 3072. doi: 10.1016/j.jeurceramsoc.2020.02.037  doi: 10.1016/j.jeurceramsoc.2020.02.037

    41. [41]

      Dirksen, C. L.; Skadell, K.; Schulz, M.; Stelter, M. Sep. Purif. Technol. 2019, 213, 88. doi: 10.1016/j.seppur.2018.12.028  doi: 10.1016/j.seppur.2018.12.028

    42. [42]

      Dirksen, C. L.; Skadell, K.; Schulz, M.; Fertig, M. P.; Stelter, M. Materials 2021, 14 (18), 5389. doi: 10.3390/ma14185389  doi: 10.3390/ma14185389

    43. [43]

      Lee, D. H.; Lee, D. G.; Lim, S. K. Ceram. Int. 2021, 47 (17), 24743. doi: 10.1016/j.ceramint.2021.05.197  doi: 10.1016/j.ceramint.2021.05.197

    44. [44]

      Wang, Z.; Feng, X.; Zhang, T.; Xie, Z.; Song, F.; Li, Y. Ceram. Int. 2020, 46 (15), 24668. doi: 10.1016/j.ceramint.2020.06.256  doi: 10.1016/j.ceramint.2020.06.256

    45. [45]

      Virkar, A. V.; Viswanathan, L.; Biswas, D. R. J. Mater. Sci. 1980, 15 (2), 302. doi: 10.1007/PL00020062  doi: 10.1007/PL00020062

    46. [46]

      Jonghe, L. C.; Feldman, L.; Beuchele, A. J. Mater. Sci. 1981, 16 (3), 780. doi: 10.1007/bf00552217  doi: 10.1007/bf00552217

    47. [47]

      Li, M. M.; Tripathi, S.; Polikarpov, E.; Canfield, N. L.; Han, K. S.; Weller, J. M.; Buck, E. C.; Engelhard, M. H.; Reed, D. M.; Sprenkle, V. L.; et al. ACS Appl. Mater. Interfaces 2022, 14 (22), 25534. doi: 10.1021/acsami.2c05245  doi: 10.1021/acsami.2c05245

    48. [48]

      Wang, J.; Hu, Y.; Li, Y.; Gao, X.; Wu, X.; Wen, Z. J. Power Sources 2020, 453, 227843. doi: 10.1016/j.jpowsour.2020.227843  doi: 10.1016/j.jpowsour.2020.227843

    49. [49]

      Lai, H.; Wang, J.; Cai, M.; Song, Z.; Gao, X.; Wu, X.; Wen, Z. Chem. Eng. J. 2022, 433, 133545. doi: 10.1016/j.cej.2021.133545  doi: 10.1016/j.cej.2021.133545

    50. [50]

      Wu, T.; Wen, Z.; Sun, C.; Wu, X.; Zhang, S.; Yang, J. J. Mater. Chem. A 2018, 6 (26), 12623. doi: 10.1039/c8ta01883a  doi: 10.1039/c8ta01883a

    51. [51]

      Hu, Y.; Wen, Z.; Wu, X.; Lu, Y. J. Power Sources 2013, 240, 786. doi: 10.1016/j.jpowsour.2013.04.056  doi: 10.1016/j.jpowsour.2013.04.056

    52. [52]

      Jin, D.; Choi, S.; Jang, W.; Soon, A.; Kim, J.; Moon, H.; Lee, W.; Lee, Y.; Son, S.; Park, Y. C.; et al. ACS Appl. Mater. Interfaces 2019, 11 (3), 2917. doi: 10.1021/acsami.8b13954  doi: 10.1021/acsami.8b13954

    53. [53]

      Jin, D.; Lee, H. G.; Choi, S.; Kim, S.; Lee, Y.; Son, S.; Park, Y. C.; Lee, J. S.; Jung, K.; Shim, W. Nano Lett. 2019, 19 (12), 8811. doi: 10.1021/acs.nanolett.9b03646  doi: 10.1021/acs.nanolett.9b03646

    54. [54]

      Li, M. M.; Lu, X.; Zhan, X.; Engelhard, M. H.; Bonnett, J. F.; Polikarpov, E.; Jung, K.; Reed, D. M.; Sprenkle, V. L.; Li, G. Chem. Commun. 2021, 57 (1), 45. doi: 10.1039/d0cc06987f  doi: 10.1039/d0cc06987f

    55. [55]

      Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Nano Energy 2018, 52, 279. doi: 10.1016/j.nanoen.2018.07.036  doi: 10.1016/j.nanoen.2018.07.036

    56. [56]

      Hong, H. Y. P. Mater. Res. Bull. 1976, 11 (2), 173. doi: 10.1016/0025-5408(76)90073-8  doi: 10.1016/0025-5408(76)90073-8

    57. [57]

      Ma, Q.; Guin, M.; Naqash, S.; Tsai, C. L.; Tietz, F.; Guillon, O. Chem. Mater. 2016, 28 (13), 4821. doi: 10.1021/acs.chemmater.6b02059  doi: 10.1021/acs.chemmater.6b02059

    58. [58]

      Song, S.; Duong, H. M.; Korsunsky, A. M.; Hu, N.; Lu, L. Sci. Rep. 2016, 6, 32330. doi: 10.1038/srep32330  doi: 10.1038/srep32330

    59. [59]

      Yang, J.; Liu, G.; Avdeev, M.; Wan, H.; Han, F.; Shen, L.; Zou, Z.; Shi, S.; Hu, Y. S.; Wang, C.; Yao, X. ACS Energy Lett. 2020, 5 (9), 2835. doi: 10.1021/acsenergylett.0c01432  doi: 10.1021/acsenergylett.0c01432

    60. [60]

      Gross, M. M.; Small, L. J.; Peretti, A. S.; Percival, S. J.; Rodriguez, M. A.; Spoerke, E. D. J. Mater. Chem. A 2020, 8 (33), 17012. doi: 10.1039/d0ta03571h  doi: 10.1039/d0ta03571h

    61. [61]

      Wang, Y. X.; Zhang, B.; Lai, W.; Xu, Y.; Chou, S. L.; Liu, H. K.; Dou, S. X. Adv. Energy Mater. 2017, 7 (24), 1602829. doi: 10.1002/aenm.201602829  doi: 10.1002/aenm.201602829

    62. [62]

      Hu, Y.; Wu, X.; Wen, Z. Energy Storage Sci. Technol. 2021, 10 (3), 781. doi: 10.19799/j.cnki.2095-4239.2021.0139  doi: 10.19799/j.cnki.2095-4239.2021.0139

    63. [63]

      Kim, G.; Park, Y. C.; Lee, Y.; Cho, N.; Kim, C. S.; Jung, K. J. Power Sources 2016, 325, 238. doi: 10.1016/j.jpowsour.2016.06.035  doi: 10.1016/j.jpowsour.2016.06.035

    64. [64]

      Li, Y.; Tang, Y.; Li, X.; Tu, W.; Zhang, L.; Huang, J. Small 2021, 17 (23), 2100846. doi: 10.1002/smll.202100846  doi: 10.1002/smll.202100846

    65. [65]

      Oshima, T.; Kajita, M.; Okuno, A. Int. J. Appl. Ceram. Technol. 2005, 1 (3), 269. doi: 10.1111/j.1744-7402.2004.tb00179.x  doi: 10.1111/j.1744-7402.2004.tb00179.x

    66. [66]

      Nikiforidis, G.; Van de Sanden, M. C. M.; Tsampas, M. N. RSC Adv. 2019, 9 (10), 5649. doi: 10.1039/c8ra08658c  doi: 10.1039/c8ra08658c

    67. [67]

      Lu, X.; Xia, G.; Lemmon, J. P.; Yang, Z. J. Power Sources 2010, 195 (9), 2431. doi: 10.1016/j.jpowsour.2009.11.120  doi: 10.1016/j.jpowsour.2009.11.120

    68. [68]

      Wen, Z.; Hu, Y.; Wu, X.; Han, J.; Gu, Z. Adv. Funct. Mater. 2013, 23 (8), 1005. doi: 10.1002/adfm.201200473  doi: 10.1002/adfm.201200473

    69. [69]

      Vudata, S. P.; Bhattacharyya, D. Int. J. Heat Mass Transf. 2021, 181, 122025. doi: 10.1016/j.ijheatmasstransfer.2021.122025  doi: 10.1016/j.ijheatmasstransfer.2021.122025

    70. [70]

      Zhan, X.; Li, M. M.; Weller, J. M.; Sprenkle, V. L.; Li, G. Materials 2021, 14 (12), 3260. doi: 10.3390/ma14123260  doi: 10.3390/ma14123260

    71. [71]

