Citation: Wei Wang, Yao Wang, Zixiang Zhan, Tian Tan, Weiping Deng, Qinghong Zhang, Ye Wang. Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220503. doi: 10.3866/PKU.WHXB2022205032 shu

Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals

  • Corresponding author: Weiping Deng, dengwp@xmu.edu.cn Ye Wang, wangye@xmu.edu.cn
  • Received Date: 14 May 2022
    Revised Date: 31 May 2022
    Accepted Date: 1 June 2022
    Available Online: 7 June 2022

    Fund Project: the National Key R & D program of China 2018YFB1501602the National Natural Science Foundation of China 22121001the National Natural Science Foundation of China 22172127the National Natural Science Foundation of China 91945301

  • Biomass, as a renewable carbon resource in nature, has been considered as an ideal starting feedstock to produce various valuable chemicals, fuels, and materials, and thus, can help build a sustainable chemical industry. Because cellulose is one of the richest components in lignocellulosic biomass, the efficient transformation of cellulose plays a crucial role in biomass utilization. However, there are many oxygen-containing groups in cellulose, and therefore, the selective removal of particular functional groups from cellulose becomes an essential step in the synthesis of the chemicals or fuels that can meet the requirements set by current chemical industries. In the past decades, several efficient catalytic systems have been developed to selectively split the C―O bonds inside cellulose and its derivatives, thereby producing various valuable chemicals. In this review article, we highlight recent progress made in the selective deoxygenation of cellulose and its derived key platforms such as glucose and 5-hydroxymethyl furfural (HMF) into ethanol, dimethyl furfural (DMF), 1, 6-hexanediol (1, 6-HD), and adipic acid. The selection of these reactions is primarily because these chemicals are of great significance in chemical industries. More importantly, the formation of these chemicals represents the cleavage of different C―O bonds in biomass molecules. For instance, the synthesis of ethanol requires cleaving of only one C―O bond and two C―C bonds of the glucose unit inside cellulose. If two or more C―O bonds in the sugar or sugar acids are cleaved, olefins, oxygen-reduced sugars, and adipic acid will be attained. HMF has a furan ring linked by hydroxyl/carbonyl groups, and hence, either a furanic compound (e.g., DMF) or linear products (e.g., 1, 6-HD and adipic acid) can be synthesized by selective removal of hydroxyl/carbonyl oxygen or ring oxygen atoms. This article focuses on the selective cleavage of particular C―O bonds via heterogeneous catalysis. Efficient catalytic systems using hydrogenolysis and/or deoxydehydration strategies for these transformations are discussed. Moreover, the functions of typical catalysts and reaction mechanisms are presented to obtain insight into the C―O bond cleavage in these biomass molecules. Additionally, other factors such as reaction conditions that also influence the deoxygenation performance are analyzed. We hope that these knowledge gained on the catalytic deoxygenation of cellulose and its derived platforms will promote the rational design of effective strategies or catalysts in the future utilization of lignocellulosic biomass.
  • 加载中
    1. [1]

      Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044. doi: 10.1021/cr068360d  doi: 10.1021/cr068360d

    2. [2]

      Lin, Y. C.; Huber, G. W. Energy Environ. Sci. 2009, 2 (1), 68. doi: 10.1039/b814955k  doi: 10.1039/b814955k

    3. [3]

      Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41 (24), 8075. doi: 10.1039/c2cs35188a  doi: 10.1039/c2cs35188a

    4. [4]

      Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115 (21), 11559. doi: 10.1021/acs.chemrev.5b00155  doi: 10.1021/acs.chemrev.5b00155

    5. [5]

      Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117 (10), 6834. doi: 10.1021/acs.chemrev.6b00457  doi: 10.1021/acs.chemrev.6b00457

    6. [6]

      Li, S.; Deng, W.; Wang, S.; Wang, P.; An, D.; Li, Y.; Zhang, Q.; Wang, Y. ChemSusChem 2018, 11 (13), 1995. doi: 10.1002/cssc.201800440  doi: 10.1002/cssc.201800440

