Citation: Ganyin Yuan, Zheng Xi, Chu Wang, Xiaohuan Sun, Jie Han, Rong Guo. Construction of Supramolecular Chiral Polyaniline-Gold Nanocomposite as Nanozyme for Enantioselective Catalysis[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221206. doi: 10.3866/PKU.WHXB202212061 shu

Construction of Supramolecular Chiral Polyaniline-Gold Nanocomposite as Nanozyme for Enantioselective Catalysis

  • Corresponding author: Zheng Xi, xizheng@yzu.edu.cn Xiaohuan Sun, xhuansun@yzu.edu.cn Jie Han, hanjie@yzu.edu.cn
  • Received Date: 31 December 2022
    Revised Date: 25 January 2023
    Accepted Date: 29 January 2023
    Available Online: 7 February 2023

    Fund Project: the National Natural Science Foundation of China 21922202the National Natural Science Foundation of China 22002138the National Natural Science Foundation of China 22202171

  • Enantioselective catalysis is ubiquitous in biological organisms and closely related to biological production and metabolism. The design and development of nanozymes with high enantioselectivities are essential for various bio-related applications. Currently, investigations of nanozymes are primarily focused on their catalytic activity. However, the enantioselectivity of nanozymes, a significant feature, has been rarely studied. In view of the few reports related to enantioselective catalysis, nanozymes have mainly been constructed with chiral molecule-modified nanoparticles. Because the selectivity of natural enzymes not only depends on the molecular chirality of chiral species, such as amino acids, but is also closely related to the chiral supramolecular microenvironment generated by the spatial arrangement and folding of proteins, the construction of active chiral substances with chiral supramolecular microenvironment for nanozymes is also an effective way to design nanozymes with excellent enantioselectivities. Additionally, to improve the enantioselectivity, an understanding of the influencing parameters for select factor of chiral nanozymes is essential. Herein, we report the successful construction of nanocomposites composed of supramolecular M-polyaniline (M-PANI) twisted nanoribbons assembled without any chiral molecules, and Au nanoparticles (NPs) of three different sizes (3, 10, and 16 nm). The characterization results from scanning electron microscopy, transmission electron microscopy, UV-Vis absorption spectroscopy, and X-ray photoelectron spectroscopy confirmed the successful fabrication of M-PANI-Au nanocomposites. The evident signals in the circular dichroism spectra of the M-PANI-Au nanocomposites indicated their potential as chiral nanozymes. Considering the catalytic oxidation of chiral R-/S-3, 4-dihydroxyphenylalanine (R-/S-DOPA) enantiomers as a model reaction, the three M-PANI supported Au NPs demonstrated higher catalytic selectivity for R-DOPA than for S-DOPA, as confirmed by the kinetic absorption curves, revealing the high potential of M-PANI-Au nanocomposites as enantioselective nanozymes. Interestingly, according to the kinetic assay study, the M-PANI nanocomposite with 3 nm Au NPs had a higher selection factor (2.59) than those of 10 nm Au NPs (1.46) and 16 nm Au NPs (1.58), which could be attributed to the strongest chirality transfer effect from the supramolecular chiral PANI to 3 nm Au NPs. Therefore, chirality transfer from chiral supramolecular scaffolds to nanozymes is a key factor influencing the enantioselective catalysis and can provide direct guidance for the future design and construction of chiral supramolecular nanozymes with high enantioselectivities.
  • 加载中
    1. [1]

      Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G. Biosens. Bioelectron. 2006, 21, 1405. doi: 10.1016/j.bios.2005.07.012  doi: 10.1016/j.bios.2005.07.012

    2. [2]

      Kirk, O.; Borchert, T. V.; Fuglsang, C. C. Curr. Opin. Biotechnol. 2002, 13, 345. doi: 10.1016/S0958-1669(02)00328-2  doi: 10.1016/S0958-1669(02)00328-2

    3. [3]

      Gao, L.; Yan, X. Sci. China Life Sci. 2016, 59 (4), 400. doi: 10.1007/s11427-016-5044-3  doi: 10.1007/s11427-016-5044-3

    4. [4]

      Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; et al. ACS Nano 2017, 11 (6), 5558. doi: 10.1021/acsnano.7b00905  doi: 10.1021/acsnano.7b00905

    5. [5]

      Chen, J. L.; Pezzato, C.; Scrimin, P.; Prins, L. Chem. Eur. J. 2016, 22 (21), 7028. doi: 10.1002/chem.201600853  doi: 10.1002/chem.201600853

    6. [6]

      Zhang, R.; Yan, X.; Fan, K. Acc. Mater. Res. 2021, 2 (7), 534. doi: 10.1021/accountsmr.1c00074  doi: 10.1021/accountsmr.1c00074

    7. [7]

      Li, Y.; Liu, J. Mater. Horiz. 2021, 8 (2), 336. doi: 10.1039/d0mh01393e  doi: 10.1039/d0mh01393e

    8. [8]

      Ji, S.; Jiang, B.; Hao, H.; Chen, Y.; Dong, J.; Mao, Y.; Zhang, Z.; Gao, R.; Chen, W.; Zhang, R.; et al. Nat. Catal. 2021, 4 (5), 407. doi: 10.1038/s41929-021-00609-x  doi: 10.1038/s41929-021-00609-x

