Citation: Fangxin Yin, Pinquan Qin, Jingsan Xu, Shaowen Cao. Methylene Blue Incorporated Donor-Acceptor g-C3N4 Nanosheet Photocatalyst for H2 Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 221206. doi: 10.3866/PKU.WHXB202212062 shu

Methylene Blue Incorporated Donor-Acceptor g-C3N4 Nanosheet Photocatalyst for H2 Production

  • Corresponding author: Pinquan Qin, qinpqcu@whut.edu.cn Shaowen Cao, swcao@whut.edu.cn
  • Received Date: 31 December 2022
    Revised Date: 25 February 2023
    Accepted Date: 27 February 2023
    Available Online: 9 March 2023

    Fund Project: the National Key R & D Program of China 2022YFE0114800the National Natural Science Foundation of China 51922081

  • Photocatalytic hydrogen production is a promising strategy for utilizing inexhaustible solar energy as a source of clean energy. Graphitic carbon nitride (g-C3N4) is a widely used photocatalytic material in photocatalytic hydrogen production because of its simple preparation process, suitable band structure, and high stability. However, the low charge carrier separation efficiency and small specific surface area of pristine g-C3N4 restrict its photocatalytic activity. It has been demonstrated that the construction of intramolecular donor-acceptor (D-A) systems and ultra-thin nanosheet structures are effective strategies for enhancing the photocatalytic activity of g-C3N4. Herein, an intramolecular D-A structured g-C3N4 nanosheet photocatalyst is synthesized through the thermal copolymerization of dicyandiamide and methylene blue (MB), followed by thermal exfoliation. X-ray diffraction, Fourier transform infrared spectrometry, solid-state 13C nuclear magnetic resonance, and X-ray photoelectron spectroscopy analyses reveal that MB is successfully incorporated into the g-C3N4 framework and well retained after thermal exfoliation. The resulting D-A system induces intramolecular charge transfer from the donor units (MB segment) to the acceptor units (tri-s-triazine rings) and extends the absorption edge to approximately 500 nm. The ultra-thin nanosheet structure produced by thermal exfoliation shortens the charge transfer distance from the interior to the surface of g-C3N4 and reduces the charge transfer resistance, which increases the charge carrier separation efficiency. Furthermore, the introduction of MB generates a flaky structure during copolymerization, which promotes thermal exfoliation and results in a remarkably increased specific surface area. The transient photocurrent response, electrochemical impedance spectra, and time-resolved photoluminescence decay spectra reveal that the charge transfer and separation of g-C3N4 are further promoted by integrating the intramolecular D-A system and ultra-thin nanosheet structure. Density functional theory calculations further demonstrate that MB donates electrons to tri-s-triazine rings (electron acceptor). Moreover, the highest occupied molecular orbit of D-A structured g-C3N4 is mostly distributed around the MB segment, while the lowest unoccupied molecular orbit is distributed around tri-s-triazine rings, resulting in spatially separated photogenerated electron-hole pairs. Through integrating the intramolecular D-A system and ultra-thin nanosheet structure, the obtained photocatalyst exhibits enhanced charge carrier separation, an extended absorption edge, and enlarged specific surface area. As a consequence, the D-A structured g-C3N4 nanosheet shows a considerably improved photocatalytic hydrogen production activity (2275.6 μmol·h−1·g−1), which is 5.30, 2.60, and 1.30 times that of bulk g-C3N4, D-A structured bulk g-C3N4, and g-C3N4 nanosheet, respectively. This work offers a valuable strategy for developing D-A-modified photocatalytic materials for solar energy conversion.
  • 加载中
    1. [1]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    2. [2]

      Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Adv. Mater. 2021, 33, 2007479. doi: 10.1002/adma.202007479  doi: 10.1002/adma.202007479

    3. [3]

      Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033  doi: 10.1002/adma.201500033

    4. [4]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016.  doi: 10.3866/PKU.WHXB202212016

    5. [5]

      Ruan, D.; Kim, S.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2018, 238, 638. doi: 10.1016/j.apcatb.2018.07.028  doi: 10.1016/j.apcatb.2018.07.028