    7. [7]

      Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. J. Energy Chem. 2019, 32, 138. doi: 10.1016/j.jechem.2018.07.012  doi: 10.1016/j.jechem.2018.07.012

    8. [8]

      Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Chem 2019, 5 (10), 2520. doi: 10.1016/j.chempr.2019.05.022  doi: 10.1016/j.chempr.2019.05.022

    9. [9]

      Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Chem. Soc. Rev. 2020, 49 (17), 6198. doi: 10.1039/d0cs00314j  doi: 10.1039/d0cs00314j

    10. [10]

      Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Chem. Soc. Rev. 2020, 49 (15), 5510. doi: 10.1039/d0cs00134a  doi: 10.1039/d0cs00134a

    11. [11]

      He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2022, 61 (15), e202112835. doi: 10.1002/anie.202112835  doi: 10.1002/anie.202112835

    12. [12]

      Mika, L. T.; Csefalvay, E.; Nemeth, A. Chem. Rev. 2018, 118 (2), 505. doi: 10.1021/acs.chemrev.7b00395  doi: 10.1021/acs.chemrev.7b00395

    13. [13]

      Li, C.; Zhao, Z. K. Adv. Synth. Catal. 2007, 349 (11–12), 1847. doi: 10.1002/adsc.200700259  doi: 10.1002/adsc.200700259

    14. [14]

      Li, C.; Wang, Q.; Zhao, Z. K. Green Chem. 2008, 10 (2), 177. doi: 10.1039/b711512a  doi: 10.1039/b711512a

    15. [15]

      Rinaldi, R.; Palkovits, R.; Schuth, F. Angew. Chem. Int. Ed. 2008, 47 (42), 8047. doi: 10.1002/anie.200802879  doi: 10.1002/anie.200802879

    16. [16]

      Song, H.; Wang, P.; Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (30), 4303. doi: 10.1039/c9cc00619b  doi: 10.1039/c9cc00619b

    17. [17]

      Yang, M.; Qi, H.; Liu, F.; Ren, Y.; Pan, X.; Zhang, L.; Liu, X.; Wang, H.; Pang, J.; Zheng, M.; et al. Joule 2019, 3 (8), 1937. doi: 10.1016/j.joule.2019.05.020  doi: 10.1016/j.joule.2019.05.020

    18. [18]

      Li, C.; Xu, G.; Wang, C.; Ma, L.; Qiao, Y.; Zhang, Y.; Fu, Y. Green Chem. 2019, 21 (9), 2234. doi: 10.1039/c9gc00719a  doi: 10.1039/c9gc00719a

    19. [19]

      Liu, Q.; Wang, H.; Xin, H.; Wang, C.; Yan, L.; Wang, Y.; Zhang, Q.; Zhang, X.; Xu, Y.; Huber, G. W.; et al. ChemSusChem 2019, 12 (17), 3977. doi: 10.1002/cssc.201901110  doi: 10.1002/cssc.201901110

    20. [20]

      Xia, Q.; Chen, Z.; Shao, Y.; Gong, X.; Wang, H.; Liu, X.; Parker, S. F.; Han, X.; Yang, S.; Wang, Y. Nat. Commun. 2016, 7, 11162. doi: 10.1038/ncomms11162  doi: 10.1038/ncomms11162

    21. [21]

      Xu, C.; Paone, E.; Rodriguez-Padron, D.; Luque, R.; Mauriello, F. Chem. Soc. Rev. 2020, 49 (13), 4273. doi: 10.1039/d0cs00041h  doi: 10.1039/d0cs00041h

    22. [22]

      Subramani, V.; Gangwal, S. K. Energy Fuels 2008, 22 (2), 814. doi: 10.1021/ef700411x  doi: 10.1021/ef700411x

    23. [23]

