Citation: Zhanjun He, Min Huang, Tiejun Lin, Liangshu Zhong. Recent Advances in Dry Reforming of Methane via Photothermocatalysis[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221206. doi: 10.3866/PKU.WHXB202212060 shu

Recent Advances in Dry Reforming of Methane via Photothermocatalysis

  • Corresponding author: Liangshu Zhong, zhongls@sari.ac.cn
  • Received Date: 30 December 2022
    Revised Date: 6 February 2023
    Accepted Date: 7 February 2023
    Available Online: 13 February 2023

    Fund Project: the National Key R & D Program of China 2021YFF0500702Natural Science Foundation of Shanghai, China 22JC1404200the Program of Shanghai Academic/Technology Research Leader, China 20XD1404000

  • During the development of traditional industries, large amounts of greenhouse gases have been emitted due to the increasing consumption of fossil energy. CH4 and CO2 account for more than 98% of greenhouse gas emissions, and the conversion of CH4 and CO2 into high value-added chemicals has attracted extensive attention from both industry and academia. Dry reforming of methane (DRM) can co-convert CH4 and CO2 into syngas, which can be further converted into various value-added fuels and chemicals through Fischer-Tropsch synthesis. The dry reforming of methane into syngas by thermal catalysis provides an effective strategy for the consumption of both CH4 and CO2, which is beneficial for alleviating environmental problems such as global warming. However, a high-intensity energy input is needed at high temperatures owing to the thermodynamic limitations of the DRM reaction and catalyst instability caused by coke formation. Environmentally friendly photocatalytic technology can make the DRM reaction proceed under mild conditions. However, its development is greatly restricted owing to the low utilization rate of sunlight and low reaction conversion rate. Recently, photothermocatalysis has been widely used in various fields. Many studies have shown that under relatively mild conditions, photothermocatalysis of DRM can achieve promising catalytic performance and effectively convert solar energy into chemical energy. Photothermocatalysis can greatly increase the reaction rate of photocatalytic DRM without a high energy input. In addition, the introduction of light is beneficial for the thermal catalysis of DRM by reducing the reaction activation energy, inhibiting coke formation, and reversing the water-gas shift reaction. In this paper, the advantages and disadvantages of thermal catalysis, photocatalysis, and photothermal catalysis of DRM are first discussed. Then, recent research progress in photothermocatalysis of the DRM reaction, especially the application of different metal-based catalysts (Ni, Pt, Rh, Ru, and Co) is summarized. Localized surface plasmon resonance effects, types of carriers, elimination of coke formation, and suppression of the reverse water-gas shift reaction are briefly mentioned. Finally, the future challenges and new perspectives on the photothermocatalysis of DRM are highlighted, including high utilization of sunlight, catalyst long-term stability, reactor optimization, and the photothermocatalytic mechanism.
  • 加载中
    1. [1]

      Noor, Z. Z.; Yusuf, R. O.; Abba, A. H.; Abu Hassan, M. A.; Din, M. F. M. Renew. Sustain. Energy Rev. 2013, 20, 378. doi: 10.1016/j.rser.2012.11.050  doi: 10.1016/j.rser.2012.11.050

    2. [2]

      Yusuf, R. O.; Noor, Z. Z.; Abba, A. H.; Abu Hassan, M. A.; Din, M. F. M. Renew. Sustain. Energy Rev. 2012, 16, 5059. doi: 10.1016/j.rser.2012.04.008  doi: 10.1016/j.rser.2012.04.008

    3. [3]

      Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835  doi: 10.1126/science.aaf1835

    4. [4]

      Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y.; et al. Nature 2016, 538, 84. doi: 10.1038/nature19786  doi: 10.1038/nature19786

    5. [5]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a  doi: 10.1038/417507a

    6. [6]

      Kroll, V. C. H.; Swaan, H. M.; Mirodatos, C. J. Catal. 1996, 161, 409. doi: 10.1006/jcat.1996.0199  doi: 10.1006/jcat.1996.0199

    7. [7]

