Methylene Blue Incorporated Donor-Acceptor g-C3N4 Nanosheet Photocatalyst for H2 Production
- Corresponding author: Pinquan Qin, qinpqcu@whut.edu.cn Shaowen Cao, swcao@whut.edu.cn
Citation: Fangxin Yin, Pinquan Qin, Jingsan Xu, Shaowen Cao. Methylene Blue Incorporated Donor-Acceptor g-C3N4 Nanosheet Photocatalyst for H2 Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 221206. doi: 10.3866/PKU.WHXB202212062
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Adv. Mater. 2021, 33, 2007479. doi: 10.1002/adma.202007479
doi: 10.1002/adma.202007479
Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033
doi: 10.1002/adma.201500033
Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016.
doi: 10.3866/PKU.WHXB202212016
Ruan, D.; Kim, S.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2018, 238, 638. doi: 10.1016/j.apcatb.2018.07.028
doi: 10.1016/j.apcatb.2018.07.028
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660
doi: 10.1002/adma.201807660
Shkir, M.; Palanivel, B.; Khan, A.; Kumar, M.; Chang, J.; Mani, A.; Alfaify, S. Chemosphere 2022, 291, 132687. doi: 10.1016/j.chemosphere.2021.132687
doi: 10.1016/j.chemosphere.2021.132687
Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China-Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x
doi: 10.1007/s40843-020-1456-x
Xia, P.; Antonietti, M.; Zhu, B.; Heil, T.; Yu, J.; Cao, S. Adv. Funct. Mater. 2019, 29, 1900093. doi: 10.1002/adfm.201900093
doi: 10.1002/adfm.201900093
Ismail, A. A.; Faisal, M.; Al-Haddad, A. J. Environ. Sci. 2018, 66, 328. doi: 10.1016/j.jes.2017.05.001
doi: 10.1016/j.jes.2017.05.001
Cao, S.; Yu, J. J. Phys. Chem. Lett. 2014, 5, 2101. doi: 10.1021/jz500546b
doi: 10.1021/jz500546b
Wu, M.; Zhang, J.; He, B.; Wang, H.; Wang, R.; Gong, Y. Appl. Catal. B-Environ. 2019, 241, 159. doi: 10.1016/j.apcatb.2018.09.037
doi: 10.1016/j.apcatb.2018.09.037
Zhao, S.; Zhang, Y.; Zhou, Y.; Wang, Y.; Qiu, K.; Zhang, C.; Fang, J.; Sheng, X. Carbon 2018, 126, 247. doi: 10.1016/j.carbon.2017.10.033
doi: 10.1016/j.carbon.2017.10.033
Zhu, Y.; Ren, T.; Yuan, Z. ACS Appl. Mater. Interfaces 2015, 7, 16850. doi: 10.1021/acsami.5b04947
doi: 10.1021/acsami.5b04947
Guo, F.; Shi, W.; Li, M.; Shi, Y.; Wen, H. Sep. Purif. Technol. 2019, 210, 608. doi: 10.1016/j.seppur.2018.08.055
doi: 10.1016/j.seppur.2018.08.055
Wan, S.; Xu, J.; Cao, S.; Yu, J. Interdiscip. Mater. 2022, 1, 294. doi: 10.1002/idm2.12024
doi: 10.1002/idm2.12024
Sun, Z.; Tan, Y.; Wan, J.; Huang, L. Chin. J. Chem. 2021, 39, 2044. doi: 10.1002/cjoc.202000743
doi: 10.1002/cjoc.202000743
Poon, C.; Wu, D.; Yam, V. W. Angew. Chem. -Int. Ed. 2016, 55, 3647. doi: 10.1002/anie.201510946
doi: 10.1002/anie.201510946