      Kennes, D.; Abubackar, H. N.; Diaz, M.; Veiga, M. C.; Kennes, C. J. Chem. Technol. Biotechnol. 2016, 91 (2), 304. doi: 10.1002/jctb.4842  doi: 10.1002/jctb.4842

    24. [24]

      Xu, G.; Wang, A.; Pang, J.; Zhao, X.; Xu, J.; Lei, N.; Wang, J.; Zheng, M.; Yin, J.; Zhang, T. ChemSusChem 2017, 10 (7), 1390. doi: 10.1002/cssc.201601714  doi: 10.1002/cssc.201601714

    25. [25]

      Yang, C.; Miao, Z.; Zhang, F.; Li, L.; Liu, Y.; Wang, A.; Zhang, T. Green Chem. 2018, 20 (9), 2142. doi: 10.1039/c8gc00309b  doi: 10.1039/c8gc00309b

    26. [26]

      Luo, C.; Wang, S.; Liu, H. Angew. Chem. Int. Ed. 2007, 46 (40), 7636. doi: 10.1002/anie.200702661  doi: 10.1002/anie.200702661

    27. [27]

      Wu, Y.; Dong, C.; Wang, H.; Peng, J.; Li, Y.; Samart, C.; Ding, M. ACS Sustainable Chem. Eng. 2022, 10 (8), 2802. doi: 10.1021/acssuschemeng.1c08204  doi: 10.1021/acssuschemeng.1c08204

    28. [28]

      Chu, D.; Luo, Z.; Xin, Y.; Jiang, C.; Gao, S.; Wang, Z.; Zhao, C. Fuel 2021, 292, 120311. doi: 10.1016/j.fuel.2021.120311  doi: 10.1016/j.fuel.2021.120311

    29. [29]

      Chapman, G., Jr.; Nicholas, K. M. Chem. Commun. 2013, 49 (74), 8199. doi: 10.1039/c3cc44656e  doi: 10.1039/c3cc44656e

    30. [30]

      Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2013, 52 (49), 12905. doi: 10.1002/anie.201307564  doi: 10.1002/anie.201307564

    31. [31]

      Li, X.; Wu, D.; Lu, T.; Yi, G.; Su, H.; Zhang, Y. Angew. Chem. Int. Ed. 2014, 53 (16), 4200. doi: 10.1002/anie.201310991  doi: 10.1002/anie.201310991

    32. [32]

      Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6 (3), 1901. doi: 10.1021/acscatal.5b02667  doi: 10.1021/acscatal.5b02667

    33. [33]

      Raju, S.; Moret, M. -E.; Klein Gebbink, R. J. M. ACS Catal. 2014, 5 (1), 281. doi: 10.1021/cs501511x  doi: 10.1021/cs501511x

    34. [34]

      Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8 (5), 767. doi: 10.1002/cssc.201402987  doi: 10.1002/cssc.201402987

    35. [35]

      Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5 (12), 3567. doi: 10.1002/cctc.201300545  doi: 10.1002/cctc.201300545

    36. [36]

      Sandbrink, L.; Klindtworth, E.; Islam, H. -U.; Beale, A. M.; Palkovits, R. ACS Catal. 2015, 6 (2), 677. doi: 10.1021/acscatal.5b01936  doi: 10.1021/acscatal.5b01936

    37. [37]

      Jang, J. H.; Sohn, H.; Camacho-Bunquin, J.; Yang, D.; Park, C. Y.; Delferro, M.; Abu-Omar, M. M. ACS Sustainable Chem. Eng. 2019, 7 (13), 11438. doi: 10.1021/acssuschemeng.9b01253  doi: 10.1021/acssuschemeng.9b01253

    38. [38]

      Meiners, I.; Louven, Y.; Palkovits, R. ChemCatChem 2021, 13 (10), 2393. doi: 10.1002/cctc.202100277  doi: 10.1002/cctc.202100277