      He, C.; Wu, S.; Wang, L.; Zhang, J. J. Photochem. Photobiol. C 2022, 51, 100468. doi: 10.1016/j.jphotochemrev.2021.100468  doi: 10.1016/j.jphotochemrev.2021.100468

    8. [8]

      Li, M.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2022, 428, 131222. doi: 10.1016/j.cej.2021.131222  doi: 10.1016/j.cej.2021.131222

    9. [9]

      Wu, S.; Li, Y.; Hu, Q.; Wu, J.; Zhang, Q. ACS Sustain. Chem. Eng. 2021, 9, 11635. doi: 10.1021/acssuschemeng.1c03692  doi: 10.1021/acssuschemeng.1c03692

    10. [10]

      Wang, C.; Su, Y.; Tavasoli, A.; Sun, W.; Wang, L.; Ozin, G. A.; Yang, D. Mater. Today Nano 2021, 14, 100113. doi: 10.1016/j.mtnano.2021.100113  doi: 10.1016/j.mtnano.2021.100113

    11. [11]

      Ning, S.; Sun, Y.; Ouyang, S.; Qi, Y.; Ye, J. Appl. Catal. B 2022, 310, 121063. doi: 10.1016/j.apcatb.2022.121063  doi: 10.1016/j.apcatb.2022.121063

    12. [12]

      Aramouni, N. A. K.; Touma, J. G.; Abu Tarboush, B.; Zeaiter, J.; Ahmad, M. N. Renew. Sustain. Energy Rev. 2018, 82, 2570. doi: 10.1016/j.rser.2017.09.076  doi: 10.1016/j.rser.2017.09.076

    13. [13]

      Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. ACS Catal. 2015, 5, 3028. doi: 10.1021/acscatal.5b00357  doi: 10.1021/acscatal.5b00357

    14. [14]

      Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Nat. Commun. 2015, 6, 1. doi: 10.1038/ncomms8938  doi: 10.1038/ncomms8938

    15. [15]

      Bian, Z. F.; Das, S.; Wai, M. H.; Hongmanorom, P.; Kawi, S. ChemPhysChem 2017, 18, 3117. doi: 10.1002/cphc.201700529  doi: 10.1002/cphc.201700529

    16. [16]

      Zubenko, D.; Singh, S.; Rosen, B. Appl. Catal. B 2017, 209, 711. doi: 10.1016/j.apcatb.2017.03.047  doi: 10.1016/j.apcatb.2017.03.047

    17. [17]

      Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B.; Jamal, A.; Moon, D.; et al. Science 2020, 367, 777. doi: 10.1126/science.aav2412  doi: 10.1126/science.aav2412

    18. [18]

      Naeem, M. A.; Abdala, P. M.; Armutlulu, A.; Kim, S. M.; Fedorov, A.; Mueller, C. R. ACS Catal. 2020, 10, 1923. doi: 10.1021/acscatal.9b04555  doi: 10.1021/acscatal.9b04555

    19. [19]

      Das, S.; Perez-Ramirez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Chem. Soc. Rev. 2020, 49, 2937. doi: 10.1039/c9cs00713j  doi: 10.1039/c9cs00713j

    20. [20]

      Li, Z.; Li, M.; Bian, Z.; Kathiraser, Y.; Kawi, S. Appl. Catal. B 2016, 188, 324. doi: 10.1016/j.apcatb.2016.01.067  doi: 10.1016/j.apcatb.2016.01.067

    21. [21]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    22. [22]

      Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Science 2015, 347, 970. doi: 10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    23. [23]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d  doi: 10.1039/c3cs60378d

    24. [24]

      Han, F.; Kambala, V. S. R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Appl. Catal. A 2009, 359, 25. doi: 10.1016/j.apcata.2009.02.043  doi: 10.1016/j.apcata.2009.02.043

    25. [25]

      Byrne, C.; Subramanian, G.; Pillai, S. C. J. Environ. Chem. Eng. 2018, 6, 3531. doi: 10.1016/j.jece.2017.07.080  doi: 10.1016/j.jece.2017.07.080

