Citation: Yao Xie, Qitao Zhang, Hongli Sun, Zhenyuan Teng, Chenliang Su. Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230100. doi: 10.3866/PKU.WHXB202301001 shu

Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers

  • Corresponding author: Qitao Zhang, qitao-zhang@szu.edu.cn Chenliang Su, chmsuc@szu.edu.cn
  • Received Date: 1 January 2023
    Revised Date: 21 February 2023
    Accepted Date: 21 February 2023
    Available Online: 6 March 2023

    Fund Project: the National Natural Science Foundation of China 21972094the National Natural Science Foundation of China 21805191the National Natural Science Foundation of China 22102102National Key Research and Development Program of China 2021YFA1600800Educational Commission of Guangdong Province, China 839-0000013131Guangdong Basic and Applied Basic Research Foundation, China 2020A1515010982Shenzhen Science and Technology Program, China JCYJ2019080808142001745Shenzhen Science and Technology Program, China RCJC2020200714114434086Shenzhen Stable Support Project, China 20200812160737002Shenzhen Stable Support Project, China 20200812122947002Shenzhen Peacock Plan, China 20180921273BShenzhen Peacock Plan, China 202108022524BShenzhen Peacock Plan, China 20210308299C

  • The photocatalytic synthesis of hydrogen peroxide using earth-abundant water and/or O2 as raw materials and solar energy as the sole energy input is an attractive route to achieving a carbon-neutral future. In particular, semiconducting polymer photocatalysts have piqued the interest of researchers working on the photocatalytic synthesis of H2O2 because their bandgap structures, reactivation sites, and components are easily tunable at the molecular level. However, there are two major challenges: 1) the photoredox centers are difficult to separate and recombine easily, resulting in low reactivity in the photocatalytic production of H2O2, and 2) the low utilization rate of the redox centers. In several cases, only one side of the redox center is used for the photocatalytic synthesis of H2O2, while the other side typically reacts with a sacrificial agent. In this review, we provide a timely survey of recent advances in the spatial separation and synergistic utilization of photoredox centers for photocatalytic H2O2 production. The key aspect for achieving spatial separation of the redox centers is to engineer electron donor-acceptor (D-A) units on a single photocatalyst, such as by incorporating atomically dispersed metals into the polymer frameworks to build metal-organic D-A units or constructing all-organic D-A units. Depending on the photocatalytic behavior of the redox centers, the synergistic utilization of photoredox centers can be classified into three major reaction models: 1) the oxygen reduction reaction (ORR) combined with the oxidative production of chemicals; 2) the water oxidation reaction (WOR) combined with the reductive production of chemicals; and 3) the ORR combined with the WOR. Based on this, the regulation modes, characteristics, catalytic mechanisms, and reaction pathways to overcome the two challenges of efficient H2O2 production are summarized and discussed. Finally, we demonstrate efficient photocatalytic H2O2 production and provide prospects and challenges for the photocatalytic production of H2O2 using photoredox centers.
  • 加载中
    1. [1]

      Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. -I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Nat. Rev. Chem. 2019, 3 (7), 442. doi: 10.1038/s41570-019-0110-6  doi: 10.1038/s41570-019-0110-6

    2. [2]

      Hou, H.; Zeng, X.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59 (40), 17356. doi: 10.1002/anie.201911609  doi: 10.1002/anie.201911609

    3. [3]

      Cheng, H.; Cheng, J.; Wang, L.; Xu, H. Chem. Mater. 2022, 34 (10), 4259. doi: 10.1021/acs.chemmater.2c00936  doi: 10.1021/acs.chemmater.2c00936

    4. [4]

      Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi: 10.1002/anie.200503779  doi: 10.1002/anie.200503779

    5. [5]

      (a) Wang, Y.; Waterhouse, G. I.; Shang, L.; Zhang, T. Adv. Energy Mater. 2021, 11 (15), 2003323. doi: 10.1002/aenm.202003323
      (b) Zeng, X.;Liu, Y.;Hu, X.;Zhang, X. GreenChem. 2021, 23 (4), 1466.doi: 10.1039/D0GC04236F

    6. [6]

      (a) Fukuzumi, S. Joule 2017, 1 (4), 689. doi: 10.1016/j.joule.2017.07.007
      (b) Yamada, Y.;Yoneda, M.;Fukuzumi, S. EnergyEnviron.Sci. 2015, 8 (6), 1698.doi: 10.1039/c5ee00748h

    7. [7]

      Tang, J.; Zhao, T.; Solanki, D.; Miao, X.; Zhou, W.; Hu, S. Joule 2021, 5 (6), 1432. doi: 10.1016/j.joule.2021.04.012  doi: 10.1016/j.joule.2021.04.012

    8. [8]

      (a) Cai, R.; Hashimoto, K.; Fujishima, A.; Kubota, Y. J. Electroanal. Chem. 1992, 326 (1–2), 345. doi: 10.1016/0022-0728(92)80522-6
      (b) Baur, E.;Neuweiler, C. Helv.Chim.Acta 1927, 10 (1), 901. doi: 10.1002/hlca.192701001113

    9. [9]

