Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts
- Corresponding author: Weize Wu, wzwu@mail.buct.edu.cn
Citation: Yucui Hou, Zhuosen He, Shuhang Ren, Weize Wu. Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221206. doi: 10.3866/PKU.WHXB202212065
Bang, S. S.; Johnston, D. Arch. Environ. Contam. Toxicol. 1998, 35, 580. doi: 10.1007/s002449900419
doi: 10.1007/s002449900419
Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Jungle, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333 (6050), 1733. doi: 10.1126/science.1206613
doi: 10.1126/science.1206613
Himeda, Y. Eur. J. Inorg. Chem. 2007, 25, 3927. doi: 10.1002/ejic.200700494
doi: 10.1002/ejic.200700494
Himeda, Y. Green Chem. 2009, 11, 2018. doi: 10.1039/B914442K
doi: 10.1039/B914442K
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168. doi: 10.1021/ja903574e
doi: 10.1021/ja903574e
Wang, Z.; Yan, J.; Ping, Y.; Wang, H.; Zheng, W.; Jiang, Q. Angew. Chem. Int. Ed. 2013, 52, 4406. doi: 10.1002/anie.201301009
doi: 10.1002/anie.201301009
Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2013, 19, 8068. doi: 10.1002/chem.201301383
doi: 10.1002/chem.201301383
Ida, T.; Nishida, M.; Hori, Y. J. Phys. Chem. A 2019, 123, 9579. doi: 10.1021/acs.jpca.9b05994
doi: 10.1021/acs.jpca.9b05994
Eppinger, J. R.; Huang, K. -W. ACS Energy Lett. 2017, 2, 188. doi: 10.1021/acsenergylett.6b00574
doi: 10.1021/acsenergylett.6b00574
Gu, N.; Sun, S.; Cheng, J. Tetrahedron Lett. 2018, 59 (11), 1069. doi: 10.1016/j.tetlet.2018.02.006
doi: 10.1016/j.tetlet.2018.02.006
Rees, N. V.; Compton, R. G. J. Solid State Electrochem. 2011, 15 (10), 2095. doi: 10.1007/s10008-011-1398-4
doi: 10.1007/s10008-011-1398-4
Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83. doi: 10.1016/s1464-2859(03)00330-4
doi: 10.1016/s1464-2859(03)00330-4
Weber, M.; Wang, J. T.; Wasmus, S.; Savinell, R. F. J. Electrochem. Soc. 1996, 143 (7), L158. doi: 10.1149/1.1836961
doi: 10.1149/1.1836961
Formic acid market-growth, trends, covid-19 impact, and forecasts (2023–2028).
SunSirs: Commodity data, Formic acid.
Zhang, J. Z.; Sun, M.; Liu, X.; Han, Y. Catal. Today 2014, 233 (15), 77. doi: 10.1016/j.cattod.2013.12.010
doi: 10.1016/j.cattod.2013.12.010
Zhang, M.; Zhou, Q. P.; Shen, Z.; Zhou, X. F.; Zhang, Y. L.; Chen, J. J. Anhui Agricult. Sci. 2012, 40 (1), 310.
Chen, X.; Liu, Y.; Wu, J. W. Mol. Catal. 2019, 483, 110716. doi: 10.1016/j.mcat.2019.110716
doi: 10.1016/j.mcat.2019.110716
Teong, S. P.; Li, X. K.; Zhang, Y. G. Green Chem. 2019, 21, 5753. doi: 10.1039/c9gc02445j
doi: 10.1039/c9gc02445j
Cheng, L. Y.; Liu, H.; Cui, Y. M.; Xue, N. H.; Ding, W. P. J. Energy Chem. 2014, 23, 43. doi: 10.1016/S2095-4956(14)60116-9
doi: 10.1016/S2095-4956(14)60116-9
Jin, F. M.; Enomoto, H. Energy Environ. Sci. 2011, 4, 382. doi: 10.1039/c004268d
doi: 10.1039/c004268d
Yan, X. Y.; Jin, F. M.; Tohji, K.; Kishita, A.; Enomoto, H. J. AIChE J. 2010, 56, 2727. doi: 10.1002/aic.11833
doi: 10.1002/aic.11833
Jin, F. M.; Yun, J.; Li, G. M.; Kishita, A.; Tohji, K.; Enomoto, H. Green Chem. 2008, 10, 612. doi: 10.1039/b802076k