    6. [6]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    7. [7]

      Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    8. [8]

      Shkir, M.; Palanivel, B.; Khan, A.; Kumar, M.; Chang, J.; Mani, A.; Alfaify, S. Chemosphere 2022, 291, 132687. doi: 10.1016/j.chemosphere.2021.132687  doi: 10.1016/j.chemosphere.2021.132687

    9. [9]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China-Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x  doi: 10.1007/s40843-020-1456-x

    10. [10]

      Xia, P.; Antonietti, M.; Zhu, B.; Heil, T.; Yu, J.; Cao, S. Adv. Funct. Mater. 2019, 29, 1900093. doi: 10.1002/adfm.201900093  doi: 10.1002/adfm.201900093

    11. [11]

      Ismail, A. A.; Faisal, M.; Al-Haddad, A. J. Environ. Sci. 2018, 66, 328. doi: 10.1016/j.jes.2017.05.001  doi: 10.1016/j.jes.2017.05.001

    12. [12]

      Cao, S.; Yu, J. J. Phys. Chem. Lett. 2014, 5, 2101. doi: 10.1021/jz500546b  doi: 10.1021/jz500546b

    13. [13]

      Wu, M.; Zhang, J.; He, B.; Wang, H.; Wang, R.; Gong, Y. Appl. Catal. B-Environ. 2019, 241, 159. doi: 10.1016/j.apcatb.2018.09.037  doi: 10.1016/j.apcatb.2018.09.037

    14. [14]

      Zhao, S.; Zhang, Y.; Zhou, Y.; Wang, Y.; Qiu, K.; Zhang, C.; Fang, J.; Sheng, X. Carbon 2018, 126, 247. doi: 10.1016/j.carbon.2017.10.033  doi: 10.1016/j.carbon.2017.10.033

    15. [15]

      Zhu, Y.; Ren, T.; Yuan, Z. ACS Appl. Mater. Interfaces 2015, 7, 16850. doi: 10.1021/acsami.5b04947  doi: 10.1021/acsami.5b04947

    16. [16]

      Guo, F.; Shi, W.; Li, M.; Shi, Y.; Wen, H. Sep. Purif. Technol. 2019, 210, 608. doi: 10.1016/j.seppur.2018.08.055  doi: 10.1016/j.seppur.2018.08.055

    17. [17]

      Wan, S.; Xu, J.; Cao, S.; Yu, J. Interdiscip. Mater. 2022, 1, 294. doi: 10.1002/idm2.12024  doi: 10.1002/idm2.12024

    18. [18]

      Sun, Z.; Tan, Y.; Wan, J.; Huang, L. Chin. J. Chem. 2021, 39, 2044. doi: 10.1002/cjoc.202000743  doi: 10.1002/cjoc.202000743

    19. [19]

      Poon, C.; Wu, D.; Yam, V. W. Angew. Chem. -Int. Ed. 2016, 55, 3647. doi: 10.1002/anie.201510946  doi: 10.1002/anie.201510946

    20. [20]

      Castet, F.; Aurel, P.; Fritsch, A.; Ducasse, L.; Liotard, D.; Linares, M.; Cornil, J.; Beljonne, D. Phys. Rev. B 2008, 77, 115210. doi: 10.1103/PhysRevB.77.115210  doi: 10.1103/PhysRevB.77.115210

    21. [21]

      Kochergin, Y. S.; Schwarz, D.; Acharjya, A.; Ichangi, A.; Kulkarni, R.; Eliasova, P.; Vacek, J.; Schmidt, J.; Thomas, A.; Bojdys, M. J. Angew. Chem. -Int. Ed. 2018, 57, 14188. doi: 10.1002/anie.201809702  doi: 10.1002/anie.201809702

    22. [22]

      Che, H.; Liu, C.; Che, G.; Liao, G.; Dong, H.; Li, C.; Song, N.; Li, C. Nano Energy 2020, 67, 104273. doi: 10.1016/j.nanoen.2019.104273  doi: 10.1016/j.nanoen.2019.104273