      (a) Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T. Nature 2021, 598 (7880), 304. doi: 10.1038/s41586-021-03907-3
      (b) Xue, Z.-H.;Luan, D.;Zhang, H.;Lou, X.W.D. Joule 2022, 6 (1), 92.doi: 10.1016/j.joule.2021.12.011
      (c) Hussain, M.Z.;Yang, Z.;Huang, Z.;Jia, Q.;Zhu, Y.;Xia, Y. Adv.Sci. 2021, 8 (14), 2100625.doi: 10.1002/advs.202100625
      (d) Feng, C.;Wu, Z.P.;Huang, K.W.;Ye, J.;Zhang, H. Adv.Mater. 2022, 34 (23), 2200180.doi: 10.1002/adma.202200180
      (e) Teng, Z.;Yang, H.;Zhang, Q.;Ohno, T. Chem.Res.Chin.Univ. 2022, 38 (5), 1207.doi: 10.1007/s40242-022-2215-6

    10. [10]

      Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem 2022, 8 (11) 2924. doi: 10.1016/j.chempr.2022.10.007  doi: 10.1016/j.chempr.2022.10.007

    11. [11]

      Yu, W.; Hu, C.; Bai, L.; Tian, N.; Zhang, Y.; Huang, H. Nano Energy 2022, 104 (A) 107906. doi: 10.1016/j.nanoen.2022.107906  doi: 10.1016/j.nanoen.2022.107906

    12. [12]

      (a) Xie, Y.; Li, Y.; Huang, Z.; Zhang, J.; Jia, X.; Wang, X. -S.; Ye, J. Appl. Catal. B-Environ. 2020, 265 (15), 118581. doi: 10.1016/j.apcatb.2019.118581
      (b) Liu, W.;Song, C.;Kou, M.;Wang, Y.;Deng, Y.;Shimada, T.;Ye, L. Chem.Eng.J. 2021, 425 (1), 130615. doi: 10.1016/j.cej.2021.130615

    13. [13]

      (a) Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Energy Environ. Sci. 2018, 11 (9), 2581. doi: 10.1039/C8EE01316K
      (b) Zeng, X.;Liu, Y.;Kang, Y.;Li, Q.;Xia, Y.;Zhu, Y.;Hou, H.;Uddin, M.H.;Gengenbach, T.R.;Xia, D. ACSCatal. 2020, 10 (6), 3697.doi: 10.1021/acscatal.9b05247
      (c) Feng, C.;Tang, L.;Deng, Y.;Wang, J.;Luo, J.;Liu, Y.;Ouyang, X.;Yang, H.;Yu, J.;Wang, J. Adv.Fun.Mater. 2020, 30 (39), 2001922.doi: 10.1002/adfm.202001922

    14. [14]

      (a) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2022, 317 (15), 121788. doi: 10.1016/j.apcatb.2022.121788
      (b) He, B.;Wang, Z.;Xiao, P.;Chen, T.;Yu, J.;Zhang, L. Adv.Mater. 2022, 34 (38), 2203225.doi: 10.1002/adma.202203225
      (c) Xu, Z.;Liang, J.;Wang, Y.;Dong, K.;Shi, X.;Liu, Q.;Luo, Y.; Li, T.;Jia, Y.;Asiri, A.M. ACSAppl.Mater.Interfaces 2021, 13 (28), 33182.doi: 10.1021/acsami.1c09871
      (d) Luo, B.-D.;Xiong, X.-Q.;Xu, Y.-M. ActaPhys.-Chim.Sin. 2016, 32 (7), 1758.[罗邦德, 熊贤强, 许宜铭.物理化学学报, 2016, 32 (7), 1758.]doi: 10.3866/PKU.WHXB2016032805

    15. [15]

      (a) Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Appl. Catal. B-Environ. 2021, 284 (5), 119691. doi: 10.1016/j.apcatb.2020.119691
      (b) Ye, F.;Wang, T.;Quan, X.;Yu, H.;Chen, S. Chem.Eng.J. 2020, 389 (1), 123427.doi: 10.1016/j.cej.2019.123427
      (c) Yoon, M.;Oh, Y.;Hong, S.;Lee, J.S.;Boppella, R.;Kim, S.H.;Mota, F.M.;Kim, S.O.;Kim, D.H. Appl.Catal.B-Environ. 2017, 206 (5), 263.doi: 10.1016/j.apcatb.2017.01.038

    16. [16]

      (a) Zhao, F.; Shi, L. -Q.; Cui, J. -B.; Lin, Y. -H. Acta Phys. -Chim. Sin. 2016, 32 (8), 2069. [赵菲, 时林其, 崔佳宝, 林艳红. 物理化学学报, 2016, 32 (8), 2069.] doi: 10.3866/PKU.WHXB201604224
      (b) Wang, Y.-Y.;Zhou, G.-Q.;Zhang, L.;Liu, T.-Q. ActaPhys.-Chim.Sin. 2016, 32 (11), 2785.[王元有, 周国强, 张龙, 刘天晴. 物理化学学报, 2016, 32 (11), 2785.] doi: 10.3866/PKU.WHXB201608304
      (c) Meng, X.;Zong, P.;Wang, L.;Yang, F.;Hou, W.;Zhang, S.;Li, B.;Guo, Z.;Liu, S.;Zuo, G. Catal.Commun. 2020, 134 (10), 105860.doi: 10.1016/j.catcom.2019.105860
      (d) Yi, G.;Agarwal, G.;Zhang, Y. J.Phys.Chem.C 2019, 123 (31), 19230.doi: 10.1021/acs.jpcc.9b05393

