Citation: Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 221206. doi: 10.3866/PKU.WHXB202212064 shu

Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance

  • Corresponding author: Hui Wang, hw39@hmfl.ac.cn Zhikun Wu, zkwu@issp.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 31 December 2022
    Revised Date: 11 February 2023
    Accepted Date: 14 February 2023
    Available Online: 23 February 2023

    Fund Project: the National Natural Science Foundation of China 21829501the National Natural Science Foundation of China 21925303the National Natural Science Foundation of China 22171267the National Natural Science Foundation of China 22171268the National Natural Science Foundation of China 21771186the National Natural Science Foundation of China 21222301the National Natural Science Foundation of China 21171170the National Natural Science Foundation of China 21528303Anhui Provincial Natural Science Foundation 2008085MB31Anhui Provincial Natural Science Foundation 2108085MB56CASHIPS Director's Fund BJPY2019A02Collaborative Innovation Program of Hefei Science Center, CAS 2020HSC-CIP005Collaborative Innovation Program of Hefei Science Center, CAS 2022HSC-CIP018

  • In recent years, gold nanoclusters have been widely used in catalysis, and alloying has become one of the most important methods for improving the catalytic performance of gold nanoclusters. As for the electrocatalytic reduction of CO2 (CO2RR), although many gold nanoclusters show fairly good Faraday efficiencies through Cd-doping, they still exhibit low current density. Furthermore, as an increasing number of Au-Cd alloy nanoclusters are reported, there is a growing interest in understanding the correlation between Cd coordination and catalysis performance. In most cases, Cd atoms are typically doped in the outer staples and connect with Au atoms through S coordinations. Are there any other unreported Cd coordination modes? Can novel or numerous Cd coordination modes be introduced into gold nanoclusters to increase the current density in the CO2RR? This study investigates these questions.Inspired by our previous work on surface sulfur doping, we employed a combined doping (S + Cd doping) strategy, developed a two-step synthesis method, and successfully synthesized a novel Au-Cd nanocluster—Au41Cd6S2(SCH2Ph)33. Precise formula and structure were determined by electrospray ionization mass spectrometry (ESI-MS), thermalgravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and single-crystal X-ray crystallography (SCXC). SCXC shows that the nanocluster contains a biicosahedral Au23 kernel, and all the Cd atoms are doped in the outer staples, providing a variety of coordination environments for Cd atoms. In addition to two common Au3(SR)4 trimers in the outer staples, two unusual Au5Cd2(SR)9S long staples were discovered cross-covering the top of the kernel, and a (S-Au-S)2(CdS-S-CdS) tetramer staple with two Cd atoms directly linked through S was also discovered for the first time. This alloy cluster shows robust stability in both high-temperature and oxidation environments. Compared with the "homo-kernel-hetero-staples" nanocluster Au38(SCH2Ph)24, Au41Cd6S2(SCH2Ph)33 exhibits distinct UV-Vis/NIR absorption and differential pulse voltammetry (DPV) results, indicating that the differences in the outer staples have a significant effect on the optical and electronic properties of gold nanoclusters. When used as an electrocatalyst, the Au41Cd6S2(SCH2Ph)33 exhibits a higher Faradaic efficiency for the CO2RR (99.3% at −0.7 V) and a higher CO partial current density (120 mA∙cm−2 at −0.9 V) than Au38(SCH2Ph)24, providing an ideal platform for investigating the roles of different Cd coordination modes in outer staples on CO2RR. DFT calculations interpret the experimental finding that Cd doping improves the catalytic performance and reveal that the Cd-Cd site is the most active site and the Au-Cd site furthest away from the kernel is the best-performing catalytic site given the consideration of both selectivity and activity.This work introduces a novel strategy to enhance the catalytic performance of gold nanoclusters, having important implications for future research on the syntheses and structural properties of metal nanoclusters, and is expected to inspire more work in related areas.
  • 加载中
    1. [1]

      Liu, Y.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Chem. Commun. 2010, 46 (4), 550. doi: 10.1039/b921082b  doi: 10.1039/b921082b

    2. [2]