    23. [23]

      Fan, X.; Zhang, L.; Cheng, R.; Wang, M.; Li, M.; Zhou, Y.; Shi, J. ACS Catal. 2015, 5, 5008. doi: 10.1021/acscatal.5b01155  doi: 10.1021/acscatal.5b01155

    24. [24]

      Shi, Y.; Li, L.; Sun, H.; Xu, Z.; Cai, Y.; Shi, W.; Guo, F.; Du, X. Sep. Purif. Technol. 2022, 292, 121038. doi: 10.1016/j.seppur.2022.121038  doi: 10.1016/j.seppur.2022.121038

    25. [25]

      Liu, Y.; Tian, J.; Wang, Q.; Wei, L.; Wang, C.; Yang, C. Opt. Mater. 2020, 99, 109594. doi: 10.1016/j.optmat.2020.110128  doi: 10.1016/j.optmat.2020.110128

    26. [26]

      Zhu, K.; Lv, Y.; Liu, J.; Wang, W.; Wang, C.; Wang, P.; Meng, A.; Li, Z.; Li, Q. Ceram. Int. 2019, 45, 3643. doi: 10.1016/j.ceramint.2018.11.025  doi: 10.1016/j.ceramint.2018.11.025

    27. [27]

      Yang, L.; Liu, X.; Liu, Z.; Wang, C.; Liu, G.; Li, Q.; Feng, X. Ceram. Int. 2018, 44, 20613. doi: 10.1016/j.ceramint.2018.06.105  doi: 10.1016/j.ceramint.2018.06.105

    28. [28]

      Chen, Y.; Yang, B.; Xie, W.; Zhao, X.; Wang, Z.; Su, X.; Yang, C. J. Mater. Res. Technol-JMRT 2021, 13, 301. doi: 10.1016/j.jmrt.2021.04.056  doi: 10.1016/j.jmrt.2021.04.056

    29. [29]

      Zhao, H.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y.; Zhao, H.; Wang, H. Appl. Catal. B-Environ. 2014, 152, 46. doi: 10.1016/j.apcatb.2014.01.023  doi: 10.1016/j.apcatb.2014.01.023

    30. [30]

      She, X.; Xu, H.; Xu, Y.; Yan, J.; Xia, J.; Xu, L.; Song, Y.; Jiang, Y.; Zhang, Q.; Li, H. J. Mater. Chem. A 2014, 2, 2563. doi: 10.1039/c3ta13768f  doi: 10.1039/c3ta13768f

    31. [31]

      Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. J. Mater. Chem. A 2017, 5, 3230. doi: 10.1039/c6ta08310b  doi: 10.1039/c6ta08310b

    32. [32]

      She, X.; Wu, J.; Zhong, J.; Xu, H.; Yang, Y.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.; Li, H.; et al. Nano Energy 2016, 27, 138. doi: 10.1016/j.nanoen.2016.06.042  doi: 10.1016/j.nanoen.2016.06.042

    33. [33]

      Yan, J.; Han, X.; Qian, J.; Liu, J.; Dong, X.; Xi, F. J. Mater. Sci. 2017, 52, 13091. doi: 10.1007/s10853-017-1419-5  doi: 10.1007/s10853-017-1419-5

    34. [34]

      Dong, F.; Li, Y.; Wang, Z.; Ho, W. Appl. Surf. Sci. 2015, 358, 393. doi: 10.1016/j.apsusc.2015.04.034  doi: 10.1016/j.apsusc.2015.04.034

    35. [35]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    36. [36]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    37. [37]

      Li, K.; Sun, M.; Zhang, W. Carbon 2018, 134, 134. doi: 10.1016/j.carbon.2018.03.089  doi: 10.1016/j.carbon.2018.03.089

    38. [38]

      Chen, X.; Shi, R.; Chen, Q.; Zhang, Z.; Jiang, W.; Zhu, Y.; Zhang, T. Nano Energy 2019, 59, 644. doi: 10.1016/j.nanoen.2019.03.010  doi: 10.1016/j.nanoen.2019.03.010