    9. [9]

      Huang, Y.; Ren, J.; Qu, X. Chem. Rev. 2019, 119 (6), 4357. doi: 10.1021/acs.chemrev.8b00672  doi: 10.1021/acs.chemrev.8b00672

    10. [10]

      Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Chem. Soc. Rev. 2019, 48 (4), 1004. doi: 10.1039/c8cs00457a  doi: 10.1039/c8cs00457a

    11. [11]

      Zhang, R.; Zhou, Y.; Yan, X.; Fan, K. Mikrochim. Acta 2019, 186 (12), 782. doi: 10.1007/s00604-019-3922-7  doi: 10.1007/s00604-019-3922-7

    12. [12]

      Dong, K.; Xu, C.; Ren, J.; Qu, X. Angew. Chem. Int. Ed. 2022, 61 (43), e202208757. doi: 10.1002/anie.202208757  doi: 10.1002/anie.202208757

    13. [13]

      Zhou, Y.; Sun, H.; Xu, H.; Matysiak, S.; Ren, J.; Qu, X. Angew. Chem. Int. Ed. 2018, 57 (51), 16791. doi: 10.1002/anie.201811118  doi: 10.1002/anie.201811118

    14. [14]

      Zhan, P.; Wang, Z.-G.; Li, N.; Ding, B. ACS Catal. 2015, 5 (3), 1489. doi: 10.1021/cs5015805  doi: 10.1021/cs5015805

    15. [15]

      Golub, E.; Albada, H. B.; Liao, W. C.; Biniuri, Y.; Willner, I. J. Am. Chem. Soc. 2016, 138 (1), 164. doi: 10.1021/jacs.5b09457  doi: 10.1021/jacs.5b09457

    16. [16]

      Wang, H. X.; Xu, L. F.; Liu, M. H. Acta Phys.-Chim. Sin. 2020, 36 (10), 1910036.  doi: 10.3866/PKU.WHXB201910036

    17. [17]

      Wang, X. F.; Zhang, L.; Liu, M. H. Acta Phys.-Chim. Sin. 2016, 32 (1), 227.  doi: 10.3866/PKU.WHXB201511181

    18. [18]

      Song, S.; Wang, J.; Song, N.; Di, H.; Liu, D.; Yu, Z. Nanoscale 2020, 12 (4), 2422. doi: 10.1039/c9nr09492j  doi: 10.1039/c9nr09492j

    19. [19]

      Liu, M. H. Acta Phys.-Chim. Sin. 2020, 36 (10), 2004031.  doi: 10.3866/PKU.WHXB202004031

    20. [20]

      Li, W.; Wang, H. L. J. Am. Chem. Soc. 2004, 126, 2278. doi: 10.1021/ja039672q  doi: 10.1021/ja039672q

    21. [21]

      Pattadar, D. K.; Zamborini, F. P. J. Am. Chem. Soc. 2018, 140 (43), 14126. doi: 10.1021/jacs.8b06830  doi: 10.1021/jacs.8b06830

    22. [22]

      Hassinen, J.; Liljestrom, V.; Kostiainen, M. A.; Ras, R. H. Angew. Chem. Int. Ed. 2015, 54 (27), 7990. doi: 10.1002/anie.201503655  doi: 10.1002/anie.201503655

    23. [23]

      Fan, L.; Xu, X.; Zhu, C.; Han, J.; Gao, L.; Xi, J.; Guo, R. ACS Appl. Mater. Interfaces 2018, 10 (5), 4502. doi: 10.1021/acsami.7b17916  doi: 10.1021/acsami.7b17916

    24. [24]

      Huang, J.; Egan, V. M.; Guo, H.; Yoon, J. Y.; Briseno, A. L.; Rauda, I. E.; Garrell, R. L.; Knobler, C. M.; Zhou, F.; Kaner, R. B. Adv. Mater. 2003, 15 (14), 1158. doi: 10.1002/adma.200304835  doi: 10.1002/adma.200304835

    25. [25]

      Peters, S.; Peredkov, S.; Neeb, M.; Eberhardt, W.; Al-Hada, M. Surf. Sci. 2013, 608, 129. doi: 10.1016/j.susc.2012.09.024  doi: 10.1016/j.susc.2012.09.024

    26. [26]

      Zhou, C.; Ren, Y.; Han, J.; Gong, X.; Wei, Z.; Xie, J.; Guo, R. J. Am. Chem. Soc. 2018, 140 (30), 9417. doi: 10.1021/jacs.7b12178  doi: 10.1021/jacs.7b12178

    27. [27]

      Zhou, C.; Ren, Y.; Han, J.; Xu, Q.; Guo, R. ACS Nano 2019, 13 (3), 3534. doi: 10.1021/acsnano.8b09784  doi: 10.1021/acsnano.8b09784

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    7. [7]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    8. [8]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    11. [11]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    12. [12]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    13. [13]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    14. [14]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    15. [15]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    16. [16]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    17. [17]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    18. [18]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    19. [19]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    20. [20]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

Metrics
  • PDF Downloads(21)
  • Abstract views(687)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return