Citation: Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 230100. doi: 10.3866/PKU.WHXB202301005 shu

MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis

  • Corresponding author: Ligang Feng, ligang.feng@yzu.edu.cn
  • Received Date: 3 January 2023
    Revised Date: 7 February 2023
    Accepted Date: 8 February 2023
    Available Online: 24 February 2023

    Fund Project: the National Natural Science Foundation of China 21972124the National Natural Science Foundation of China 22102105the National Natural Science Foundation of China 22272148

  • Hydrogen energy is a potential energy storage carrier due to its advantages of cleanliness, high efficiency and renewability. Electrocatalytic water splitting is an ideal method to generate hydrogen, and the slow kinetics of water oxidation, namely, oxygen evolution reaction (OER), greatly restricts its practical application. To reduce the energy consumption required for OER, methanol oxidation reaction (MOR) with a much lower theoretical potential is very promising to replace OER to assist hydrogen generation. The theoretical potential of MOR is only 0.016 V vs. SHE (standard hydrogen electrode), which is much lower than that of OER (1.23 V), and the energy-saving can be about 60% compared to that of traditional water electrolysis. Therefore, using MOR instead of OER to realize methanol electrolysis for hydrogen production is an effective way to reduce energy consumption. An efficient bifunctional catalyst is very important for green hydrogen generation from overall methanol electrolysis. Currently, Pt-based materials are still the best catalyst for hydrogen evolution reaction (HER) and MOR, while they are more challenging in the MOR as they are prone to intermediates poisoning during the catalytic reactions. The introduction of transition metal-based promoters such as phosphides is an effective strategy to promote the catalytic ability for methanol oxidation. Herein, ultrafine Pt nanoparticles with an average particle size of 2.53 nm evenly grown on MoP-NC nanosphere (Pt/MoP-NC) were demonstrated as an efficient electrocatalyst for methanol electrolysis towards hydrogen generation. The introduction of MoP-NC nanospheres support not only restricts the aggregation of Pt, but also improves the catalytic performance and anti-poisoning ability. Specifically, Pt/MoP-NC catalyst exhibited high methanol oxidation performance with a peak current density of 90.7 mA∙cm−2, which was 3.2 times higher than that of commercial Pt/C catalysts, and good hydrogen evolution reaction performance with a low overpotential of 30 mV to offer 10 mA∙cm−2 in an acid medium, which was comparable to commercial Pt/C. The assembled Pt/MoP-NC||Pt/MoP-NC electrolyzer showed a cell voltage of 0.67 V at 10 mA∙cm−2, ca. 1.02 V less than that of the overall water splitting system (1.69 V). The high catalytic ability of Pt/MoP-NC originated from the electronic effect between noble metal active center Pt and the adjacent MoP-NC support with a unique layered porous spherical structure. The partial electron transfer from MoP to Pt can lower the d-energy band center of Pt, which weakened the binding energy between Pt and adsorbed toxic intermediates. In addition, the oxophilic MoP-NC nanospheres can activate water to provide more hydroxyl species and facilitate the oxidative removal of CO intermediates adsorbed on the Pt active sites. The current work might inspire the design and preparation of novel catalyst platforms for methanol electrolysis in hydrogen generation.
  • 加载中
    1. [1]

      Zhou, Y.; Liu, H.; Gu, X. C.; Wu, X.; Feng, L. G. Carbon Energy 2022, 4 (5), 924. doi: 10.1002/cey2.206  doi: 10.1002/cey2.206

    2. [2]

      Zeng, F.; Mebrahtu, C.; Liao, L. F.; Palkovits, R.; Beine, A. K. J. Energy Chem. 2022, 69, 301. doi: 10.1016/j.jechem.2022.01.025  doi: 10.1016/j.jechem.2022.01.025

    3. [3]

      Sun, Z. C.; Luo, E. G.; Meng, Q. L.; Wang, X.; Ge, J. J.; Liu, C. P.; Wei, X. Acta Phys. -Chim. Sin. 2022, 38 (3), 2003035.  doi: 10.3866/PKU.WHXB202003035

    4. [4]

      Yin, Z. Z.; He, R. Z.; Zhang, Y. C.; Feng, L. G.; Wu, X.; Wågberg, T.; Hu, G. Z. J. Energy Chem. 2022, 69, 585. doi: 10.1016/j.jechem.2022.01.020  doi: 10.1016/j.jechem.2022.01.020

    5. [5]