    39. [39]

      Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6 (10), 6393. doi: 10.1021/acscatal.6b01864  doi: 10.1021/acscatal.6b01864

    40. [40]

      Nakagawa, Y.; Tazawa, S.; Wang, T.; Tamura, M.; Hiyoshi, N.; Okumura, K.; Tomishige, K. ACS Catal. 2017, 8 (1), 584. doi: 10.1021/acscatal.7b02879  doi: 10.1021/acscatal.7b02879

    41. [41]

      Cao, J.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2019, 9 (4), 3725. doi: 10.1021/acscatal.9b00589  doi: 10.1021/acscatal.9b00589

    42. [42]

      Yamaguchi, K.; Cao, J.; Betchaku, M.; Nakagawa, Y.; Tamura, M.; Nakayama, A.; Yabushita, M.; Tomishige, K. ChemSusChem 2022, e202102663. doi: 10.1002/cssc.202102663  doi: 10.1002/cssc.202102663

    43. [43]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Angew. Chem. Int. Ed. 2015, 54 (6), 1897. doi: 10.1002/anie.201410352  doi: 10.1002/anie.201410352

    44. [44]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6 (5), 3213. doi: 10.1021/acscatal.6b00491  doi: 10.1021/acscatal.6b00491

    45. [45]

      Tamura, M.; Yuasa, N.; Cao, J.; Nakagawa, Y.; Tomishige, K. Angew. Chem. Int. Ed. 2018, 57 (27), 8058. doi: 10.1002/anie.201803043  doi: 10.1002/anie.201803043

    46. [46]

      Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139 (40), 14001. doi: 10.1021/jacs.7b07801  doi: 10.1021/jacs.7b07801

    47. [47]

      Lin, J.; Song, H.; Shen, X.; Wang, B.; Xie, S.; Deng, W.; Wu, D.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (74), 11017. doi: 10.1039/c9cc05413h  doi: 10.1039/c9cc05413h

    48. [48]

      Deng, W.; Yan, L.; Wang, B.; Zhang, Q.; Song, H.; Wang, S.; Zhang, Q.; Wang, Y. Angew. Chem. Int. Ed. 2021, 60 (9), 4712. doi: 10.1002/anie.202013843  doi: 10.1002/anie.202013843

    49. [49]

      Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447 (7147), 982. doi: 10.1038/nature05923  doi: 10.1038/nature05923

    50. [50]

      Hu, L.; Tang, X.; Xu, J.; Wu, Z.; Lin, L.; Liu, S. Ind. Eng. Chem. Res. 2014, 53 (8), 3056. doi: 10.1021/ie404441a  doi: 10.1021/ie404441a

    51. [51]

      Huang, Y. B.; Chen, M. Y.; Yan, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2014, 7 (4), 1068. doi: 10.1002/cssc.201301356  doi: 10.1002/cssc.201301356

    52. [52]

      Luo, J.; Arroyo‐Ramírez, L.; Gorte, R. J.; Tzoulaki, D.; Vlachos, D. G. AIChE J. 2014, 61 (2), 590. doi: 10.1002/aic.14660  doi: 10.1002/aic.14660

    53. [53]

      Lin, Z.; Wan, W.; Yao, S.; Chen, J. G. Appl. Catal. B-Environ. 2018, 233, 160. doi: 10.1016/j.apcatb.2018.03.113  doi: 10.1016/j.apcatb.2018.03.113

    54. [54]

      Deng, Y.; Gao, R.; Lin, L.; Liu, T.; Wen, X. D.; Wang, S.; Ma, D. J. Am. Chem. Soc. 2018, 140 (43), 14481. doi: 10.1021/jacs.8b09310  doi: 10.1021/jacs.8b09310

    55. [55]

      Thananatthanachon, T.; Rauchfuss, T. B. Angew. Chem. Int. Ed. 2010, 49 (37), 6616. doi: 10.1002/anie.201002267  doi: 10.1002/anie.201002267