    26. [26]

      Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    27. [27]

      Ding, M.; Flaig, R. W.; Jiang, H. -L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/c8cs00829a  doi: 10.1039/c8cs00829a

    28. [28]

      Tahir, B.; Tahir, M.; Amin, N. A. S. Appl. Surf. Sci. 2017, 419, 875. doi: 10.1016/j.apsusc.2017.05.117  doi: 10.1016/j.apsusc.2017.05.117

    29. [29]

      Tahir, M.; Tahir, B.; Zakaria, Z. Y.; Muhammad, A. J. Cleaner Prod. 2019, 213, 451. doi: 10.1016/j.jclepro.2018.12.169  doi: 10.1016/j.jclepro.2018.12.169

    30. [30]

      Yang, Y.; Tan, H. Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. K. Small Methods 2021, 5, 2001042. doi: 10.1002/smtd.202001042  doi: 10.1002/smtd.202001042

    31. [31]

      Liu, H.; Meng, X.; Thang Duy, D.; Liu, L.; Li, P.; Zhao, G.; Nagao, T.; Yang, L.; Ye, J. J. Mater. Chem. A 2017, 5, 10567. doi: 10.1039/c7ta00704c  doi: 10.1039/c7ta00704c

    32. [32]

      Liu, H.; Thang Duy, D.; Liu, L.; Meng, X.; Nagaoa, T.; Ye, J. Appl. Catal. B 2017, 209, 183. doi: 10.1016/j.apcatb.2017.02.080  doi: 10.1016/j.apcatb.2017.02.080

    33. [33]

      Zhang, Q.; Mao, M.; Li, Y.; Yang, Y.; Huang, H.; Jiang, Z.; Hu, Q.; Wu, S.; Zhao, X. Appl. Catal. B 2018, 239, 555. doi: 10.1016/j.apcatb.2018.08.052  doi: 10.1016/j.apcatb.2018.08.052

    34. [34]

      Liu, H.; Song, H.; Meng, X.; Yang, L.; Ye, J. Catal. Today 2019, 335, 187. doi: 10.1016/j.cattod.2018.11.005  doi: 10.1016/j.cattod.2018.11.005

    35. [35]

      Jiang, Z.; Li, Y.; Zhang, Q.; Yang, Y.; Wu, S.; Wu, J.; Zhao, X. J. Mater. Chem. A 2019, 7, 4881. doi: 10.1039/c9ta00259f  doi: 10.1039/c9ta00259f

    36. [36]

      Zhang, Q.; Li, Y.; Wu, S.; Wu, J.; Jiang, Z.; Yang, Y.; Ren, L.; Zhao, X. J. Mater. Chem. A 2019, 7, 19800. doi: 10.1039/c9ta06923b  doi: 10.1039/c9ta06923b

    37. [37]

      Takeda, K.; Yamaguchi, A.; Cho, Y.; Anjaneyulu, O.; Fujita, T.; Abe, H.; Miyauchi, M. Global Chall. 2020, 4, 1900067. doi: 10.1002/gch2.201900067  doi: 10.1002/gch2.201900067

    38. [38]

      Rao, Z.; Cao, Y.; Huang, Z.; Yin, Z.; Wan, W.; Ma, M.; Wu, Y.; Wang, J.; Yang, G.; Cui, Y.; et al. ACS Catal. 2021, 11, 4730. doi: 10.1021/acscatal.0c04826  doi: 10.1021/acscatal.0c04826

    39. [39]

      Han, K.; Wang, Y.; Wang, S.; Liu, Q.; Deng, Z.; Wang, F. Chem. Eng. J. 2021, 421, 129989. doi: 10.1016/j.cej.2021.129989  doi: 10.1016/j.cej.2021.129989

    40. [40]

      Tan, X.; Wu, S.; Li, Y.; Zhang, Q.; Hu, Q.; Wu, J.; Zhang, A.; Zhang, Y. Energy Environ. Mater. 2022, 5, 582. doi: 10.1002/eem2.12193  doi: 10.1002/eem2.12193