    17. [17]

      (a) Zhu, T. -T.; Xu, S. -Z.; Ge, B. -Q.; Chen, Z. -X. Acta Phys. -Chim. Sin. 2016, 32 (12), 2871. [朱甜甜, 徐淑臻, 葛炳强, 陈忠秀. 物理化学学报, 2016, 32 (12), 2871.] doi: 10.3866/PKU.WHXB201609281
      (b) Lee, J.H.;Cho, H.;Park, S.O.;Hwang, J.M.;Hong, Y.;Sharma, P.;Jeon, W.C.;Cho, Y.;Yang, C.;Kwak, S.K. Appl.Catal.B-Environ. 2021, 284 (5), 119690.doi: 10.1016/j.apcatb.2020.119690
      (c) Wang, C.;E, Y.;Fan, L.;Wang, Z.;Liu, H.;Li, Y.;Yang, S.;Li, Y. Adv.Mater. 2007, 19 (21), 3677.doi: 10.1002/adma.200701386
      (d) Zhang, E.;Zhu, Q.;Huang, J.;Liu, J.;Tan, G.;Sun, C.;Li, T.;Liu, S.;Li, Y.;Wang, H. Appl.Catal.B-Environ. 2021, 293 (15), 120213.doi: 10.1016/j.apcatb.2021.120213

    18. [18]

      (a) Zheng, J.; Song, D.; Chen, H.; Xu, J.; Alharbi, N. S.; Hayat, T.; Zhang, M. Chin. Chem. Lett. 2020, 31 (5), 1109. doi: 10.1016/j.cclet.2019.09.037
      (b) Li, G.;Chen, M.-Q.;Zhao, S.-X.;Li, P.-W.;Hu, J.;Sang, S.-B.;Hou, J.-J. ActaPhys.-Chim.Sin. 2016, 32 (12), 2905.[李刚, 陈敏强, 赵世雄, 李朋伟, 胡杰, 桑胜波, 侯静静.物理化学学报, 2016, 32 (12), 2905.]doi: 10.3866/PKU.WHXB201609201

    19. [19]

      (a) Wu, X.; Tan, H. L.; Zhang, C.; Teng, Z.; Liu, Z.; Ng, Y. H.; Zhang, Q.; Su, C. Prog. Mate. Sci. 2023, 133, 101047. doi: 10.1016/j.pmatsci.2022.101047
      (b) Shi, X.;Zhang, Y.;Siahrostami, S.;Zheng, X. Adv.EnergyMater. 2018, 8 (23), 1801158.doi: 10.1002/aenm.201801158
      (c) Wei, L.-W.;Liu, S.-H.;Wang, H.P. ACSAppl.NanoMater. 2022, 5 (10), 15378.doi: 10.1021/acsanm.2c03420
      (d) Sun, X.;Chen, J.;Zhai, J.;Zhang, H.;Dong, S. J.Am.Chem.Soc. 2022, 144 (50), 23073.doi: 10.1021/jacs.2c10445

    20. [20]

      (a) Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B. Nat. Energy 2022, 7 (4), 340. doi: 10.1038/s41560-022-00990-2
      (b) Gu, J.;Peng, Y.;Zhou, T.;Ma, J.;Pang, H.;Yamauchi, Y. NanoRes.Energy 2022, 1 (1), 9120009.doi: 10.26599/NRE.2022.9120009

    21. [21]

      (a) Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. Adv. Mater. 2018, 30 (48), 1801955. doi: 10.1002/adma.201801955
      (b) Wang, Y.;Vogel, A.;Sachs, M.;Sprick, R.S.;Wilbraham, L.;Moniz, S.J.;Godin, R.;Zwijnenburg, M.A.;Durrant, J.R.;Cooper, A.I. Nat.Energy 2019, 4 (9), 746.doi: 10.1038/s41560-019-0456-5
      (c) Ferguson, C.T.;Zhang, K.A. ACSCatal. 2021, 11 (15), 9547. doi: 10.1021/acscatal.1c02056

    22. [22]

      Luo, W.; Li, Y.; Wang, J.; Liu, J.; Zhang, N.; Zhao, M.; Wu, J.; Zhou, W.; Wang, L. Nano Energy 2021, 87, 106168. doi: 10.1016/j.nanoen.2021.106168  doi: 10.1016/j.nanoen.2021.106168

    23. [23]