      Xue, H.; Gong, H.; Yamauchi, Y.; Sasaki, T.; Ma, R. Nano Res. Energy 2022, 1, e9120007. doi: 10.26599/NRE.2022.9120007  doi: 10.26599/NRE.2022.9120007

    6. [6]

      Yan, D. Q.; Zhang, L.; Chen, Z. P.; Xiao, W. P.; Yang, X. F. Acta Phys. -Chim. Sin. 2021, 37 (7), 2009054.  doi: 10.3866/PKU.WHXB202009054

    7. [7]

      Tian, Y. F.; Xue, X. Y.; Gu, Y.; Yang, Z. X.; Hong, G.; Wang, C. D. Nanoscale 2020, 12 (45), 23125. doi: 10.1039/D0NR07227C  doi: 10.1039/D0NR07227C

    8. [8]

      Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. ACS Catal. 2020, 10 (1), 412. doi: 10.1021/acscatal.9b03623  doi: 10.1021/acscatal.9b03623

    9. [9]

      Li, M.; Gu, Y.; Chang, Y. J.; Gu, X. C.; Tian, J. Q.; Wu, X.; Feng, L. G. Chem. Eng. J. 2021, 425, 130686. doi: 10.1016/j.cej.2021.130686  doi: 10.1016/j.cej.2021.130686

    10. [10]

      Huang, Y.; Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Angew. Chem., Int. Ed. 2021, 60 (21), 11841. doi: 10.1002/anie.202103058  doi: 10.1002/anie.202103058

    11. [11]

      Sha, L. N.; Liu, T. F.; Ye, K.; Zhu, K.; Yan, J.; Yin, J. L.; Wang, G. L.; Cao, D. X. J. Mater. Chem. A 2020, 8 (35), 18055. doi: 10.1039/D0TA04944A  doi: 10.1039/D0TA04944A

    12. [12]

      Jiang, N.; You, B.; Boonstra, R.; Rodriguez, I. M. T.; Sun, Y. J. ACS Energy Lett. 2016, 1 (2), 386. doi: 10.1021/acsenergylett.6b00214  doi: 10.1021/acsenergylett.6b00214

    13. [13]

      Xu, Y.; Ren, T. L.; Ren, K. L.; Yu, S. S.; Liu, M. Y.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Chem. Eng. J. 2021, 408, 127308. doi: 10.1016/j.cej.2020.127308  doi: 10.1016/j.cej.2020.127308

    14. [14]

      Wang, S. L.; Zhao, L. Y.; Li, J. X.; Tian, X. L.; Wu, X.; Feng, L. G. J. Energy Chem. 2022, 66, 483. doi: 10.1016/j.jechem.2021.08.042  doi: 10.1016/j.jechem.2021.08.042

    15. [15]

      Jiang, Y. C.; Sun, H. Y.; Li, Y. N.; He, J. W.; Xue, Q.; Tian, X. L.; Li, F. M.; Yin, S. B.; Li, D. S.; Chen, Y. ACS Appl. Mater. Interfaces 2021, 13 (30), 35767. doi: 10.1021/acsami.1c09029  doi: 10.1021/acsami.1c09029

    16. [16]

      Sethu, S. P.; Gangadharan, S.; Chan, S. H.; Stimming, U. J. Power Sources 2014, 254, 161. doi: 10.1016/j.jpowsour.2013.12.103  doi: 10.1016/j.jpowsour.2013.12.103

    17. [17]

      Zhou, Y.; Wang, Q. W.; Tian, X. L.; Chang, J. F.; Feng, L. G. J. Energy Chem. 2022, 75, 46. doi: 10.1016/j.jechem.2022.08.009  doi: 10.1016/j.jechem.2022.08.009

    18. [18]

      Ju, H.; Giddey, S.; Badwal, S. P. S. Electrochim. Acta 2017, 229, 39. doi: 10.1016/j.electacta.2017.01.106  doi: 10.1016/j.electacta.2017.01.106

    19. [19]

      Ren, X. F.; Lv, Q. Y.; Liu, L. F.; Liu, B. H.; Wang, Y. R.; Liu, A. M.; Wu, G. Sustain. Energy Fuels 2020, 4 (1), 15. doi: 10.1039/C9SE00460B  doi: 10.1039/C9SE00460B

    20. [20]