      Zhu, J.; Xia, L.; Yu, R.; Lu, R.; Li, J.; He, R.; Wu, Y.; Zhang, W.; Hong, X.; Chen, W.; et al. J. Am. Chem. Soc. 2022, 144 (34), 15529. doi: 10.1021/jacs.2c03982  doi: 10.1021/jacs.2c03982

    3. [3]

      Lian, C.; Zhang, K.; Wang, Y. Acta Phys. -Chim. Sin. 2017, 33 (5), 984.  doi: 10.3866/PKU.WHXB201702084

    4. [4]

      Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang, Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39, 2210039.  doi: 10.3866/PKU.WHXB202210039

    5. [5]

      Wang, M.; Wu, Z.; Yang, J.; Wang, G.; Wang, H.; Cai, W. Nanoscale 2012, 4 (14), 4087. doi: 10.1039/c2nr30169e  doi: 10.1039/c2nr30169e

    6. [6]

      Xia, N.; Yang, J.; Wu, Z. Nanoscale 2015, 7 (22), 10013. doi: 10.1039/c5nr00705d  doi: 10.1039/c5nr00705d

    7. [7]

      Lu, T. Q.; Xu, H.; Cheng, L. T.; Wang, X. T.; Chen, C.; Cao, L.; Zhuang, G. L.; Zheng, J.; Zheng, X. Y. Inorg. Chem. 2022, 61 (23), 8861. doi: 10.1021/acs.inorgchem.2c00898  doi: 10.1021/acs.inorgchem.2c00898

    8. [8]

      Yang, J.; Xia, N.; Wang, X.; Liu, X.; Xu, A.; Wu, Z.; Luo, Z. Nanoscale 2015, 7 (44), 18464. doi: 10.1039/c5nr06421j  doi: 10.1039/c5nr06421j

    9. [9]

      Li, Q.; Wang, F.; Shi, L.; Tang, Q.; Li, B.; Wang, X.; Jin, Y. ACS Appl. Mater. Interfaces 2022, 14 (33), 37280. doi: 10.1021/acsami.2c05944  doi: 10.1021/acsami.2c05944

    10. [10]

      Pang, Z.; Yan, W.; Yang, J.; Li, Q.; Guo, Y.; Zhou, D.; Jiang, X. ACS Nano 2022, 16 (10), 16019. doi: 10.1021/acsnano.2c03752  doi: 10.1021/acsnano.2c03752

    11. [11]

      Yu, W.; Zuo, H.; Lu, C.; Li, Y.; Zhang, Y.; Chen, W. Acta Phys. -Chim. Sin. 2015, 31 (3), 425.  doi: 10.3866/PKU.WHXB201501191

    12. [12]

      Sagadevan, A.; Ghosh, A.; Maity, P.; Mohammed, O. F.; Bakr, O. M.; Rueping, M. J. Am. Chem. Soc. 2022, 144 (27), 12052. doi: 10.1021/jacs.2c02218  doi: 10.1021/jacs.2c02218

    13. [13]

      Gao, Z. H.; Wei, K.; Wu, T.; Dong, J.; Jiang, D. E.; Sun, S.; Wang, L. S. J. Am. Chem. Soc. 2022, 144 (12), 5258. doi: 10.1021/jacs.2c00725  doi: 10.1021/jacs.2c00725

    14. [14]

      Yang, B.; Chen, L.; Xue, S.; Sun, H.; Feng, K.; Chen, Y.; Zhang, X.; Xiao, L.; Qin, Y.; Zhong, J.; et al. Nat. Commun. 2022, 13 (1), 5122. doi: 10.1038/s41467-022-32740-z  doi: 10.1038/s41467-022-32740-z

    15. [15]

      Levi-Kalisman, Y.; Jadzinsky, P. D.; Kalisman, N.; Tsunoyama, H.; Tsukuda, T.; Bushnell, D. A.; Kornberg, R. D. J. Am. Chem. Soc. 2011, 133 (9), 2976. doi: 10.1021/ja109131w  doi: 10.1021/ja109131w

    16. [16]