      (a) Zhang, T.; Schilling, W.; Khan, S. U.; Ching, H. V.; Lu, C.; Chen, J.; Jaworski, A.; Barcaro, G.; Monti, S.; De Wael, K. ACS Catal. 2021, 11 (22), 14087. doi: 10.1021/acscatal.1c03733
      (b) Zhang, P.;Tong, Y.;Liu, Y.;Vequizo, J.J.M.;Sun, H.;Yang, C.;Yamakata, A.;Fan, F.;Lin, W.;Wang, X. Angew.Chem. 2020, 132 (37), 16343.doi: 10.1002/anie.202006747
      (c) Wu, S.;Yu, H.;Chen, S.;Quan, X. ACSCatal. 2020, 10 (24), 14380.doi: 10.1021/acscatal.0c03359
      (d) Shiraishi, Y.;Kanazawa, S.;Kofuji, Y.;Sakamoto, H.;Ichikawa, S.;Tanaka, S.;Hirai, T. Angew.Chem.Int.Ed. 2014, 53 (49), 13454. doi: 10.1002/anie.201407938
      (e) Kofuji, Y.;Ohkita, S.;Shiraishi, Y.;Sakamoto, H.;Tanaka, S.;Ichikawa, S.;Hirai, T. ACSCatal. 2016, 6 (10), 7021. doi: 10.1021/acscatal.6b02367

    24. [24]

      (a) Chen, X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. ACS Appl. Energy Mater. 2021, 4 (5), 4823. doi: 10.1021/acsaem.1c00371
      (b) Wang, Q.;Kong, X.Y.;Wang, Y.;Wang, L.;Huang, Y.;Li, H.;Ma, T.;Ye, L.ChemSusChem 2022, 15 (23), e202201514. doi: 10.1002/cssc.202201514

    25. [25]

      Zhao, W.; Yan, P.; Li, B.; Bahri, M.; Liu, L.; Zhou, X.; Clowes, R.; Browning, N. D.; Wu, Y.; Ward, J. W.; et al. J. Am. Chem. Soc. 2022, 144 (22), 9902. doi: 10.1021/jacs.2c02666  doi: 10.1021/jacs.2c02666

    26. [26]

      Krishnaraj, C.; Sekhar Jena, H.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J. R. M.; Chandran, C. V.; Borgmans, S.; Rogge, S. M.; Leus, K. J. Am. Chem. Soc. 2020, 142 (47), 20107. doi: 10.1021/jacs.0c09684  doi: 10.1021/jacs.0c09684

    27. [27]

      Li, L.; Xu, L.; Hu, Z.; Yu, J. C. Adv. Funct. Mater. 2021, 31 (52), 2106120. doi: 10.1002/adfm.202106120  doi: 10.1002/adfm.202106120

    28. [28]

      Wang, H.; Yang, C.; Chen, F.; Zheng, G.; Han, Q. A Angew. Chem. 2022, 134 (19), 202202328. doi: 10.1002/ange.202202328  doi: 10.1002/ange.202202328

    29. [29]

      (a) Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem. Commun. 2018, 54 (67), 9270. doi: 10.1039/C8CC02679C
      (b) Isaka, Y.;Kondo, Y.;Kuwahara, Y.;Mori, K.;Yamashita, H. Catal.Sci.Technol. 2019, 9 (6), 1511.doi: 10.1039/C8CY02599A
      (c) Kawase, Y.;Isaka, Y.;Kuwahara, Y.;Mori, K.;Yamashita, H. Chem.Commun. 2019, 55 (47), 6743.doi: 10.1039/C9CC02380A

    30. [30]

      (a) Liu, L.; Gao, M. -Y.; Yang, H.; Wang, X.; Li, X.; Cooper, A. I. J. Am. Chem. Soc. 2021, 143 (46), 19287. doi: 10.1021/jacs.1c09979
      (b) Xu, L.;Liu, Y.;Li, L.;Hu, Z.;Yu, J.C. ACSCatal. 2021, 11 (23), 1448.doi: 10.1021/acscatal.1c03690

    31. [31]

      Ye, Y. -X.; Pan, J.; Shen, Y.; Shen, M.; Yan, H.; He, J.; Yang, X.; Zhu, F.; Xu, J.; He, J. Proc. Natl. Acad. Sci. USA 2021, 118 (46), 2115666118. doi: 10.1073/pnas.2115666118  doi: 10.1073/pnas.2115666118

    32. [32]

      Cheng, H.; Lv, H.; Cheng, J.; Wang, L.; Wu, X.; Xu, H. Adv. Mater. 2022, 34 (7), 2107480. doi: 10.1002/adma.202107480  doi: 10.1002/adma.202107480

    33. [33]

      Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nat. Mater. 2019, 18 (9), 985. doi: 10.1038/s41563-019-0398-0  doi: 10.1038/s41563-019-0398-0

    34. [34]

      Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2021, 143 (32), 12590. doi: 10.1021/jacs.1c04622  doi: 10.1021/jacs.1c04622

    35. [35]

      Tian, Q.; Jing, L.; Ye, S.; Liu, J.; Chen, R.; Price, C. A. H.; Fan, F.; Liu, J. Small 2021, 17 (49), 2103224. doi: 10.1002/smll.202103224  doi: 10.1002/smll.202103224

    36. [36]

      Shiraishi, Y.; Hagi, T.; Matsumoto, M.; Tanaka, S.; Ichikawa, S.; Hirai, T. Commun. Chem. 2020, 3 (1), 169. doi: 10.1038/s42004-020-00421-x  doi: 10.1038/s42004-020-00421-x

    37. [37]