doi: 10.1039/b802076k
Wang, C.; Chen, X.; Qi, M.; Wu, J. N.; Gözaydın, G.; Yan, N.; Zhong, H.; Ming, J. F. Green Chem. 2019, 21, 6089. doi: 10.1039/c9gc02201e
doi: 10.1039/c9gc02201e
Song, X.; Ding, N.; Zai, Y.; Zeng, X.; Sun, Y.; Tang, X.; Lei, T.; Lin, L. J. Taiwan Inst. Chem. Eng. 2019, 96, 315. doi: 10.1016/j.jtice.2018.11.025
doi: 10.1016/j.jtice.2018.11.025
Takagaki, A.; Obata, W.; Ishihara, T. ChemistryOpen 2021, 10, 954. doi: 10.1002/open.202100074
doi: 10.1002/open.202100074
Gao, X. Y.; Chen, X.; Zhang, J. G.; Guo, W. M.; Jin, F. M.; Yan, N. ACS Sustain. Chem. Eng. 2016, 4, 3912. doi: 10.1021/acssuschemeng.6b00767
doi: 10.1021/acssuschemeng.6b00767
Liu, Q.; Zhou, D.; Li, Z.; Luo, W.; Guo, C. Chin. J. Chem. 2017, 35, 1063. doi: 10.1002/cjoc.201600465
doi: 10.1002/cjoc.201600465
Shen, F.; Smith Jr, R. L.; Li, J.; Guo, H.; Zhang, X.; Qi, X. Green Chem. 2021, 23, 1536. doi: 10.1039/D0GC04263C
doi: 10.1039/D0GC04263C
Wen, L. Y.; Min, E. Z. Petrochem. Technol. 2000, 29 (1), 49.
Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Wang, Y. P. Fuel Process. Technol. 2018, 171, 133. doi: 10.1016/j.fuproc.2017.11.010
doi: 10.1016/j.fuproc.2017.11.010
Zhong, J.; Pérez-Ramírez, J.; Yan, N. Green Chem. 2021, 23, 18. doi: 10.1039/d0gc03190a
doi: 10.1039/d0gc03190a
Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2008, 130, 14474. doi: 10.1021/ja8063233
doi: 10.1021/ja8063233
Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P. Green Chem. 2011, 13, 2759. doi: 10.1039/c1gc15434f
doi: 10.1039/c1gc15434f
Albert, J.; Wölfel, R.; Bosmann, A.; Wasserscheid, P. Energy Environ. Sci. 2012, 5, 7956. doi: 10.1039/c2ee21428h
doi: 10.1039/c2ee21428h
Li, J.; Ding, D. J.; Deng, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2012, 5, 1313. doi: 10.1002/cssc.201100466
doi: 10.1002/cssc.201100466
Albert, J.; Lüders, D.; Bösmann, A.; Guldi, D. M.; Wasserscheid, P. Green Chem. 2014, 16, 226. doi: 10.1039/c3gc41320a
doi: 10.1039/c3gc41320a
Kozhevnikov, I. V.; Matveev, K. I. Appl. Catal. 1983, 5, 135. doi: 10.1016/0166-9834(83)80128-6
doi: 10.1016/0166-9834(83)80128-6
Reichert, J.; Albert, J. ACS Sustain. Chem. Eng. 2017, 5, 7383. doi: 10.1021/acssuschemeng.7b01723.
doi: 10.1021/acssuschemeng.7b01723
Lu, T.; Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Yang, F. Green Chem. 2016, 18, 4725. doi: 10.1039/c6gc01271j
doi: 10.1039/c6gc01271j
Voß, D.; Pickel, H.; Albert, J. ACS Sustain. Chem. Eng. 2019, 7, 9754. doi: 10.1021/acssuschemeng.8b05095
doi: 10.1021/acssuschemeng.8b05095
Xu, J. L.; Zhang, H. Y.; Zhao, Y. F.; Yang, Z. Z.; Yu, B.; Xu, H. J.; Liu, Z. M. Green Chem. 2014, 16, 4931. doi: 10.1039/C4GC01252F
doi: 10.1039/C4GC01252F
Li, K. X.; Bai, L. L.; Amaniampong, P. N.; Jia, X. L.; Lee, J. -M.; Yang, Y. H. ChemSusChem 2014, 7, 2670. doi: 10.1002/cssc.201402157
doi: 10.1002/cssc.201402157
Bukowski, A.; Esau, D.; Said, A. A. R.; Brandt-Talbot, A.; Albert, J. ChemPlusChem 2020, 85, 373. doi: 10.1002/cplu.202000025
doi: 10.1002/cplu.202000025
Bukowski, A.; Schnepf, K.; Wesinger, S.; Brandt-Talbot, A.; Albert, J. ACS Sustain. Chem. Eng. 2022, 10, 8474. doi: 10.1021/acssuschemeng.2c01550