      Zhou, Y.; Li, Z.; Zheng, K.; Li, G. Acta Phys. -Chim. Sin. 2018, 34 (7), 786.  doi: 10.3866/PKU.WHXB201709292

    17. [17]

      Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu, Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 792.  doi: 10.3866/PKU.WHXB201710091

    18. [18]

      Xia, N.; Wu, Z. Chem. Sci. 2020, 12 (7), 2368. doi: 10.1039/d0sc05363e  doi: 10.1039/d0sc05363e

    19. [19]

      Guan, Z. J.; Li, J. J.; Hu, F.; Wang, Q. M. Angew. Chem. Int. Ed. 2022, 61 (51), e202209725. doi: 10.1002/anie.202209725  doi: 10.1002/anie.202209725

    20. [20]

      Wu, Z. K. Acta Phys. -Chim. Sin. 2017, 33 (10), 1930.  doi: 10.3866/PKU.WHXB201706026

    21. [21]

      Wang, Z.; Senanayake, R.; Aikens, C. M.; Chen, W. M.; Tung, C. H.; Sun, D. Nanoscale 2016, 8 (45), 18905. doi: 10.1039/c6nr06615a  doi: 10.1039/c6nr06615a

    22. [22]

      Jin, R. C. Acta Phys. -Chim. Sin. 2019, 35 (3), 245.  doi: 10.3866/PKU.WHXB201803213

    23. [23]

      Li, G.; Sui, X.; Cai, X.; Hu, W.; Liu, X.; Chen, M.; Zhu, Y. Angew. Chem. Int. Ed. 2021, 60 (19), 10573. doi: 10.1002/anie.202100071  doi: 10.1002/anie.202100071

    24. [24]

      Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. ACS Catal. 2012, 2 (7), 1519. doi: 10.1021/cs300252g  doi: 10.1021/cs300252g

    25. [25]

      Ma, X.; Sun, F.; Qin, L.; Liu, Y.; Kang, X.; Wang, L.; Jiang, D. E.; Tang, Q.; Tang, Z. Chem. Sci. 2022, 13 (34), 10149. doi: 10.1039/d2sc02886g  doi: 10.1039/d2sc02886g

    26. [26]

      Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang, C.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2020, 59 (8), 3073. doi: 10.1002/anie.201912845  doi: 10.1002/anie.201912845

    27. [27]

      Li, S.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. Angew. Chem. Int. Ed. 2021, 60 (12), 6351. doi: 10.1002/anie.202016129  doi: 10.1002/anie.202016129

    28. [28]

      Sun, Y.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. ACS Catal. 2021, 11 (18), 11551. doi: 10.1021/acscatal.1c02193  doi: 10.1021/acscatal.1c02193

    29. [29]

      Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2017, 139 (49), 17779. doi: 10.1021/jacs.7b11491  doi: 10.1021/jacs.7b11491

    30. [30]

      Zhang, W.; Zhuang, S.; Liao, L.; Dong, H.; Xia, N.; Li, J.; Deng, H.; Wu, Z. Inorg. Chem. 2019, 58 (9), 5388. doi: 10.1021/acs.inorgchem.9b00125  doi: 10.1021/acs.inorgchem.9b00125

    31. [31]

      Fan, J. Q.; Yang, Y.; Tao, C. B.; Li, M. B. Angew. Chem. Int. Ed. 2023, 62 (6), e202215741. doi: 10.1002/anie.202215741  doi: 10.1002/anie.202215741

    32. [32]

      Yao, C.; Xu, C. Q.; Park, I. H.; Zhao, M.; Zhu, Z.; Li, J.; Hai, X.; Fang, H.; Zhang, Y.; Macam, G.; et al. Angew. Chem. Int. Ed. 2020, 59 (21), 8270. doi: 10.1002/anie.202001034  doi: 10.1002/anie.202001034

    33. [33]

      Zhu, M.; Wang, P.; Yan, N.; Chai, X.; He, L.; Zhao, Y.; Xia, N.; Yao, C.; Li, J.; Deng, H.; et al. Angew. Chem. Int. Ed. 2018, 57 (17), 4500. doi: 10.1002/anie.201800877  doi: 10.1002/anie.201800877