      Yuan, L.; Zhang, C.; Wang, J.; Liu, C.; Yu, C. Nano Res. 2021, 14 (9), 3267. doi: 10.1007/s12274-021-3517-6  doi: 10.1007/s12274-021-3517-6

    38. [38]

      Chen, L.; Wang, L.; Wan, Y.; Zhang, Y.; Qi, Z.; Wu, X.; Xu, H. Adv. Mater. 2020, 32 (2), 1904433. doi: 10.1002/adma.201904433  doi: 10.1002/adma.201904433

    39. [39]

      Yu, X.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q.; Li, P.; Huang, W.; Li, Y. Adv. Sustain. Syst. 2021, 5 (10), 2100184. doi: 10.1002/adsu.202100184  doi: 10.1002/adsu.202100184

    40. [40]

      (a) Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2 (6), 65. doi: 10.1038/s41570-018-0010-1
      (b) He, X.;Zhang, H.;Zhang, X.;Zhang, Y.;He, Q.;Chen, H.;Cheng, Y.;Peng, M.;Qin, X.;Ji, H. Nat.Commun. 2022, 13, 5721. doi: 10.1038/s41467-022-33442-2

    41. [41]

      (a) Hai, X.; Xi, S.; Mitchell, S.; Harrath, K.; Xu, H.; Akl, D. F.; Kong, D.; Li, J.; Li, Z.; Sun, T. Nat. Nanotechnol. 2022, 17 (2), 174. doi: 10.1038/s41565-021-01022-y
      (b) Chen, C.;Ou, W.;Yam, K.M.;Xi, S.;Zhao, X.;Chen, S.;Li, J.;Lyu, P.;Ma, L.;Du, Y. Adv.Mater. 2021, 33 (35), 2008471. doi: 10.1002/adma.202008471
      (c) Zhang, S.;Ao, X.;Huang, J.;Wei, B.;Zhai, Y.;Zhai, D.;Deng, W.;Su, C.;Wang, D.;Li, Y. NanoLett. 2021, 21 (22), 9691. doi: 10.1021/acs.nanolett.1c03499

    42. [42]

      Chu, C.; Zhu, Q.; Pan, Z.; Gupta, S.; Huang, D.; Du, Y.; Weon, S.; Wu, Y.; Muhich, C.; Stavitski, E. Proc. Natl. Acad. Sci. USA 2020, 117 (12), 6376. doi: 10.1073/pnas.1913403117  doi: 10.1073/pnas.1913403117

    43. [43]

      Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y. -R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C. Nat. Catal. 2021, 4 (5), 374. doi: 10.1038/s41929-021-00605-1  doi: 10.1038/s41929-021-00605-1

    44. [44]

      Hai, X.; Zhao, X.; Guo, N.; Yao, C.; Chen, C.; Liu, W.; Du, Y.; Yan, H.; Li, J.; Chen, Z. ACS Catal. 2020, 10 (10), 5862. doi: 10.1021/acscatal.0c00936  doi: 10.1021/acscatal.0c00936

    45. [45]

      (a) Xu, X.; Sa, R.; Huang, W.; Sui, Y.; Chen, W.; Zhou, G.; Li, X.; Li, Y.; Zhong, H. ACS Catal. 2022, 12 (20), 12954. doi: 10.1021/acscatal.2c04085
      (b) Liu, W.;Xu, R.;Wang, Y.;Huang, N.;Shimada, T.;Ye, L. Int.J.HydrogenEnergy 2022, 47 (36), 16005. doi: 10.1016/j.ijhydene.2022.03.106

    46. [46]

      (a) Sun, J.; Wu, Y. Angew. Chem. Int. Ed. 2020, 59 (27), 10904. doi: 10.1002/anie.202003745
      (b) Yu, F.;Wang, K.;Wang, C.;He, X.;Liao, Y.;Zhao, S.;Mao, H.;Li, X.;Ma, J. Chem.Res.Chin.Univ. 2020, 36 (6), 1332. doi: 10.1007/s40242-020-0161-8

    47. [47]

      (a) Kc, U.; Nasir, E. F.; Farooq, A. Appl. Phys. B 2015, 120 (2), 223. doi: 10.1007/s00340-015-6125-x
      (b) Luppi, B.T.;Muralidharan, A.V.;Ostermann, N.;Cheong, I.T.;Ferguson, M.J.;Siewert, I.;Rivard, E. Angew.Chem.Int.Ed. 2022, 61 (4), 202114586.doi: 10.1002/anie.202114586

    48. [48]

      (a) Zhai, L.; Xie, Z.; Cui, C. -X.; Yang, X.; Xu, Q.; Ke, X.; Liu, M.; Qu, L. -B.; Chen, X.; Mi, L. Chem. Mater. 2022, 34 (11), 5232. doi: 10.1021/acs.chemmater.2c00910
      (b) Lv, N.;Ma, T.;Qin, H.;Yang, Z.-R.;Wu, Y.;Li, D.;Tao, J.;Jiang, H.;Zhu, J. Sci.ChinaMater. 2022, 65, 2861. doi: 10.1007/s40843-022-2008-1

    49. [49]