      Qiao, W.; Huang, X. Y.; Feng, L. G. Chin. J. Struct. Chem. 2022, 41 (7), 16. doi: 10.14102/j.cnki.0254-5861.2022-0098  doi: 10.14102/j.cnki.0254-5861.2022-0098

    21. [21]

      Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Nano Res. Energy 2022, 1, e9120017. doi: 10.26599/NRE.2022.9120017  doi: 10.26599/NRE.2022.9120017

    22. [22]

      Li, M.; Feng, L. G. J. Electrochem. 2022, 28 (1), 2106211. doi: 10.13208/j.electrochem.210621  doi: 10.13208/j.electrochem.210621

    23. [23]

      Xie, F.; Gan, M. Y.; Ma, L. Nanoscale 2021, 13 (43), 18226. doi: 10.1039/D1NR05101F  doi: 10.1039/D1NR05101F

    24. [24]

      Su, N.; Hu, X. L.; Zhang, J. B.; Huang, H. H.; Cheng, J. X.; Yu, J. C.; Ge, C. Appl. Surf. Sci. 2017, 399, 403. doi: 10.1016/j.apsusc.2016.12.095  doi: 10.1016/j.apsusc.2016.12.095

    25. [25]

      Wang, Y.; Du, C. Y.; Sun, Y. R.; Han, G. K.; Kong, F. P.; Yin, G. P.; Gao, Y. Z.; Song, Y. Electrochim. Acta 2017, 254, 36. doi: 10.1016/j.electacta.2017.09.099  doi: 10.1016/j.electacta.2017.09.099

    26. [26]

      Zhang, Y.; Yang, J.; Dong, Q.; Geng, H.; Zheng, Y.; Liu, Y.; Wang, W.; Li, C.; Dong, X. ACS Appl. Mater. Interfaces 2018, 10 (31), 26258. doi: 10.1021/acsami.8b07133  doi: 10.1021/acsami.8b07133

    27. [27]

      Lei, Y.; Jia, M. M.; Guo, P. W.; Liu, J.; Zhai, J. Y. Catal. Commun. 2020, 140, 106000. doi: 10.1016/j.catcom.2020.106000  doi: 10.1016/j.catcom.2020.106000

    28. [28]

      Zhao, W. C.; Yuan, Y. F.; Du, P. F.; Yin, S. M.; Guo, S. Y. Electrochim. Acta 2021, 389, 138712. doi: 10.1016/j.electacta.2021.138712  doi: 10.1016/j.electacta.2021.138712

    29. [29]

      Liu, B. C.; Li, H.; Cao, B.; Jiang, J. N.; Gao, R.; Zhang, J. Adv. Funct. Mater. 2018, 28 (30), 1801527. doi: 10.1002/adfm.201801527  doi: 10.1002/adfm.201801527

    30. [30]

      Li, J.; Huang, H.; Cao, X. X.; Wu, H. H.; Pan, K. M.; Zhang, Q. B.; Wu, N. T.; Liu, X. M. Chem. Eng. J. 2021, 416, 127677. doi: 10.1016/j.cej.2020.127677  doi: 10.1016/j.cej.2020.127677

    31. [31]

      Fereja, S. L.; Li, P.; Guo, J. H.; Fang, Z. Y.; Zhang, Z. W.; Zhuang, Z. H.; Zhang, X. H.; Liu, K. F.; Chen, W. ACS Appl. Nano Mater. 2021, 4 (6), 5992. doi: 10.1021/acsanm.1c00850  doi: 10.1021/acsanm.1c00850

    32. [32]

      Duan, Y. Q.; Sun, Y.; Wang, L.; Dai, Y.; Chen, B. B.; Pan, S. Y.; Zou, J. L. J. Mater. Chem. A 2016, 4 (20), 7674. doi: 10.1039/C6TA01319H  doi: 10.1039/C6TA01319H

    33. [33]

      Li, J. X.; Chang, Y. J.; Li, D. Z.; Feng, L. G.; Zhang, B. G. Chem. Commun. 2021, 57 (57), 7035. doi: 10.1039/D1CC02934G  doi: 10.1039/D1CC02934G

    34. [34]

      Ding, X.; Li, M.; Jin, J.; Huang, X.; Wu, X.; Feng, L. Chin. Chem. Lett. 2022, 33 (5), 2687. doi: 10.1016/j.cclet.2021.09.076  doi: 10.1016/j.cclet.2021.09.076

    35. [35]