    39. [39]

      Wang, Y.; Zhang, Y.; Zhao, S.; Huang, Z.; Chen, W.; Zhou, Y.; Lv, X.; Yuan, S. Appl. Catal. B-Environ. 2019, 248, 44. doi: 10.1016/j.apcatb.2019.02.007  doi: 10.1016/j.apcatb.2019.02.007

    40. [40]

      Song, X.; Wu, Y.; Zhang, X.; Li, X.; Zhu, Z.; Ma, C.; Yan, Y.; Huo, P.; Yang, G. Chem. Eng. J. 2021, 408, 127292. doi: 10.1016/j.cej.2020.127292  doi: 10.1016/j.cej.2020.127292

    41. [41]

      Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Adv. Mater. 2014, 26, 805. doi: 10.1002/adma.201303611  doi: 10.1002/adma.201303611

    42. [42]

      Zhang, Y.; Wu, L.; Zhao, X.; Zhao, Y.; Tan, H.; Zhao, X.; Ma, Y.; Zhao, Z.; Song, S.; Wang, Y.; et al. Adv. Energy Mater. 2018, 8, 1801139. doi: 10.1002/aenm.201801139  doi: 10.1002/aenm.201801139

    43. [43]

      Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Appl. Catal. B-Environ. 2015, 179, 1. doi: 10.1016/j.apcatb.2015.05.005  doi: 10.1016/j.apcatb.2015.05.005

    44. [44]

      Yu, F.; Wang, Z.; Zhang, S.; Ye, H.; Kong, K.; Gong, X.; Hua, J.; Tian, H. Adv. Funct. Mater. 2018, 28, 1804512. doi: 10.1002/adfm.201804512  doi: 10.1002/adfm.201804512

    45. [45]

      Li, H.; Lee, H.; Park, G.; Lee, B.; Park, J.; Shin, C.; Hou, W.; Yu, J. Carbon 2018, 129, 637. doi: 10.1016/j.carbon.2017.12.048  doi: 10.1016/j.carbon.2017.12.048

    46. [46]

      Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Appl. Catal. B-Environ. 2020, 268, 118736. doi: 10.1016/j.apcatb.2020.118736  doi: 10.1016/j.apcatb.2020.118736

    47. [47]

      Yang, Y.; Chen, J.; Mao, Z.; An, N.; Wang, D.; Fahlman, B. D. RSC Adv. 2017, 7, 2333. doi: 10.1039/c6ra26172h  doi: 10.1039/c6ra26172h

    48. [48]

      Sun, Z.; Jiang, Y.; Zeng, L.; Huang, L. ChemSusChem 2019, 12, 1325. doi: 10.1002/cssc.201802890  doi: 10.1002/cssc.201802890

    49. [49]

      Yang, J.; Wu, X.; Mei, Z.; Zhou, S.; Su, Y.; Wang, G. Adv. Sustain. Syst. 2022, 6, 2200056. doi: 10.1002/adsu.202200056  doi: 10.1002/adsu.202200056

    50. [50]

      Sun, H.; Guo, F.; Pan, J.; Huang, W.; Wang, K.; Shi, W. Chem. Eng. J. 2021, 406, 126844. doi: 10.1016/j.cej.2020.126844  doi: 10.1016/j.cej.2020.126844

    51. [51]

      Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 11926. doi: 10.1002/anie.201407319  doi: 10.1002/anie.201407319

    52. [52]

      Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6, 1601273. doi: 10.1002/aenm.201601273  doi: 10.1002/aenm.201601273

    53. [53]

      Wu, X.; Ma, H.; Wang, K.; Wang, J.; Wang, G.; Yu, H. J. Colloid Interface Sci. 2023, 633, 817. doi: 10.1016/j.jcis.2022.11.143  doi: 10.1016/j.jcis.2022.11.143

  • 加载中
    1. [1]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    7. [7]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    13. [13]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    19. [19]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    20. [20]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

Metrics
  • PDF Downloads(13)
  • Abstract views(993)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return