    34. [34]

      Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M. B.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. Nat. Commun. 2017, 8, 14739. doi: 10.1038/ncomms14739  doi: 10.1038/ncomms14739

    35. [35]

      Gan, Z.; Chen, J.; Liao, L.; Zhang, H.; Wu, Z. J. Phys. Chem. Lett. 2018, 9 (1), 204. doi: 10.1021/acs.jpclett.7b02982  doi: 10.1021/acs.jpclett.7b02982

    36. [36]

      Gan, Z.; Liu, Y.; Wang, L.; Jiang, S.; Xia, N.; Yan, Z.; Wu, X.; Zhang, J.; Gu, W.; He, L.; et al. Nat. Commun. 2020, 11 (1), 5572. doi: 10.1038/s41467-020-19377-6  doi: 10.1038/s41467-020-19377-6

    37. [37]

      Meng, X.; Pan, G.; Liu, H.; Qian, Y.; Wang, X.; Wang, C.; Hu, L.; Wang, H.; Chen, Q. ACS Appl. Mater. Interfaces 2022, 14 (15), 17240. doi: 10.1021/acsami.2c00050  doi: 10.1021/acsami.2c00050

    38. [38]

      Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo, M.; et al. Nat. Catal. 2019, 3 (2), 98. doi: 10.1038/s41929-019-0397-1  doi: 10.1038/s41929-019-0397-1

    39. [39]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47 (1), 558. doi: 10.1103/physrevb.47.558  doi: 10.1103/physrevb.47.558

    40. [40]

      Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49 (20), 14251. doi: 10.1103/physrevb.49.14251  doi: 10.1103/physrevb.49.14251

    41. [41]

      Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6 (1), 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    42. [42]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54 (16), 11169. doi: 10.1103/physrevb.54.11169  doi: 10.1103/physrevb.54.11169

    43. [43]

      Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953. doi: 10.1103/physrevb.50.17953  doi: 10.1103/physrevb.50.17953

    44. [44]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59 (3), 1758. doi: 10.1103/PhysRevB.59.1758.  doi: 10.1103/PhysRevB.59.1758

    45. [45]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    46. [46]

      Chadi, D. J. Phys. Rev. B 1977, 16 (4), 1746. doi: 10.1103/PhysRevB.16.1746  doi: 10.1103/PhysRevB.16.1746

    47. [47]

      Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132 (24), 8280. doi: 10.1021/ja103592z  doi: 10.1021/ja103592z

    48. [48]

      Zhuang, S.; Liao, L.; Zhao, Y.; Yuan, J.; Yao, C.; Liu, X.; Li, J.; Deng, H.; Yang, J.; Wu, Z. Chem. Sci. 2018, 9 (9), 2437. doi: 10.1039/c7sc05019d  doi: 10.1039/c7sc05019d

    49. [49]

      Yang, D.; Wang, J.; Wang, Q.; Yuan, Z.; Dai, Y.; Zhou, C.; Wan, X.; Zhang, Q.; Yang, Y. ACS Nano 2022, 16 (10), 15681. doi: 10.1021/acsnano.2c06059  doi: 10.1021/acsnano.2c06059

    50. [50]

      Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Angew. Chem. Int. Ed. 2021, 60 (26), 14563. doi: 10.1002/anie.202102887  doi: 10.1002/anie.202102887

    51. [51]

      Wang, J.; Xu, F.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Angew. Chem. Int. Ed. 2022, 61 (32), e202207492. doi: 10.1002/anie.202207492  doi: 10.1002/anie.202207492

    52. [52]

      Zhuang, S.; Chen, D.; Fan, W.; Yuan, J.; Liao, L.; Zhao, Y.; Li, J.; Deng, H.; Yang, J.; Yang, J.; et al. Nano Lett. 2022, 22 (17), 7144. doi: 10.1021/acs.nanolett.2c02290  doi: 10.1021/acs.nanolett.2c02290

  • 加载中
    1. [1]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    4. [4]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    5. [5]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    6. [6]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    7. [7]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    11. [11]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    12. [12]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    13. [13]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    16. [16]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(7)
  • Abstract views(987)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return