      Zhou, Y.; Kuang, Y. B.; Hu, G. Z.; Wang, X. Z.; Feng, L. G. Mater. Today Phys. 2022, 27, 100831. doi: 10.1016/j.mtphys.2022.100831  doi: 10.1016/j.mtphys.2022.100831

    36. [36]

      Li, S. J.; Wang, R. H.; Yang, X.; Wu, J.; Meng, H. Y.; Xu, H. L.; Ren, Z. Y. ACS Sustain. Chem. Eng. 2019, 7 (13), 11872. doi: 10.1021/acssuschemeng.9b02473  doi: 10.1021/acssuschemeng.9b02473

    37. [37]

      Pi, C. R.; Huang, C.; Yang, Y. X.; Song, H.; Zhang, X. M.; Zheng, Y.; Gao, B.; Fu, J. J.; Chu, P. K.; Huo, K. F. Appl. Catal. B 2020, 263, 118358. doi: 10.1016/j.apcatb.2019.118358  doi: 10.1016/j.apcatb.2019.118358

    38. [38]

      Gu, X. C.; Wu, C. G.; Wang, S. L.; Feng, L. G. Catal. Commun. 2022, 162, 106394. doi: 10.1016/j.catcom.2021.106394  doi: 10.1016/j.catcom.2021.106394

    39. [39]

      Ji, W. X.; Shen, R.; Yang, R.; Yu, G. Y.; Guo, X. F.; Peng, L. M.; Ding, W. P. J. Mater. Chem. A 2014, 2 (3), 699. doi: 10.1039/C3TA13708B  doi: 10.1039/C3TA13708B

    40. [40]

      Hou, M. J.; Teng, X.; Wang, J. Y.; Liu, Y. Y.; Guo, L. X.; Ji, L.; Cheng, C. W.; Chen, Z. F. Nanoscale 2018, 10 (30), 14594. doi: 10.1039/C8NR04246B  doi: 10.1039/C8NR04246B

    41. [41]

      Lin, L. F.; Chen, M.; Wu, L. M. Mater. Chem. Front. 2021, 5 (1), 375. doi: 10.1039/D0QM00635A  doi: 10.1039/D0QM00635A

    42. [42]

      Zhang, L. J.; Jin, Z. L.; Tsubaki, N. Nanoscale 2021, 13 (44), 18507. doi: 10.1039/D1NR05452J  doi: 10.1039/D1NR05452J

    43. [43]

      Chai, L. Y.; Yuan, W. Y.; Cui, X.; Jiang, H. Y.; Tang, J. W.; Guo, X. H. RSC Adv. 2018, 8 (47), 26871. doi: 10.1039/C8RA03909G  doi: 10.1039/C8RA03909G

    44. [44]

      He, M.; Shu, C. Z.; Zheng, R. X.; Li, M. L.; Ran, Z. Q.; Yan, Y.; Du, D. Y.; Ren, L. F.; Long, J. P. Electrochim. Acta 2021, 395, 139211. doi: 10.1016/j.electacta.2021.139211  doi: 10.1016/j.electacta.2021.139211

    45. [45]

      Liu, H.; Yang, D. W.; Bao, Y. F.; Yu, X.; Feng, L. G. J. Power Sources 2019, 434, 226754. doi: 10.1016/j.jpowsour.2019.226754  doi: 10.1016/j.jpowsour.2019.226754

    46. [46]

      Yu, F. Y.; Xie, Y. J.; Tang, H. Q.; Yang, N. T.; Meng, X. X.; Wang, X. B.; Tian, X. L.; Yang, X. Electrochim. Acta 2018, 264, 216. doi: 10.1016/j.electacta.2018.01.137  doi: 10.1016/j.electacta.2018.01.137

    47. [47]

      Hofmann, T.; Yu, T. H.; Folse, M.; Weinhardt, L.; Bär, M.; Zhang, Y.; Merinov, B. V.; Myers, D. J.; Goddard, W. A., Ⅲ; Heske, C. J. Phys. Chem. Lett. 2012, 116 (45), 24016. doi: 10.1021/jp303276z  doi: 10.1021/jp303276z

    48. [48]

      Ahsan, M. A.; Santiago, A. R. P.; Hong, Y.; Zhang, N.; Cano, M.; Rodriguez-Castellon, E.; Echegoyen, L.; Sreenivasan, S. T.; Noveron, J. C. J. Am. Chem. Soc. 2020, 142 (34), 14688. doi: 10.1021/jacs.0c06960  doi: 10.1021/jacs.0c06960