doi: 10.1021/acssuschemeng.2c01550
Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wu, W. Z.; Marsh, K. N. Green Chem. 2015, 17, 453. doi: 10.1039/c4gc01440e
doi: 10.1039/c4gc01440e
Shen, F.; Li, Y.; Qin, X.; Guo, H.; Li, J.; Yang, J.; Ding, Y. Renewable Energy 2022, 185, 139. doi: 10.1016/j.renene.2021.12.043
doi: 10.1016/j.renene.2021.12.043
Gromov, N. V.; Medvedeva, T. B.; Lukoyanov, I. A.; Panchenko, V. N.; Timofeeva, M. N.; Taran, O. P.; Parmon, V. N. Catalysts 2022, 12, 1252. doi: 10.3390/catal12101252
doi: 10.3390/catal12101252
Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Q. Chem. Rev. 2004, 104, 849. doi: 10.1002/chin.200420288
doi: 10.1002/chin.200420288
Sadoc, A.; Messaoudi, S.; Furet, E.; Gautier, R.; Fur, E. L.; Pollès, L. l.; Pivan, J. -Y. Inorg. Chem. 2007, 46, 4835. doi: 10.1021/ic0614519
doi: 10.1021/ic0614519
Wang, W. H.; Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Liu, Z. Y.; Liu, Q. Y.; Ren, S. H.; Marsh, K. N. Green Chem. 2014, 16, 2614. doi: 10.1039/c4gc00145a
doi: 10.1039/c4gc00145a
Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Li, W.; Ren, S. H. Fuel Process. Technol. 2018, 173, 197. doi: 10.1016/j.fuproc.2018.02.001
doi: 10.1016/j.fuproc.2018.02.001
Müller, N.; Romero, R.; Grandón, H. c.; Segura, C. Energy Fuels 2016, 30, 10417. doi: 10.1021/acs.energyfuels.6b01345
doi: 10.1021/acs.energyfuels.6b01345
Tang, Z.; Deng, W.; Wang, Y.; Zhu, E.; Wan, X.; Zhang, Q.; Wang, Y. ChemSusChem 2014, 7, 1557. doi: 10.1002/cssc.v7.6/issuetoc
doi: 10.1002/cssc.v7.6/issuetoc
Yang, F.; Hou, Y. C.; Niu, M. G.; Wu, W. Z.; Liu, Z. Y. Fuel 2017, 202, 129. doi: 10.1016/j.fuel.2017.04.023
doi: 10.1016/j.fuel.2017.04.023
Hou, Y. C.; Lin, Z. Q.; Niu, M. G.; Ren, S. H.; Wu, W. Z. ACS Omega 2018, 3, 14910. doi: 10.1021/acsomega.8b01409
doi: 10.1021/acsomega.8b01409
Albert, J.; Mendt, M.; Mozer, M.; Voß, D. Appl. Catal. A-Gen. 2019, 570, 262. doi: 10.1016/j.apcata.2018.10.030
doi: 10.1016/j.apcata.2018.10.030
Yang, W. S.; Du, X.; Liu, W.; Wang, Z. W.; Dai, H. Q.; Deng, Y. L. Ind. Eng. Chem. Res. 2019, 58, 22996. doi: 10.1021/acs.iecr.9b05311
doi: 10.1021/acs.iecr.9b05311
Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Ren, S. H.; Lin, Z. Q.; Ramani, V. K. Fuel 2018, 216, 572. doi: 10.1016/j.fuel.2017.12.044
doi: 10.1016/j.fuel.2017.12.044
Ponce, S.; Trabold, M.; Drochner, A.; Albert, J.; Etzold, B. J. M. Chem. Eng. J. 2019, 369, 443. doi: 10.1016/j.cej.2019.03.103
doi: 10.1016/j.cej.2019.03.103
Poller, M. J.; Bönisch, S.; Bertleff, B.; Raabe, J. C.; Görling, A.; Albert, J. Chem. Eng. Sci. 2022, 264, 118143. doi: 10.1016/j.ces.2022.118143
doi: 10.1016/j.ces.2022.118143
Zhou, H.; Jing, Y. X.; Wang, Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2203016.
doi: 10.3866/PKU.WHXB202203016
Wang, W.; Wang, Y.; Zhan, Z.; Tan, T.; Deng, W.; Zhang, Q.; Wang, Y. Acta Phys. -Chim. Sin. 2022, 38, 2205032.
doi: 10.3866/PKU.WHXB2022205032
Hao, R.; Guan, W. X.; Liu, F.; Zhang, L. L.; Wang, A. Q. Acta Phys. -Chim. Sin. 2022, 38 (10), 2205027.
