Citation: Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221205. doi: 10.3866/PKU.WHXB202212057 shu

Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction

  • Corresponding author: Qianrong Fang, qrfang@jlu.edu.cn
  • Received Date: 30 December 2022
    Revised Date: 30 January 2023
    Accepted Date: 31 January 2023
    Available Online: 3 February 2023

    Fund Project: the National Key R&D Program of China 2022YFB3704900the National Key R&D Program of China 2021YFF0500500National Natural Science Foundation of China 22025504National Natural Science Foundation of China 21621001National Natural Science Foundation of China 22105082the SINOPEC Research Institute of Petroleum Processing, "111" Project, China BP0719036the SINOPEC Research Institute of Petroleum Processing, "111" Project, China B17020

  • Increasing global energy consumption and the depletion of traditional energy sources pose severe challenges to environmental protection and energy supply security. Electrochemical decomposition of water is a green and promising technology and is also a key technology for efficient and sustainable energy production and storage by fuel cells and metal-air batteries. The electrocatalytic oxygen evolution reaction (OER), as the anode reaction for the electrolysis of water, requires large amounts of energy owing to multielectron participation, and to the breaking of O―H bonds and formation of O―O bonds. Many precious metal catalysts are expensive, and these are responsible for secondary environmental pollution, which is detrimental for the large-scale application of the OER. Therefore, it is necessary to develop a stable, clean, and efficient electrocatalyst to improve the efficiency of the OER. The application of covalent organic frameworks (COFs) to the electrocatalytic oxygen evolution reaction (OER) has received widespread attention. However, most metal-free covalent organic frameworks (COFs) have unsuitably poor conductivity for the OER. Herein, we report a 2D metal-free tetrathiafulvalene (TTF)-based COF, termed JUC-630. To improve the conductivity of COFs, we introduced TTF, which is a good electron donor, into the COF material. At the same time, compared with its analogue without TTF (Etta-Td COF), we found that JUC-630 has a large surface area, better crystallinity, and higher stability. Furthermore, we tested their OER performance in a 1 mol∙L−1 KOH solution, and the results show that JUC-630 has a higher current density than Etta-Td COF and TTF at the same potential. For example, at a current density of 10 mA∙cm−2, the overpotential of JUC-630 was 400 mV, which was significantly lower than that of Etta-Td COF (450 mV). This overpotential is comparable to or even better than those of the widely discussed carbon and graphene materials. The lower overpotential, Tafel slope values, and smaller electrochemical impedance illustrate that the introduction of TTF monomers into the COF material results in a significantly improved OER performance for JUC-630. This study proposes a strategy for the rational design of functional motifs that can greatly improve the OER catalytic activity of COF materials. Thus, the results should help to suggest new efficient approaches for the preparation of catalysts for energy conversion from water resources.
  • 加载中
    1. [1]

      You, H.; Yang, S.; Ding, B.; Yang, H. Chem. Soc. Rev. 2013, 42, 2880. doi: 10.1039/C2CS35319A  doi: 10.1039/C2CS35319A

    2. [2]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    3. [3]

      Liu, X.; Dai, L. Nat. Rev. Mater. 2016, 1, 16064. doi: 10.1038/natrevmats.2016.64  doi: 10.1038/natrevmats.2016.64

    4. [4]

      Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Sci. Rep. 2017, 7, 8378. doi: 10.1038/s41598-017-08677-5  doi: 10.1038/s41598-017-08677-5

    5. [5]

      Teng, H.; Wang, W.; Han, X.; Hao, X.; Yang, R. Acta Phys. -Chim. Sin. 2023, 39 (1), 2107017.  doi: 10.3866/PKU.WHXB202107017

    6. [6]

      Yu, Y.; Feng, Y.; Guan, B.; Lou, W.; Paik, U. Energy Environ. Sci. 2016, 9 (4), 1246. doi: 10.1039/C6EE00100A  doi: 10.1039/C6EE00100A

    7. [7]

      Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2 (8), 1765. doi: 10.1021/cs3003098  doi: 10.1021/cs3003098

    8. [8]

      Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53 (41), 10960. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    9. [9]

      Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dan, H.; Strasser, P. Nat. Commun. 2015, 6, 8625. doi: 10.1038/ncomms9625  doi: 10.1038/ncomms9625

    10. [10]

      Tran Ngoc, H.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X.; Menguy, N.; Mougel, V.; Fontecave, M. Angew. Chem. Int. Ed. , 2017, 56 (17), 4792. doi: 10.1002/anie.201700388  doi: 10.1002/anie.201700388

    11. [11]

      Liu, X.; Wang, L.; Yu, C.; Tian, C.; Sun, F.; Ma, J.; Li, L.; Fu, H.; Angew. Chem. Int. Ed. 2018, 57, 16166. doi: 10.1002/anie.201809009  doi: 10.1002/anie.201809009

    12. [12]

      Bhanja, P.; Mohanty, B.; Patra, A. K.; Ghosh, S.; Jena, B. K.; Bhaumik, A. ChemCatChem 2019, 11, 583. doi: 10.1002/cctc.201801312  doi: 10.1002/cctc.201801312

    13. [13]

      Siracusano, S.; Van Dijk, N.; Payne-Johnson, E.; Baglio, V.; Aricò, A. S. Appl. Catal. B: Environ. 2015, 164, 488. doi: 10.1016/j.apcatb.2014.09.005  doi: 10.1016/j.apcatb.2014.09.005

    14. [14]

      Li, Y.; Li, M.; Jiang, L. Q.; Lin, L.; Cui, L.; He, Q. Phys. Chem. Chem. Phys. 2014, 16 (42), 23196. doi: 10.1039/C4CP02528H  doi: 10.1039/C4CP02528H

    15. [15]

      Wang, Q.; Lee, S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Chem. Mater. 2010, 22 (7), 2178. doi: 10.1021/cm100139d  doi: 10.1021/cm100139d

    16. [16]

      Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006, 110 (4), 1787. doi: 10.1021/jp055150g  doi: 10.1021/jp055150g

    17. [17]

      Liu, W.; Peng, F.; Wang, J.; Yu, H.; Zheng, X.; Yang, A. Angew. Chem. Int. Ed. 2011, 50 (14), 3257. doi: 10.1002/ange.201006768  doi: 10.1002/ange.201006768

    18. [18]

      Gong, P.; Du, F.; Xia, H.; Durstock, M.; Dai, M. Science 2009, 323 (5915), 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    19. [19]

      Yang, J.; Jiang, J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50 (31), 7270 doi: 10.1002/ange.201101287  doi: 10.1002/ange.201101287

    20. [20]

      Wu, K.; Zhang, Y.; Yong, Z.; Li, Q. Acta Phys. -Chim. Sin. 2022, 38 (9), 2106034.  doi: 10.3866/PKU.WHXB202106034

    21. [21]

      Zhu, Y.-N.; Cao, C.-Y.; Jiang, W.-J.; Yang, S.-L.; Hu, J.-S.; Song, W.-G.; Wan, L.-J. J. Mater. Chem. A 2016, 4, 18470. doi: 10.1039/C6TA08335H  doi: 10.1039/C6TA08335H

    22. [22]

      Kone, I.; Xie, A.; Tang, Y.; Chen, Y.; Liu, J.; Chen, Y.; Sun, Y.; Yang, X.; Wan, P. ACS Appl. Mater. Interfaces 2017, 9, 20963. doi: 10.1021/acsami.7b02306  doi: 10.1021/acsami.7b02306

    23. [23]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. doi: 10.1126/science.1120411  doi: 10.1126/science.1120411

    24. [24]

      Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Adv. Sci. 2019, 6, 1801410. doi: 10.1002/advs.201801410  doi: 10.1002/advs.201801410

    25. [25]

      Li, Z.; Li, H.; Guan, X.; Tang, J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2017, 139 (49), 17741. doi: 10.1021/jacs.7b11283  doi: 10.1021/jacs.7b11283

    26. [26]

      Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valtchev, V.; et al. J. Am. Chem. Soc. 2019, 141 (34), 13324. doi: 10.1021/jacs.9b06908  doi: 10.1021/jacs.9b06908