      Frusteri, L.; Leonardi, S. G.; Samperi, M.; Antonucci, V.; D'Urso, C. J. Energy Storage 2022, 55, 105503. doi: 10.1016/j.est.2022.105503  doi: 10.1016/j.est.2022.105503

    72. [72]

      Graeber, G.; Landmann, D.; Svaluto-Ferro, E.; Vagliani, F.; Basso, D.; Turconi, A.; Heinz, M. V. F.; Battaglia, C. Adv. Funct. Mater. 2021, 31 (46), 2106367. doi: 10.1002/adfm.202106367  doi: 10.1002/adfm.202106367

    73. [73]

      Landmann, D.; Svaluto-Ferro, E.; Heinz, M. V. F.; Schmutz, P.; Battaglia, C. Adv. Sci. 2022, 9 (17), 2201019. doi: 10.1002/advs.202201019  doi: 10.1002/advs.202201019

    74. [74]

      Lee, Y.; Kim, H. J.; Byun, D. J.; Cho, K. K.; Ahn, J. H.; Kim, C. S. J. Power Sources 2019, 440, 227110. doi: 10.1016/j.jpowsour.2019.227110  doi: 10.1016/j.jpowsour.2019.227110

    75. [75]

      Kim, J.; Jo, S. H.; Bhavaraju, S.; Eccleston, A.; Kang, S. O. J. Electroanal. Chem. 2015, 759, 201. doi: 10.1016/j.jelechem.2015.11.022  doi: 10.1016/j.jelechem.2015.11.022

    76. [76]

      Gross, M. M.; Percival, S. J.; Small, L. J.; Lamb, J.; Peretti, A. S.; Spoerke, E. D. ACS Appl. Energy Mater. 2020, 3 (11), 11456. doi: 10.1021/acsaem.0c02385  doi: 10.1021/acsaem.0c02385

    77. [77]

      Hu, Y.; Wu, X.; Wen, Z.; Hou, M.; Yi, B. Chinese J. Eng. Sci. 2021, 23 (5), 94. doi: 10.15302/j-sscae-2021.05.013  doi: 10.15302/j-sscae-2021.05.013

    78. [78]

      Gao, X.; Hu, Y.; Zha, W.; Li, Y.; Wang, J.; Lai, H.; Wu, X.; Yang, J.; Chen, C.; Wen, Z. Mater. Today Energy 2022, 23, 100894. doi: 10.1016/j.mtener.2021.100894  doi: 10.1016/j.mtener.2021.100894

    79. [79]

      Li, Y.; Shi, L.; Gao, X.; Wang, J.; Hu, Y.; Wu, X.; Wen, Z. Chem. Eng. J. 2021, 421, 127853. doi: 10.1016/j.cej.2020.127853  doi: 10.1016/j.cej.2020.127853

    80. [80]

      Gao, X.; Hu, Y.; Li, Y.; Wang, J.; Wu, X.; Yang, J.; Wen, Z. ACS Appl. Mater. Interfaces 2020, 12 (22), 24767. doi: 10.1021/acsami.0c04470  doi: 10.1021/acsami.0c04470

    81. [81]

      Xu, L.; Lu, Y.; Zhao, C.; Yuan, H.; Zhu, G.; Hou, L.; Zhang, Q.; Huang, J. Adv. Energy Mater. 2021, 11 (4), 2002360. doi: 10.1002/aenm.202002360  doi: 10.1002/aenm.202002360

    82. [82]

      Miao, X.; Wang, H.; Sun, R.; Wang, C.; Zhang, Z.; Li, Z.; Yin, L. Energy Environ. Sci. 2020, 13 (11), 3780. doi: 10.1039/D0EE01435D  doi: 10.1039/D0EE01435D

    83. [83]

      Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Matter 2020, 3, 57. doi: 10.1016/j.matt.2020.03.015  doi: 10.1016/j.matt.2020.03.015

    84. [84]

      Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V.; et al. ACS Energy Lett. 2020, 5 (3), 922. doi: 10.1021/acsenergylett.9b02668  doi: 10.1021/acsenergylett.9b02668

    85. [85]

      Jin, Y.; Liu, K.; Lang, J.; Zhuo, D.; Huang, Z.; Wang, C. C.; Wu, H.; Cui, Y. Nat. Energy 2018, 3 (9), 732. doi: 10.1038/s41560-018-0198-9  doi: 10.1038/s41560-018-0198-9

    86. [86]