doi: 10.3866/PKU.WHXB202205027
Bikash Sarma, B.; Neumann, R. Nat. Commun. 2014, 5, 4621. doi: 10.1038/ncomms5621
doi: 10.1038/ncomms5621
Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Yang, R. Phys. Chem. Chem. Phys. 2018, 20, 17942. doi: 10.1039/c8cp02352b
doi: 10.1039/c8cp02352b
Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wang, W. H.; Zheng, Q. T.; Wu, W. Z. Green Chem. 2015, 17, 335. doi: 10.1039/c4gc00970c
doi: 10.1039/c4gc00970c
Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. Energy Environ. Sci. 2015, 8, 2985. doi: 10.1039/c5ee01706h
doi: 10.1039/c5ee01706h
Maerten, S.; Kumpidet, C.; Voß, D.; Bukowski, A.; Wasserscheid, P.; Albert, J. Green Chem. 2020, 22, 4311. doi: 10.1039/d0gc01169j
doi: 10.1039/d0gc01169j
Wesinger, S.; Mendt, M.; Albert, J. ChemCatChem 2021, 13, 3662. doi: 10.1002/cctc.202100632
doi: 10.1002/cctc.202100632
Guo, Y. -J.; Li, S. -J.; Sun, Y. -L.; Wang, L.; Zhang, W. -M.; Zhang, P.; Lan, Y.; Li, Y. Green Chem. 2021, 23, 7041. doi: 10.1039/d1gc02265b
doi: 10.1039/d1gc02265b
Zhang, P.; Guo, Y. -J.; Chen, J. B.; Zhao, Y. -R.; Chang, J.; Junge, H.; Beller, M.; Li, Y. Nat. Cat. 2018, 1, 332. doi: 10.1038/s41929-018-0062-0
doi: 10.1038/s41929-018-0062-0
Deuss, P. J.; Barta, K.; de Vries, J. G. Catal. Sci. Technol. 2014, 4, 1174. doi: 10.1039/c3cy01058a
doi: 10.1039/c3cy01058a
Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I. T. Top Catal. 2008, 48, 49. doi: 10.1007/s11244-008-9047-6
doi: 10.1007/s11244-008-9047-6
Albert, J.; Wasserscheid, P. Green Chem. 2015, 17, 5164. doi: 10.1039/c5gc01474c
doi: 10.1039/c5gc01474c
Gromov, N. V.; Medvedeva, T. B.; Sorokina, K. N.; Samoylova, Y. V.; Rodikova, Y. A.; Parmon, V. N. ACS Sustain. Chem. Eng. 2020, 8, 18947. doi: 10.1021/acssuschemeng.0c06364
doi: 10.1021/acssuschemeng.0c06364
Voß, D.; Kahl, M.; Albert, J. ACS Sustain. Chem. Eng. 2020, 8, 10444. doi: 10.1021/acssuschemeng.0c02426
doi: 10.1021/acssuschemeng.0c02426
Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wu, W. Z. Chin. Sci. Bull. 2015, 60 (16), 1434. doi: 10.1360/N972014-01247
doi: 10.1360/N972014-01247
Caiti, M.; Padovan, D.; Hammond, C. ACS Catal. 2019, 9, 9188. doi: 10.1021/acscatal.9b01977
doi: 10.1021/acscatal.9b01977
Zou, L.; Zhang, Q.; Huang, Y.; Luo, X.; Liang, Z. Ind. Eng. Chem. Res. 2019, 58, 22984. doi: 10.1021/acs.iecr.9b05308
doi: 10.1021/acs.iecr.9b05308
Xu, L.; Nie, R. F.; Xu, H. F.; Chen, X. J.; Li, Y. C.; Lu, X. Y. Ind. Eng. Chem. Res. 2020, 59 (7), 2754. doi: 10.1021/acs.iecr.9b05726
doi: 10.1021/acs.iecr.9b05726
Al-Naji, M.; Popova, M.; Chen, Z.; Wilde, N.; Glaser, R. ACS Sustain. Chem. Eng. 2020, 8, 393. doi: 10.1021/acssuschemeng.9b05546
doi: 10.1021/acssuschemeng.9b05546
Gromov, N. V.; Taran, O. P.; Delidovich, I. V.; Pestunov, A. V.; Rodikova, Y. A.; Yatsenko, D. A.; Zhizhina, E. G.; Parmon, V. N. Catal. Today 2016, 278, 74. doi: 10.1016/j.cattod.2016.03.030
doi: 10.1016/j.cattod.2016.03.030
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454