    56. [56]

      Saha, B.; Bohn, C. M.; Abu-Omar, M. M. ChemSusChem 2014, 7 (11), 3095. doi: 10.1002/cssc.201402530  doi: 10.1002/cssc.201402530

    57. [57]

      Li, J.; Liu, J. L.; Liu, H. Y.; Xu, G. Y.; Zhang, J. J.; Liu, J. X.; Zhou, G. L.; Li, Q.; Xu, Z. H.; Fu, Y. ChemSusChem 2017, 10 (7), 1436. doi: 10.1002/cssc.201700105  doi: 10.1002/cssc.201700105

    58. [58]

      Chimentão, R. J.; Oliva, H.; Belmar, J.; Morales, K.; Mäki-Arvela, P.; Wärnå, J.; Murzin, D. Y.; Fierro, J. L. G.; Llorca, J.; Ruiz, D. Appl. Catal. B-Environ. 2019, 241, 270. doi: 10.1016/j.apcatb.2018.09.026  doi: 10.1016/j.apcatb.2018.09.026

    59. [59]

      Yang, Y.; Liu, H.; Li, S.; Chen, C.; Wu, T.; Mei, Q.; Wang, Y.; Chen, B.; Liu, H.; Han, B. ACS Sustainable Chem. Eng. 2019, 7 (6), 5711. doi: 10.1021/acssuschemeng.8b04937  doi: 10.1021/acssuschemeng.8b04937

    60. [60]

      Yang, F.; Mao, J.; Li, S.; Yin, J.; Zhou, J.; Liu, W. Catal. Sci. Technol. 2019, 9 (6), 1329. doi: 10.1039/c9cy00330d  doi: 10.1039/c9cy00330d

    61. [61]

      Li, C.; Cai, H.; Zhang, B.; Li, W.; Pei, G.; Dai, T.; Wang, A.; Zhang, T. Chin. J. Catal. 2015, 36 (9), 1638. doi: 10.1016/s1872-2067(15)60927-5  doi: 10.1016/s1872-2067(15)60927-5

    62. [62]

      Wang, Q.; Guan, X.; Kang, L.; Wang, B.; Sheng, L.; Wang, F. R. ACS Appl. Mater. Interfaces 2020, 12, 53712. doi: 10.1021/acsami.0c11888  doi: 10.1021/acsami.0c11888

    63. [63]

      Yu, L.; He, L.; Chen, J.; Zheng, J.; Ye, L.; Lin, H.; Yuan, Y. ChemCatChem 2015, 7 (11), 1701. doi: 10.1002/cctc.201500097  doi: 10.1002/cctc.201500097

    64. [64]

      Solanki, B. S.; Rode, C. V. Green Chem. 2019, 21 (23), 6390. doi: 10.1039/c9gc03091c  doi: 10.1039/c9gc03091c

    65. [65]

      Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schuth, F. Nat. Mater. 2014, 13 (3), 293. doi: 10.1038/nmat3872  doi: 10.1038/nmat3872

    66. [66]

      Zu, Y.; Yang, P.; Wang, J.; Liu, X.; Ren, J.; Lu, G.; Wang, Y. Appl. Catal. B- Environ. 2014, 146, 244. doi: 10.1016/j.apcatb.2013.04.026  doi: 10.1016/j.apcatb.2013.04.026

    67. [67]

      Guo, W.; Liu, H.; Zhang, S.; Han, H.; Liu, H.; Jiang, T.; Han, B.; Wu, T. Green Chem. 2016, 18 (23), 6222. doi: 10.1039/c6gc02630c  doi: 10.1039/c6gc02630c

    68. [68]

      Yang, P.; Xia, Q.; Liu, X.; Wang, Y. J. Energy. Chem. 2016, 25 (6), 1015. doi: 10.1016/j.jechem.2016.08.008  doi: 10.1016/j.jechem.2016.08.008