      Abouali, S.; Yim, C. H.; Merati, A.; Abu-Lebdeh, Y.; Thangadurai, V. ACS Energy Lett. 2021, 6 (5), 1920. doi: 10.1021/acsenergylett.1c00401  doi: 10.1021/acsenergylett.1c00401

    87. [87]

      Wang, D.; Zhu, C.; Fu, Y.; Sun, X.; Yang, Y. Adv. Energy Mater. 2020, 10 (39), 2001318. doi: 10.1002/aenm.202001318  doi: 10.1002/aenm.202001318

    88. [88]

      Wang, C.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y.; et al. Chem. Rev. 2020, 120 (10), 4257. doi: 10.1021/acs.chemrev.9b00427  doi: 10.1021/acs.chemrev.9b00427

    89. [89]

      Zhu, Y.; He, X.; Mo, Y. ACS Appl. Mater. Interfaces 2015, 7 (42), 23685. doi: 10.1021/acsami.5b07517  doi: 10.1021/acsami.5b07517

    90. [90]

      Huo, H.; Luo, J.; Thangadurai, V.; Guo, X.; Nan, C. W.; Sun, X. ACS Energy Lett. 2020, 5 (1), 252. doi: 10.1021/acsenergylett.9b02401  doi: 10.1021/acsenergylett.9b02401

    91. [91]

      Yamada, H.; Ito, T.; Kammampata, S. P.; Thangadurai, V. ACS Appl. Mater. Interfaces 2020, 12 (32), 36119. doi: 10.1021/acsami.0c09135  doi: 10.1021/acsami.0c09135

    92. [92]

      Hofstetter, K.; Samson, A. J.; Narayanan, S.; Thangadurai, V. J. Power Sources 2018, 390, 297. doi: 10.1016/j.jpowsour.2018.04.016  doi: 10.1016/j.jpowsour.2018.04.016

    93. [93]

      Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Chem. Mater. 2017, 29 (18), 7961. doi: 10.1021/acs.chemmater.7b03002  doi: 10.1021/acs.chemmater.7b03002

    94. [94]

      Zheng, H.; Wu, S.; Tian, R.; Xu, Z.; Zhu, H.; Duan, H.; Liu, H. Adv. Funct. Mater. 2020, 30 (6), 1906189. doi: 10.1002/adfm.201906189  doi: 10.1002/adfm.201906189

    95. [95]

      Zheng, Z. J.; Ye, H.; Guo, Z. P. Adv. Sci. 2020, 7 (22), 2002212. doi: 10.1002/advs.202002212  doi: 10.1002/advs.202002212

    96. [96]

      Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. Energy Environ. Sci. 2019, 12 (10), 2957. doi: 10.1039/c9ee01548e  doi: 10.1039/c9ee01548e

    97. [97]

      Wang, Y.; Wu, Y.; Wang, Z.; Chen, L.; Li, H.; Wu, F. J. Mater. Chem. A 2022, 10 (9), 4517. doi: 10.1039/d1ta10966a  doi: 10.1039/d1ta10966a

    98. [98]

      Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.; Kang, F.; Li, B. J. Power Sources 2018, 389, 120. doi: 10.1016/j.jpowsour.2018.04.019  doi: 10.1016/j.jpowsour.2018.04.019

    99. [99]

      Xu, L.; Li, J.; Deng, W.; Shuai, H.; Li, S.; Xu, Z.; Li, J.; Hou, H.; Peng, H.; Zou, G.; Ji, X. Adv. Energy Mater. 2020, 10, 2000648. doi: 10.1002/aenm.202000648  doi: 10.1002/aenm.202000648

    100. [100]

      Allen, J. L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J. J. Power Sources 2012, 206, 315. doi: 10.1016/j.jpowsour.2012.01.131  doi: 10.1016/j.jpowsour.2012.01.131

    101. [101]

      Deviannapoorani, C.; Dhivya, L.; Ramakumar, S.; Murugan, R. J. Power Sources 2013, 240, 18. doi: 10.1016/j.jpowsour.2013.03.166  doi: 10.1016/j.jpowsour.2013.03.166

    102. [102]

      Ohta, S.; Kobayashi, T.; Asaoka, T. J. Power Sources 2011, 196 (6), 3342. doi: 10.1016/j.jpowsour.2010.11.089  doi: 10.1016/j.jpowsour.2010.11.089

    103. [103]