      (a) Liu, M.; Liu, S.; Cui, C. X.; Miao, Q.; He, Y.; Li, X.; Xu, Q.; Zeng, G. Angew. Chem. Int. Ed. 2022, 61 (49), 202213522. doi: 10.1002/anie.202213522
      (b) Chen, X.;Zhao, J.;Li, G.;Zhang, D.;Li, H. EnergyMater. 2022, 2 (1), 200001.doi: 10.20517/energymater.2021.24

    50. [50]

      (a) Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. 2022, 134 (39), 202208438. doi: 10.1002/ange.202208438
      (b) Liu, C.;Li, Z.;Liu, H.;Dong, J.;Chi, Y.;Hu, C. ChemCatChem 2022, 14 (11), e202200021.doi: 10.1002/cctc.202200021
      (c) Qian, Z.;Wang, Z.J.;Zhang, K.A. Chem.Mater. 2021, 33 (6), 1909.doi: 10.1021/acs.chemmater.0c04348

    51. [51]

      Wu, C.; Teng, Z.; Yang, C.; Chen, F.; Yang, H. B.; Wang, L.; Xu, H.; Liu, B.; Zheng, G.; Han, Q. Adv. Mater. 2022, 34 (28), 2110266. doi: 10.1002/adma.202110266  doi: 10.1002/adma.202110266

    52. [52]

      Jourshabani, M.; Asrami, M. R.; Lee, B. -K. Appl. Catal. B-Environ. 2022, 302, 120839. doi: 10.1016/j.apcatb.2021.120839  doi: 10.1016/j.apcatb.2021.120839

    53. [53]

      Liu, X.; Qi, R.; Li, S.; Liu, W.; Yu, Y.; Wang, J.; Wu, S.; Ding, K.; Yu, Y. J. Am. Chem. Soc. 2022, 144 (51), 23396. doi: 10.1021/jacs.2c09369  doi: 10.1021/jacs.2c09369

    54. [54]

      (a) Dong, K.; Liang, J.; Ren, Y.; Wang, Y.; Xu, Z.; Yue, L.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y. J. Mater. Chem. A 2021, 9 (46), 26019. doi: 10.1039/D1TA07989A
      (b) Brezny, A.C.;Nedzbala, H.S.;Mayer, J.M. Chem.Commun. 2021, 57 (10), 1202.doi: 10.1039/D0CC06701F
      (c) Zhao, X.;Yin, Q.;Mao, X.;Cheng, C.;Zhang, L.;Wang, L.;Liu, T.-F.;Li, Y.;Li, Y. Nat.Commun. 2022, 13 (1), 2721. doi: 10.1038/s41467-022-30523-0
      (d) Yang, J.;Li, P.;Li, X.;Xie, L.;Wang, N.;Lei, H.;Zhang, C.;Zhang, W.;Lee, Y.M.;Zhang, W. Angew.Chem. 2022, 134 (34), e202208143.doi: 10.1002/ange.202208143

    55. [55]

      Nosaka, Y.; Nosaka, A. Introduction to Photocatalysis: From Basic Science to Applications; Royal Society of Chemistry: London, UK, 2019; pp. 1–272.

    56. [56]

      (a) Kaneko, M. Prog. Polym. Sci. 2001, 26 (7), 1101. doi: 10.1016/S0079-6700(01)00015-6
      (b) Qiu, C.;Sun, Y.;Xu, Y.;Zhang, B.;Zhang, X.;Yu, L.;Su, C. ChemSusChem 2021, 14 (16), 3344.doi: 10.1002/cssc.202101041
      (c) Ou, W.;Xu, Y.;Zhou, H.;Su, C. Sol.RRL 2021, 5 (2), 2000444. doi: 10.1002/solr.202000444

    57. [57]

      (a) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145
      (b) Chen, X.;Shen, S.;Guo, L.;Mao, S.S. Chem.Rev. 2010, 110 (11), 6503.doi: 10.1021/cr1001645

    58. [58]

      Teng, Z.; Cai, W.; Sim, W.; Zhang, Q.; Wang, C.; Su, C.; Ohno, T. Appl. Catal. B-Environ. 2021, 282, 119589. doi: 10.1016/j.apcatb.2020.119589  doi: 10.1016/j.apcatb.2020.119589

    59. [59]

      Teng, Z.; Cai, W.; Liu, S.; Wang, C.; Zhang, Q.; Appl. Catal. B-Environ. 2020, 271, 118917. doi: 10.1016/j.apcatb.2020.118917  doi: 10.1016/j.apcatb.2020.118917

    60. [60]

      Zeng, Z.; Quan, X.; Yu, H.; Chen, S.; Zhang, S. J. Catal. 2019, 375, 361. doi: 10.1016/j.jcat.2019.06.019  doi: 10.1016/j.jcat.2019.06.019

    61. [61]

      Zhao, Y.; Liu, Y.; Wang, Z.; Ma, Y.; Zhou, Y.; Shi, X.; Wu, Q.; Wang, X.; Shao, M.; Huang, H. Appl. Catal. B-Environ. 2021, 289, 120035. doi: 10.1016/j.apcatb.2021.120035  doi: 10.1016/j.apcatb.2021.120035

    62. [62]