    69. [69]

      Chang, X.; Liu, A. F.; Cai, B.; Luo, J. Y.; Pan, H.; Huang, Y. B. ChemSusChem 2016, 9 (23), 3330. doi: 10.1002/cssc.201601122  doi: 10.1002/cssc.201601122

    70. [70]

      Luo, J.; Yun, H.; Mironenko, A. V.; Goulas, K.; Lee, J. D.; Monai, M.; Wang, C.; Vorotnikov, V.; Murray, C. B.; Vlachos, D. G.; et al. ACS Catal. 2016, 6 (7), 4095. doi: 10.1021/acscatal.6b00750  doi: 10.1021/acscatal.6b00750

    71. [71]

      Luo, J.; Lee, J. D.; Yun, H.; Wang, C.; Monai, M.; Murray, C. B.; Fornasiero, P.; Gorte, R. J. Appl. Catal. B-Environ. 2016, 199, 439. doi: 10.1016/j.apcatb.2016.06.051  doi: 10.1016/j.apcatb.2016.06.051

    72. [72]

      Srivastava, S.; Jadeja, G. C.; Parikh, J. Chin. J. Catal. 2017, 38 (4), 699. doi: 10.1016/s1872-2067(17)62789-x  doi: 10.1016/s1872-2067(17)62789-x

    73. [73]

      Luo, J.; Monai, M.; Wang, C.; Lee, J. D.; Duchoň, T.; Dvořák, F.; Matolín, V.; Murray, C. B.; Fornasiero, P.; Gorte, R. J. Catal. Sci. Technol. 2017, 7 (8), 1735. doi: 10.1039/c6cy02647h  doi: 10.1039/c6cy02647h

    74. [74]

      Gao, Z.; Fan, G.; Liu, M.; Yang, L.; Li, F. Appl. Catal. B-Environ. 2018, 237, 649. doi: 10.1016/j.apcatb.2018.06.026  doi: 10.1016/j.apcatb.2018.06.026

    75. [75]

      Li, J.; Song, Z.; Hou, Y.; Li, Z.; Xu, C.; Liu, C. L.; Dong, W. S. ACS Appl. Mater. Interfaces 2019, 11 (13), 12481. doi: 10.1021/acsami.8b22183  doi: 10.1021/acsami.8b22183

    76. [76]

      Zhang, Z.; Yao, S.; Wang, C.; Liu, M.; Zhang, F.; Hu, X.; Chen, H.; Gou, X.; Chen, K.; Zhu, Y.; et al. J. Catal. 2019, 373, 314. doi: 10.1016/j.jcat.2019.04.011  doi: 10.1016/j.jcat.2019.04.011

    77. [77]

      Mhadmhan, S.; Franco, A.; Pineda, A.; Reubroycharoen, P.; Luque, R. ACS Sustainable Chem. Eng. 2019, 7 (16), 14210. doi: 10.1021/acssuschemeng.9b03017  doi: 10.1021/acssuschemeng.9b03017

    78. [78]

      Wang, Q.; Feng, J.; Zheng, L.; Wang, B.; Bi, R.; He, Y.; Liu, H.; Li, D. ACS Catal. 2019, 10 (2), 1353. doi: 10.1021/acscatal.9b03630  doi: 10.1021/acscatal.9b03630

    79. [79]

      Gan, T.; Liu, Y.; He, Q.; Zhang, H.; He, X.; Ji, H. ACS Sustainable Chem. Eng. 2020, 8 (23), 8692. doi: 10.1021/acssuschemeng.0c02065  doi: 10.1021/acssuschemeng.0c02065

    80. [80]

      Li, S.; Dong, M.; Peng, M.; Mei, Q.; Wang, Y.; Yang, J.; Yang, Y.; Chen, B.; Liu, S.; Xiao, D.; et al. The Innov. 2022, 3 (1), 100189. doi: 10.1016/j.xinn.2021.100189  doi: 10.1016/j.xinn.2021.100189