Castet, F.; Aurel, P.; Fritsch, A.; Ducasse, L.; Liotard, D.; Linares, M.; Cornil, J.; Beljonne, D. Phys. Rev. B 2008, 77, 115210. doi: 10.1103/PhysRevB.77.115210
doi: 10.1103/PhysRevB.77.115210
Kochergin, Y. S.; Schwarz, D.; Acharjya, A.; Ichangi, A.; Kulkarni, R.; Eliasova, P.; Vacek, J.; Schmidt, J.; Thomas, A.; Bojdys, M. J. Angew. Chem. -Int. Ed. 2018, 57, 14188. doi: 10.1002/anie.201809702
doi: 10.1002/anie.201809702
Che, H.; Liu, C.; Che, G.; Liao, G.; Dong, H.; Li, C.; Song, N.; Li, C. Nano Energy 2020, 67, 104273. doi: 10.1016/j.nanoen.2019.104273
doi: 10.1016/j.nanoen.2019.104273
Fan, X.; Zhang, L.; Cheng, R.; Wang, M.; Li, M.; Zhou, Y.; Shi, J. ACS Catal. 2015, 5, 5008. doi: 10.1021/acscatal.5b01155
doi: 10.1021/acscatal.5b01155
Shi, Y.; Li, L.; Sun, H.; Xu, Z.; Cai, Y.; Shi, W.; Guo, F.; Du, X. Sep. Purif. Technol. 2022, 292, 121038. doi: 10.1016/j.seppur.2022.121038
doi: 10.1016/j.seppur.2022.121038
Liu, Y.; Tian, J.; Wang, Q.; Wei, L.; Wang, C.; Yang, C. Opt. Mater. 2020, 99, 109594. doi: 10.1016/j.optmat.2020.110128
doi: 10.1016/j.optmat.2020.110128
Zhu, K.; Lv, Y.; Liu, J.; Wang, W.; Wang, C.; Wang, P.; Meng, A.; Li, Z.; Li, Q. Ceram. Int. 2019, 45, 3643. doi: 10.1016/j.ceramint.2018.11.025
doi: 10.1016/j.ceramint.2018.11.025
Yang, L.; Liu, X.; Liu, Z.; Wang, C.; Liu, G.; Li, Q.; Feng, X. Ceram. Int. 2018, 44, 20613. doi: 10.1016/j.ceramint.2018.06.105
doi: 10.1016/j.ceramint.2018.06.105
Chen, Y.; Yang, B.; Xie, W.; Zhao, X.; Wang, Z.; Su, X.; Yang, C. J. Mater. Res. Technol-JMRT 2021, 13, 301. doi: 10.1016/j.jmrt.2021.04.056
doi: 10.1016/j.jmrt.2021.04.056
Zhao, H.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y.; Zhao, H.; Wang, H. Appl. Catal. B-Environ. 2014, 152, 46. doi: 10.1016/j.apcatb.2014.01.023
doi: 10.1016/j.apcatb.2014.01.023
She, X.; Xu, H.; Xu, Y.; Yan, J.; Xia, J.; Xu, L.; Song, Y.; Jiang, Y.; Zhang, Q.; Li, H. J. Mater. Chem. A 2014, 2, 2563. doi: 10.1039/c3ta13768f
doi: 10.1039/c3ta13768f
Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. J. Mater. Chem. A 2017, 5, 3230. doi: 10.1039/c6ta08310b
doi: 10.1039/c6ta08310b
She, X.; Wu, J.; Zhong, J.; Xu, H.; Yang, Y.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.; Li, H.; et al. Nano Energy 2016, 27, 138. doi: 10.1016/j.nanoen.2016.06.042
doi: 10.1016/j.nanoen.2016.06.042
Yan, J.; Han, X.; Qian, J.; Liu, J.; Dong, X.; Xi, F. J. Mater. Sci. 2017, 52, 13091. doi: 10.1007/s10853-017-1419-5
doi: 10.1007/s10853-017-1419-5
Dong, F.; Li, Y.; Wang, Z.; Ho, W. Appl. Surf. Sci. 2015, 358, 393. doi: 10.1016/j.apsusc.2015.04.034
doi: 10.1016/j.apsusc.2015.04.034
Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.