      Xie, H.; Zheng, Y.; Guo, X.; Liu, Y.; Zhang, Z.; Zhao, J.; Zhang, W.; Wang, Y.; Huang, Y. ACS Sustain. Chem. Eng. 2021, 9 (19), 6788. doi: 10.1021/acssuschemeng.1c01012  doi: 10.1021/acssuschemeng.1c01012

    63. [63]

      Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang, Y.; Li, H.; Wang, L.; Zhou, X. Energy Environ. Sci. 2022, 15 (2), 830. doi: 10.1039/D1EE02369A  doi: 10.1039/D1EE02369A

    64. [64]

      Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. J. Am. Chem. Soc. 2016, 138 (31), 10019. doi: 10.1021/jacs.6b05806  doi: 10.1021/jacs.6b05806

    65. [65]

      Wu, Q.; Cao, J.; Wang, X.; Liu, Y.; Zhao, Y.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. Nat. Commun. 2021, 12 (1), 483. doi: 10.1038/s41467-020-20823-8  doi: 10.1038/s41467-020-20823-8

    66. [66]

      Kou, M.; Wang, Y.; Xu, Y.; Ye, L.; Huang, Y.; Jia, B.; Li, H.; Ren, J.; Deng, Y.; Chen, J. Angew. Chem. Int. Ed. 2022, 61 (19), e202200413. doi: 10.1002/anie.202200413  doi: 10.1002/anie.202200413

    67. [67]

      (a) Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G. Fuel 2010, 89 (5), 913. doi: 10.1016/j.fuel.2009.10.022
      (b) Deivayanai, V.;Yaashikaa, P.;Kumar, P.S.;Rangasamy, G. BioresourceTechnol. 2022, 128166. doi: 10.1016/j.biortech.2022.128166

    68. [68]

      Isaka, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. T Angew. Chem. 2019, 131 (16), 5456. doi: 10.1002/ange.201901961  doi: 10.1002/ange.201901961

    69. [69]

      Wang, S.; Cai, B.; Tian, H. Angew. Chem. Int. Ed. 2022, 61 (23), e202202733. doi: 10.1002/anie.202202733  doi: 10.1002/anie.202202733

    70. [70]

      (a) Ifkovits, Z. P.; Evans, J. M.; Meier, M. C.; Papadantonakis, K. M.; Lewis, N. S. Energy Environ. Sci. 2021, 14 (9), 4740. doi: 10.1039/D1EE01226F
      (b) Zhang, B.;Zheng, Y.;Ma, T.;Yang, C.;Peng, Y.;Zhou, Z.;Zhou, M.;Li, S.;Wang, Y.;Cheng, C. Adv.Mater. 2021, 33 (17), 2006042. doi: 10.1002/adma.202006042
      (c) Yu, Z.Y.;Duan, Y.;Feng, X.Y.;Yu, X.;Gao, M.R.;Yu, S.H. Adv.Mater. 2021, 33 (31), 2007100. doi: 10.1002/adma.202007100
      (d) Ye, S.;Shi, W.;Liu, Y.;Li, D.;Yin, H.;Chi, H.;Luo, Y.;Ta, N.;Fan, F.;Wang, X. J.Am.Chem.Soc. 2021, 143 (32), 12499. doi: 10.1021/jacs.1c00802
      (e) Wang, H.;Cheng, H.;Lv, H.;Xu, H.;Wu, X.;Yang, J. J.Phys.Chem.Lett. 2022, 13 (17), 3949.doi: 10.1021/acs.jpclett.2c00819

    71. [71]

      (a) Wu, Z.; Li, X.; Zhao, Y.; Li, Y.; Wei, K.; Shi, H.; Zhang, T.; Huang, H.; Liu, Y.; Kang, Z. ACS Appl. Mater. Interfaces 2021, 13 (50), 60561. doi: 10.1021/acsami.1c14735
      (b) Wang, L.;Cao, S.;Guo, K.;Wu, Z.;Ma, Z.;Piao, L. Chin.J.Catal. 2019, 40 (3), 470.doi: 10.1016/S1872-2067(19)63274-2

    72. [72]

      Fuku, K.; Sayama, K. Chem. Commun. 2016, 52 (31), 5406. doi: 10.1039/C6CC01605G  doi: 10.1039/C6CC01605G

    73. [73]

      Xue, F.; Si, Y.; Cheng, C.; Fu, W.; Chen, X.; Shen, S.; Wang, L.; Liu, M. Nano Energy 2022, 103, 107799. doi: 10.1016/j.nanoen.2022.107799  doi: 10.1016/j.nanoen.2022.107799

    74. [74]

      Fu, Y.; Liu, C. A.; Zhang, M.; Zhu, C.; Li, H.; Wang, H.; Song, Y.; Huang, H.; Liu, Y.; Kang, Z. Adv. Energy Mater. 2018, 8 (34), 1802525. doi: 10.1002/aenm.201802525  doi: 10.1002/aenm.201802525

    75. [75]

      Liu, Y.; Zhao, Y.; Sun, Y.; Cao, J.; Wang, H.; Wang, X.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. Appl. Catal. B-Environ. 2020, 270, 118875. doi: 10.1016/j.apcatb.2020.118875  doi: 10.1016/j.apcatb.2020.118875

    76. [76]