    27. [27]

      Liu, X.; Guan, X.; Fang, Q.; Jin, Y. Chem. J. Chin. Univ. 2019, 40 (7), 1341.  doi: 10.7503/cjcu20190086

    28. [28]

      Yan, Y.; Guan, X.; Li, H.; Fang, Q.; Qiu, S. Natl. Sci. Rev. 2020, 7, 170. doi: 10.1093/nsr/nwz122  doi: 10.1093/nsr/nwz122

    29. [29]

      Rodríguez-San-Miguel, D.; Zamora, F. Chem. Soc. Rev. 2019, 48, 4375. doi: 10.1039/C9CS00258H  doi: 10.1039/C9CS00258H

    30. [30]

      Liang, Y.; Feng, L.; Liu, X.; Zhao, Y.; Chen, Q.; Sui, Z.; Wang, N. Chem. Eng. J. 2021, 404, 127095. doi: 10.1016/j.cej.2020.127095  doi: 10.1016/j.cej.2020.127095

    31. [31]

      Shan, Z.; Wu, M.; Du, Y.; Xu, B.; He, B.; Wu, X.; Zhang, G. Chem. Mater. 2021, 33, 5058. doi: 10.1021/acs.chemmater.1c00978  doi: 10.1021/acs.chemmater.1c00978

    32. [32]

      Lu, Y.; Liang, Y.; Zhao, Y.; Xia, M.; Liu, X.; Shen, T.; Feng, L.; Yuan, N.; Chen, Q. ACS Appl. Mater. Interfaces 2021, 13, 1644. doi: 10.1021/acsami.0c20203  doi: 10.1021/acsami.0c20203

    33. [33]

      Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. ACS Catal. 2020, 10, 8717. doi: 10.1021/acscatal.0c01242  doi: 10.1021/acscatal.0c01242

    34. [34]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    35. [35]

      Wu, Q.; Xie, R.; Mao, M.; Chai, G.; Yi, J.; Zhao, S. ACS Energy Lett. 2020, 5, 1005. doi: 10.1021/acsenergylett.9b02756  doi: 10.1021/acsenergylett.9b02756

    36. [36]

      Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; et al. Chem. Eur. J. 2014, 20, 14614. doi: 10.1002/chem.201405330  doi: 10.1002/chem.201405330

    37. [37]

      Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Mor-iyama, M.; Ito, K.; Kato, T. J. Am. Chem. Soc. 2005, 127, 14769. doi: 10.1021/ja053496z  doi: 10.1021/ja053496z

    38. [38]

      Tao, S.; Jiang, D. CCS Chem. 2020, 2, 2003. doi: 10.31635/ccschem.020.202000491  doi: 10.31635/ccschem.020.202000491

    39. [39]

      Liu, Y.; Ren, J.; Wang, Y.; Zhu, X.; Guan, X.; Wang, Z.; Zhou, Y.; Zhu, L.; Qiu, S.; Xiao, S.; et al. CCS Chem. 2022, doi: 10.31635/ccschem.022.202202352  doi: 10.31635/ccschem.022.202202352

    40. [40]

      Li, M.; Liu, J.; Li, Y.; Xing, G.; Yu, X.; Peng, C.; Chen, L. CCS Chem. 2020, 2, 696. doi: 10.31635/ccschem.020.202000257  doi: 10.31635/ccschem.020.202000257

    41. [41]

      Song, J.; Wang, Z.; Liu, Y.; Tuo, C.; Wang, Y.; Fang, Q.; Qiu, S. Chem. Res. Chin. Univ. 2022, 38, 834. doi: 10.1007/s40242-022-2060-7  doi: 10.1007/s40242-022-2060-7

    42. [42]

      He, C.; Wu, Q.; Mao, M.; Zou, Y.; Liu, B.; Huang, Y.; Cao, R. CCS Chem. 2020, 2, 2368. doi: 10.31635/ccschem.020.202000460  doi: 10.31635/ccschem.020.202000460

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(19)
  • Abstract views(818)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return