doi: 10.3866/PKU.WHXB202010073
Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922
doi: 10.1002/adfm.201200922
Li, K.; Sun, M.; Zhang, W. Carbon 2018, 134, 134. doi: 10.1016/j.carbon.2018.03.089
doi: 10.1016/j.carbon.2018.03.089
Chen, X.; Shi, R.; Chen, Q.; Zhang, Z.; Jiang, W.; Zhu, Y.; Zhang, T. Nano Energy 2019, 59, 644. doi: 10.1016/j.nanoen.2019.03.010
doi: 10.1016/j.nanoen.2019.03.010
Wang, Y.; Zhang, Y.; Zhao, S.; Huang, Z.; Chen, W.; Zhou, Y.; Lv, X.; Yuan, S. Appl. Catal. B-Environ. 2019, 248, 44. doi: 10.1016/j.apcatb.2019.02.007
doi: 10.1016/j.apcatb.2019.02.007
Song, X.; Wu, Y.; Zhang, X.; Li, X.; Zhu, Z.; Ma, C.; Yan, Y.; Huo, P.; Yang, G. Chem. Eng. J. 2021, 408, 127292. doi: 10.1016/j.cej.2020.127292
doi: 10.1016/j.cej.2020.127292
Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Adv. Mater. 2014, 26, 805. doi: 10.1002/adma.201303611
doi: 10.1002/adma.201303611
Zhang, Y.; Wu, L.; Zhao, X.; Zhao, Y.; Tan, H.; Zhao, X.; Ma, Y.; Zhao, Z.; Song, S.; Wang, Y.; et al. Adv. Energy Mater. 2018, 8, 1801139. doi: 10.1002/aenm.201801139
doi: 10.1002/aenm.201801139
Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Appl. Catal. B-Environ. 2015, 179, 1. doi: 10.1016/j.apcatb.2015.05.005
doi: 10.1016/j.apcatb.2015.05.005
Yu, F.; Wang, Z.; Zhang, S.; Ye, H.; Kong, K.; Gong, X.; Hua, J.; Tian, H. Adv. Funct. Mater. 2018, 28, 1804512. doi: 10.1002/adfm.201804512
doi: 10.1002/adfm.201804512
Li, H.; Lee, H.; Park, G.; Lee, B.; Park, J.; Shin, C.; Hou, W.; Yu, J. Carbon 2018, 129, 637. doi: 10.1016/j.carbon.2017.12.048
doi: 10.1016/j.carbon.2017.12.048
Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Appl. Catal. B-Environ. 2020, 268, 118736. doi: 10.1016/j.apcatb.2020.118736
doi: 10.1016/j.apcatb.2020.118736
Yang, Y.; Chen, J.; Mao, Z.; An, N.; Wang, D.; Fahlman, B. D. RSC Adv. 2017, 7, 2333. doi: 10.1039/c6ra26172h
doi: 10.1039/c6ra26172h
Sun, Z.; Jiang, Y.; Zeng, L.; Huang, L. ChemSusChem 2019, 12, 1325. doi: 10.1002/cssc.201802890
doi: 10.1002/cssc.201802890
Yang, J.; Wu, X.; Mei, Z.; Zhou, S.; Su, Y.; Wang, G. Adv. Sustain. Syst. 2022, 6, 2200056. doi: 10.1002/adsu.202200056
doi: 10.1002/adsu.202200056
Sun, H.; Guo, F.; Pan, J.; Huang, W.; Wang, K.; Shi, W. Chem. Eng. J. 2021, 406, 126844. doi: 10.1016/j.cej.2020.126844
doi: 10.1016/j.cej.2020.126844
Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 11926. doi: 10.1002/anie.201407319
doi: 10.1002/anie.201407319
Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6, 1601273. doi: 10.1002/aenm.201601273
doi: 10.1002/aenm.201601273
Wu, X.; Ma, H.; Wang, K.; Wang, J.; Wang, G.; Yu, H. J. Colloid Interface Sci. 2023, 633, 817. doi: 10.1016/j.jcis.2022.11.143
doi: 10.1016/j.jcis.2022.11.143
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195