    81. [81]

      Buntara, T.; Noel, S.; Phua, P. H.; Melian-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Angew. Chem. Int. Ed. 2011, 50 (31), 7083. doi: 10.1002/anie.201102156  doi: 10.1002/anie.201102156

    82. [82]

      Chia, M.; Pagan-Torres, Y. J.; Hibbitts, D.; Tan, Q.; Pham, H. N.; Datye, A. K.; Neurock, M.; Davis, R. J.; Dumesic, J. A. J. Am. Chem. Soc. 2011, 133 (32), 12675. doi: 10.1021/ja2038358  doi: 10.1021/ja2038358

    83. [83]

      Buntara, T.; Noel, S.; Phua, P. H.; Melián-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Top. Catal. 2012, 55 (7–10), 612. doi: 10.1007/s11244-012-9839-6  doi: 10.1007/s11244-012-9839-6

    84. [84]

      He, J.; Burt, S. P.; Ball, M.; Zhao, D.; Hermans, I.; Dumesic, J. A.; Huber, G. W. ACS Catal. 2018, 8 (2), 1427. doi: 10.1021/acscatal.7b03593  doi: 10.1021/acscatal.7b03593

    85. [85]

      He, J.; Burt, S. P.; Ball, M. R.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Appl. Catal. B-Environ. 2019, 258, 117945. doi: 10.1016/j.apcatb.2019.117945  doi: 10.1016/j.apcatb.2019.117945

    86. [86]

      Xiao, B.; Zheng, M.; Li, X.; Pang, J.; Sun, R.; Wang, H.; Pang, X.; Wang, A.; Wang, X.; Zhang, T. Green Chem. 2016, 18 (7), 2175. doi: 10.1039/c5gc02228b  doi: 10.1039/c5gc02228b

    87. [87]

      Tuteja, J.; Choudhary, H.; Nishimura, S.; Ebitani, K. ChemSusChem 2014, 7 (1), 96. doi: 10.1002/cssc.201300832  doi: 10.1002/cssc.201300832

    88. [88]

      Boussie, T. R.; Dias, E. L.; Fresco, Z. M.; Murphy, V. J. Production of Adipic Acid and Derivatives from Carbohydrate- Containing Materials. US Patent 0317822 A1, 2010.

    89. [89]

      Gilkey, M. J.; Mironenko, A. V.; Vlachos, D. G.; Xu, B. ACS Catal. 2017, 7 (10), 6619. doi: 10.1021/acscatal.7b01753  doi: 10.1021/acscatal.7b01753

    90. [90]

      Gilkey, M. J.; Balakumar, R.; Vlachos, D. G.; Xu, B. Catal. Sci. Technol. 2018, 8 (10), 2661. doi: 10.1039/c8cy00379c  doi: 10.1039/c8cy00379c

    91. [91]

      Vy Tran, A.; Park, S. K.; Jin Lee, H.; Yong Kim, T.; Kim, Y.; Suh, Y. W.; Lee, K. Y.; Jin Kim, Y.; Baek, J. ChemSusChem 2022, e202200375. doi: 10.1002/cssc.202200375  doi: 10.1002/cssc.202200375

    92. [92]

      Asano, T.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Sustainable Chem. Eng. 2016, 4 (12), 6253. doi: 10.1021/acssuschemeng.6b01640  doi: 10.1021/acssuschemeng.6b01640

    93. [93]

      Wei, L.; Zhang, J.; Deng, W.; Xie, S.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (55), 8013. doi: 10.1039/c9cc02877c  doi: 10.1039/c9cc02877c

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    2. [2]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    3. [3]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    4. [4]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    11. [11]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    12. [12]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    13. [13]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    14. [14]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    17. [17]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    18. [18]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(30)
  • Abstract views(525)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return