      Zhao, C.; Jiang, Z.; Liu, Y.; Zhou, Y.; Yin, P.; Ke, Y.; Deng, H. J. Am. Chem. Soc. 2022, 144 (51), 23560. doi: 10.1021/jacs.2c10687  doi: 10.1021/jacs.2c10687

    77. [77]

      Chang, J. -N.; Li, Q.; Shi, J. -W.; Zhang, M.; Zhang, L.; Li, S.; Chen, Y.; Li, S. -L.; Lan, Y. -Q. Angew. Chem. Int. Ed. 2023, 62 (9), e202218868. doi: 10.1002/anie.202218868  doi: 10.1002/anie.202218868

    78. [78]

      Cussler, E. L.; Cussler, E. L. Diffusion: Mass Transfer in fluid systems; Cambridge university press: Cambridge, 2009; pp. 1-631.

    79. [79]

      (a) Xiong, X.; Wang, Z.; Zhang, Y.; Li, Z.; Shi, R.; Zhang, T. Appl. Catal. B-Environ. 2020, 264, 118518. doi: 10.1016/j.apcatb.2019.118518
      (b) Sheng, X.;Liu, Z.;Zeng, R.;Chen, L.;Feng, X.;Jiang, L. J.Am.Chem.Soc. 2017, 139 (36), 12402.doi: 10.1021/jacs.7b07187

    80. [80]

      Huang, H.; Zhang, Q.; Shi, R.; Su, C.; Wang, Y.; Zhao, J.; Zhang, T. Appl. Catal. B-Environ. 2022, 317, 121731. doi: 10.1016/j.apcatb.2022.121731  doi: 10.1016/j.apcatb.2022.121731

    81. [81]

      Xu, Z.; Gong, S.; Ji, W.; Zhang, S.; Bao, Z.; Zhao, Z.; Wei, Z.; Zhong, X.; Hu, Z. -T.; Wang, J. Chem. Eng. J. 2022, 46 (2), 137009. doi: 10.1016/j.cej.2022.137009  doi: 10.1016/j.cej.2022.137009

    82. [82]

      Xu, J.; Zheng, X.; Feng, Z.; Lu, Z.; Zhang, Z.; Huang, W.; Li, Y.; Vuckovic, D.; Li, Y.; Dai, S. O Nat. Sustain. 2021, 4 (3), 233. doi: 10.1038/s41893-020-00635-w  doi: 10.1038/s41893-020-00635-w

    83. [83]

      Wang, W.; Xie, H.; Li, G.; Li, J.; Wong, P. K.; An, T. ACS EST Water 2021, 1 (6), 1483. doi: 10.1021/acsestwater.1c00048  doi: 10.1021/acsestwater.1c00048

    84. [84]

      Ma, J.; Peng, X.; Zhou, Z.; Yang, H.; Wu, K.; Fang, Z.; Han, D.; Fang, Y.; Liu, S.; Shen, Y. Angew. Chem. Int. Ed. 2022, 61 (43), e202210856. doi: 10.1002/anie.202210856  doi: 10.1002/anie.202210856

    85. [85]

      An, B.; Li, Z.; Wang, Z.; Zeng, X.; Han, X.; Cheng, Y.; Sheveleva, A. M.; Zhang, Z.; Tuna, F.; McInnes, E. J. Nat. Mater. 2022, 21 (8), 932. doi: 10.1038/s41563-022-01279-1  doi: 10.1038/s41563-022-01279-1

    86. [86]

      (a) Fan, W.; Zhang, B.; Wang, X.; Ma, W.; Li, D.; Wang, Z.; Dupuis, M.; Shi, J.; Liao, S.; Li, C. Energy Environ. Sci. 2020, 13 (1), 238. doi: 10.1039/C9EE02247C
      (b) Meng, L.;Li, L. NanoRes.Energy 2022, 1 (2), e9120020. doi: 10.26599/NRE.2022.9120020
      (c) Xue, H.;Gong, H.;Yamauchi, Y.;Sasaki, T.;Ma, R. NanoRes.Energy 2022, 1 (1), e9120007.doi: 10.26599/NRE.2022.9120007

    87. [87]

      (a) Dai, Y.; Xiong, Y. Nano Res. Energy 2022, 1 (1), e9120006. doi: 10.26599/NRE.2022.9120006
      (b) Li, L.;ulHasan, I.M.;He, R.;Peng, L.;Xu, N.;Niazi, N.K.;Zhang, J.-N.;Qiao, J. NanoRes.Energy 2022, 1 (2), e9120015. doi: 10.26599/NRE.2022.9120015

    88. [88]

      (a) Zhang, S.; Wang, L.; Fu, X. Sci. Sin. Chim. 2023, 53 (1), 3. doi: 10.1360/ssc-2022-0036
      (b) Wei, Z.; Wang, J.; Guo, S.; Tan, S. C. Nano Res. Energy 2022, 1 (2), e9120014. doi: 10.26599/NRE.2022.9120014

  • 加载中
    1. [1]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    2. [2]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    3. [3]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    4. [4]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    5. [5]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    6. [6]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    7. [7]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    8. [8]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    17. [17]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    18. [18]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    19. [19]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(12)
  • Abstract views(923)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return