    41. [41]

      Lorber, K.; Zavasnik, J.; Sancho-Parramon, J.; Bubas, M.; Mazaj, M.; Djinovic, P. Appl. Catal. B 2022, 301, 120745. doi: 10.1016/j.apcatb.2021.120745  doi: 10.1016/j.apcatb.2021.120745

    42. [42]

      Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Dai, Q.; Zhang, T. Adv. Funct. Mater. 2022, 32, 2204056. doi: 10.1002/adfm.202204056  doi: 10.1002/adfm.202204056

    43. [43]

      Du, Z.; Pan, F.; Yang, X.; Fang, L.; Gang, Y.; Fang, S.; Li, T.; Hu, Y. H.; Li, Y. Catal. Today 2023, 409, 31. doi: 10.1016/j.cattod.2022.05.014  doi: 10.1016/j.cattod.2022.05.014

    44. [44]

      Xie, T.; Zhang, Z. -Y.; Zheng, H. -Y.; Xu, K. -D.; Hu, Z.; Lei, Y. Chem. Eng. J. 2022, 429, 132507. doi: 10.1016/j.cej.2021.132507  doi: 10.1016/j.cej.2021.132507

    45. [45]

      Han, B.; Wei, W.; Chang, L.; Cheng, P. F.; Hu, Y. H. ACS Catal. 2016, 6, 494. doi: 10.1021/acscatal.5b02653  doi: 10.1021/acscatal.5b02653

    46. [46]

      Liu, H.; Song, H.; Zhou, W.; Meng, X.; Ye, J. Angew. Chem. Int. Ed. 2018, 57, 16781. doi: 10.1002/anie.201810886  doi: 10.1002/anie.201810886

    47. [47]

      Song, H.; Meng, X.; Dao, T. D.; Zhou, W.; Liu, H.; Shi, L.; Zhang, H.; Nagao, T.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2018, 10, 408. doi: 10.1021/acsami.7b13043  doi: 10.1021/acsami.7b13043

    48. [48]

      Liu, H.; Meng, X.; Thang Duy, D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 11545. doi: 10.1002/anie.201504933  doi: 10.1002/anie.201504933

    49. [49]

      Shoji, S.; Peng, X.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M. -W.; Ishii, S.; et al. Nat. Catal. 2020, 3, 148. doi: 10.1038/s41929-019-0419-z  doi: 10.1038/s41929-019-0419-z

    50. [50]

      Cho, Y.; Shoji, S.; Yamaguchi, A.; Hoshina, T.; Fujita, T.; Abe, H.; Miyauchi, M. Chem. Commun. 2020, 56, 4611. doi: 10.1039/d0cc00729c  doi: 10.1039/d0cc00729c

    51. [51]

      Liu, H.; Li, M.; Thang Duy, D.; Liu, Y.; Zhou, W.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045  doi: 10.1016/j.nanoen.2016.05.045

    52. [52]

      Zhou, L.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M.; Dong, L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61. doi: 10.1038/s41560-019-0517-9  doi: 10.1038/s41560-019-0517-9

    53. [53]

      Wu, S.; Li, Y.; Zhang, Q.; Jiang, Z.; Yang, Y.; Wu, J.; Zhao, X. Energy Environ. Sci. 2019, 12, 2581. doi: 10.1039/c9ee01484e  doi: 10.1039/c9ee01484e

    54. [54]

      He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2201021.  doi: 10.3866/PKU.WHXB202201021

    55. [55]

      Ma, J.; Long, R.; Liu, D.; Low, J. X.; Xiong, Y. J. Small Struct. 2022, 3, 2100147. doi: 10.1002/sstr.202100147  doi: 10.1002/sstr.202100147

    56. [56]

      Liu, Y.; Duan, Z.; Li, J.; Chan, C. Acta Phys. -Chim. Sin. 2021, 37, 2011012.  doi: 10.3866/PKU.WHXB202011012

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(48)
  • Abstract views(1419)
  • HTML views(476)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return