      Ramakumar, S.; Satyanarayana, L.; Manorama, S. V.; Murugan, R. Phys. Chem. Chem. Phys. 2013, 15 (27), 11327. doi: 10.1039/c3cp50991e  doi: 10.1039/c3cp50991e

    104. [104]

      Lang, J.; Liu, K.; Jin, Y.; Long, Y.; Qi, L.; Wu, H.; Cui, Y. Energy Storage Mater. 2020, 24, 412. doi: 10.1016/j.ensm.2019.07.027  doi: 10.1016/j.ensm.2019.07.027

    105. [105]

      Lang, J.; Jin, Y.; Liu, K.; Long, Y.; Zhang, H.; Qi, L.; Wu, H.; Cui, Y. Nat. Sustain. 2020, 3 (5), 386. doi: 10.1038/s41893-020-0485-x  doi: 10.1038/s41893-020-0485-x

    106. [106]

      Zhang, H.; Lang, J.; Liu, K.; Jin, Y.; Wang, K.; Wu, Y.; Shi, S.; Wang, L.; Xu, H.; He, X.; Wu, H. Energy Environ. Mater. 2023,e12425. doi: 10.1002/eem2.12425  doi: 10.1002/eem2.12425

    107. [107]

      Liu, K.; Lang, J.; Yang, M.; Xu, J.; Sun, B.; Wu, Y.; Wang, K.; Zheng, Z.; Huang, Z.; Wang, C.; Wu, H.; Jin, Y.; Cui, Y. Matter 2020, 3 (5), 1714. doi: 10.1016/j.matt.2020.08.022  doi: 10.1016/j.matt.2020.08.022

    108. [108]

      Xu, J.; Liu, K.; Jin, Y.; Sun, B.; Zhang, Z.; Chen, Y.; Su, D.; Wang, G.; Wu, H.; Cui, Y. Adv. Mater. 2020, 32 (32), 2000960. doi: 10.1002/adma.202000960  doi: 10.1002/adma.202000960

    109. [109]

      Zeng, L. C.; Li, W. H.; Jiang, Y.; Yu, Y. Rare Met. 2017, 36 (5), 339. doi: 10.1007/s12598-017-0891-z  doi: 10.1007/s12598-017-0891-z

    110. [110]

      Jin, Y.; Liu, K.; Lang, J.; Jiang, X.; Zheng, Z.; Su, Q.; Huang, Z.; Long, Y.; Wang, C.; Wu, H.; Cui, Y. Joule 2020, 4 (1), 262. doi: 10.1016/j.joule.2019.09.003  doi: 10.1016/j.joule.2019.09.003

    111. [111]

      Huang, S.; Wang, Z.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D.; Yang, H. Y. Adv. Energy Mater. 2021, 11 (10), 2003689. doi: 10.1002/aenm.202003689  doi: 10.1002/aenm.202003689

    112. [112]

      Li, Y.; Guo, S. Matter 2021, 4 (4), 1142. doi: 10.1016/j.matt.2021.01.012  doi: 10.1016/j.matt.2021.01.012

    113. [113]

      Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Adv. Mater. 2021, 33 (29), 2003666. doi: 10.1002/adma.202003666  doi: 10.1002/adma.202003666

    114. [114]

      Zhao, H.; Deng, N.; Yan, J.; Kang, W.; Ju, J.; Ruan, Y.; Wang, X.; Zhuang, X.; Li, Q.; Cheng, B. Chem. Eng. J. 2018, 347, 343. doi: 10.1016/j.cej.2018.04.112  doi: 10.1016/j.cej.2018.04.112

    115. [115]

      Sun, B.; Wang, P.; Xu, J.; Jin, Q.; Zhang, Z.; Wu, H.; Jin, Y. Nano Res. 2022, 15 (5), 4076. doi: 10.1007/s12274-021-4010-y  doi: 10.1007/s12274-021-4010-y

    116. [116]

      Huang, Y.; Li, J. Adv. Energy Mater. 2022, 12 (48), 2202197. doi: 10.1002/aenm.202202197  doi: 10.1002/aenm.202202197

    117. [117]

      Sun, X.; Ouyang, M.; Hao, H. Joule 2022, 6 (8), 1738. doi: 10.1016/j.joule.2022.06.028  doi: 10.1016/j.joule.2022.06.028

  • 加载中
    1. [1]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    2. [2]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    13. [13]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(18)
  • Abstract views(1159)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return