    49. [49]

      Dai, S.; Chou, J. P.; Wang, K. W.; Hsu, Y. Y.; Hu, A.; Pan, X. Q.; Chen, T. Y. Nat. Commun. 2019, 10 (1), 440. doi: 10.1038/s41467-019-08323-w  doi: 10.1038/s41467-019-08323-w

    50. [50]

      Lv, Q. Y.; Ren, X. F.; Liu, L. F.; Guan, W. X.; Liu, A. M. Ionics 2020, 26 (3), 1325. doi: 10.1007/s11581-019-03280-2  doi: 10.1007/s11581-019-03280-2

    51. [51]

      Zhou, Y.; Liu, D. Y.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. G. Mater. Today Phys. 2021, 17, 100357. doi: 10.1016/j.mtphys.2021.100357  doi: 10.1016/j.mtphys.2021.100357

    52. [52]

      Wei, D. Y.; Ma, L.; Gan, M. Y.; Han, S. C.; Shen, J.; Ding, J. J.; Zhan, W.; Zhou, C. L.; Zhong, X. J.; Xie, F. Int. J. Hydrogen Energy 2020, 45 (7), 4875. doi: 10.1016/j.ijhydene.2019.12.064  doi: 10.1016/j.ijhydene.2019.12.064

    53. [53]

      Bao, Y. F.; Wang, F. L.; Gu, X. C.; Feng, L. G. Nanoscale 2019, 11 (40), 18866. doi: 10.1039/C9NR07158J  doi: 10.1039/C9NR07158J

    54. [54]

      Li, G. Q.; Feng, L. G.; Chang, J. F.; Wickman, B.; Grönbeck, H.; Liu, C. P.; Xing, W. ChemSusChem 2014, 7 (12), 3374. doi: 10.1002/cssc.201402705  doi: 10.1002/cssc.201402705

    55. [55]

      Zhang, K. F.; Wang, H. F.; Qiu, J.; Wu, J.; Wang, H. J.; Shao, J. W.; Deng, Y. Q.; Yan, L. F. Chem. Eng. J. 2021, 421, 127786. doi: 10.1016/j.cej.2020.127786  doi: 10.1016/j.cej.2020.127786

    56. [56]

      Zhou, Y.; Wang, Q.; Tian, X.; Feng, L. Nano Res. 2022, 15 (10), 8936. doi: 10.1007/s12274-022-4907-0  doi: 10.1007/s12274-022-4907-0

    57. [57]

      Hao, Y. F.; Wang, X. D.; Zheng, Y. Y.; Shen, J. F.; Yuan, J. H.; Wang, A. J.; Niu, L.; Huang, S. T. Electrochim. Acta 2016, 198, 127. doi: 10.1016/j.electacta.2016.03.054  doi: 10.1016/j.electacta.2016.03.054

    58. [58]

      Bao, Y. F.; Feng, L. G. Acta Phys. -Chim. Sin. 2021, 37 (9), 2008031.  doi: 10.3866/PKU.WHXB202008031

    59. [59]

      Lu, Y. K.; Yue, C. L.; Li, Y. P.; Bao, W. J.; Guo, X. X.; Yang, W. F.; Liu, Z.; Jiang, P.; Yan, W. F.; Liu, S. J.; et al. Appl. Catal. B 2021, 296, 120336. doi: 10.1016/j.apcatb.2021.120336  doi: 10.1016/j.apcatb.2021.120336

    60. [60]

      Xiao, J.; Zhang, Z. Y.; Zhang, Y.; Lv, Q. Y.; Jing, F.; Chi, K.; Wang, S. Nano Energy 2018, 51, 223. doi: 10.1016/j.nanoen.2018.06.040  doi: 10.1016/j.nanoen.2018.06.040

    61. [61]

      He, R. Z.; Huang, X. Y.; Feng, L. G. Energy Fuels 2022, 36 (13), 6675. doi: 10.1021/acs.energyfuels.2c01429  doi: 10.1021/acs.energyfuels.2c01429

  • 加载中
    1. [1]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    2. [2]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    3. [3]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    4. [4]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    5. [5]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    6. [6]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    7. [7]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    8. [8]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    9. [9]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    10. [10]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    11. [11]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    12. [12]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    13. [13]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    14. [14]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    15. [15]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    16. [16]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    19. [19]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    20. [20]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

Metrics
  • PDF Downloads(22)
  • Abstract views(986)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return