Citation: Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221205. doi: 10.3866/PKU.WHXB202212053 shu

Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2

  • Corresponding author: Nan Zhang, nzhang@jiangnan.edu.cn Tianxi Liu, txliu@jiangnan.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 17 December 2022
    Revised Date: 21 January 2023
    Accepted Date: 29 January 2023
    Available Online: 8 February 2023

    Fund Project: the National Natural Science Foundation of China 52161135302

  • The realization of carbon and nitrogen cycles is an urgent requirement for the development of human society, and is also a hot research topic in the field of catalysis. Electrocatalysis driven by renewable energy has attracted considerable attention, and the target products can be obtained by varying the applied potentials. Accordingly, electrocatalysis is considered to be an effective strategy to alleviate the current energy crisis and environmental problems and is of great significance in realizing carbon neutrality. Electrocatalytic CO2 reduction reaction (CO2RR) and N2 reduction reaction (N2RR) are also promising strategies for the conversion of small molecules. However, the high dissociation energies of the C=O and N≡N bonds in the linear molecules of CO2 and N2, respectively, lead to their high chemical inactivity. In addition, the large energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) further results in high chemical stability. Besides, the low proton affinity of CO2 and N2 makes direct protonated difficult. However, because of the similar redox potentials of CO2RR, N2RR, and hydrogen evolution reaction (HER), HER competes with CO2RR and N2RR, affecting the CO2RR and N2RR performance. Therefore, both CO2RR and N2RR still face challenges, such as high overpotential and low Faradaic efficiency. To overcome these bottlenecks, considerable efforts have been made to improve the performance of the CO2RR and N2RR electrocatalysts. The electrocatalytic process primarily occurs on the catalyst surface and involves mass diffusion and electron transfer; thus, the performance of the catalysts is closely related to their mass and electron transfer abilities. Modulating the catalyst surface structure can regulate the mass and electron transfer behavior of the active sites during the electrocatalytic process. Defect and interface engineering of electrocatalysts is important for enhancing the adsorption of gas, inhibiting HER, enriching the gas, stabilizing the intermediates, and modifying the electronic structure by engineering the surface atoms. To date, various defective and composite electrocatalysts have shown great potential to enhance the CO2RR and N2RR performance. Herein, recent advances in defect and interface engineering for CO2RR and N2RR are reviewed. The effects of four different defects (vacancy, high-index facet, lattice stain, and lattice disorder) on the CO2RR and N2RR performance are discussed. Then, the main roles of interface engineering of polymer-inorganic composite catalysts are further reviewed, and representative examples are presented. Finally, the opportunities and challenges for defect and interface engineering in the electroreduction of CO2 and N2 are also proposed, suggesting directions for the future development of highly efficient CO2RR and N2RR catalysts.
  • 加载中
    1. [1]

      De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506  doi: 10.1126/science.aav3506

    2. [2]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    3. [3]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    4. [4]

      Armaroli, N.; Balzani, V. Angew. Chem. Int. Ed. 2007, 46, 52. doi: 10.1002/anie.200602373  doi: 10.1002/anie.200602373

    5. [5]

      Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Chem 2019, 5, 263. doi: 10.1016/j.chempr.2018.10.010  doi: 10.1016/j.chempr.2018.10.010

    6. [6]

      Tang, C.; Qiao, S. Z. Chem. Soc. Rev. 2019, 48, 3166. doi: 10.1039/C9CS00280D  doi: 10.1039/C9CS00280D

    7. [7]

      Liu, H.; Wei, L.; Liu, F.; Pei, Z.; Shi, J.; Wang, Z.-J.; He, D.; Chen, Y. ACS Catal. 2019, 9, 5245. doi: 10.1021/acscatal.9b00994  doi: 10.1021/acscatal.9b00994

    8. [8]

      Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y. Sci. Adv. 2020, 6, eaay3111. doi: 10.1126/sciadv.aay3111  doi: 10.1126/sciadv.aay3111

    9. [9]

      Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Adv. Energy Mater. 2020, 10, 1902338. doi: 10.1002/aenm.201902338  doi: 10.1002/aenm.201902338

    10. [10]

      Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Chem 2018, 4, 1809. doi: 10.1016/j.chempr.2018.05.001  doi: 10.1016/j.chempr.2018.05.001

    11. [11]

      Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C.-P.; Smith III, M. R.; Hamann, T. W. Chem. Rev. 2020, 120, 5437. doi: 10.1021/acs.chemrev.9b00659  doi: 10.1021/acs.chemrev.9b00659

    12. [12]

      Li, L.; Li, X.; Sun, Y.; Xie, Y. Chem. Soc. Rev. 2022, 51, 1234. doi: 10.1039/D1CS00893E  doi: 10.1039/D1CS00893E

    13. [13]

      Shen, H.; Choi, C.; Masa, J.; Li, X.; Qiu, J.; Jung, Y.; Sun, Z. Chem 2021, 7, 1708. doi: 10.1016/j.chempr.2021.01.009  doi: 10.1016/j.chempr.2021.01.009

    14. [14]

      Pan, F.; Yang, Y. Energy Environ. Sci. 2020, 13, 2275. doi: 10.1039/D0EE00900H  doi: 10.1039/D0EE00900H

    15. [15]

      Lv, J.-J.; Yin, R.; Zhou, L.; Li, J.; Kikas, R.; Xu, T.; Wang, Z.-J.; Jin, H.; Wang, X.; Wang, S. Angew. Chem. Int. Ed. 2022, 61, e202207252. doi: 10.1002/anie.202207252  doi: 10.1002/anie.202207252

    16. [16]

      Ren, Y.; Yu, C.; Tan, X.; Huang, H.; Wei, Q.; Qiu, J. Energy Environ. Sci. 2021, 14, 1176. doi: 10.1039/D0EE03596C  doi: 10.1039/D0EE03596C

    17. [17]

      Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nøørskov, J. K. ACS Catal. 2017, 7, 706. doi: 10.1021/acscatal.6b03035  doi: 10.1021/acscatal.6b03035

    18. [18]

      Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4, 732. doi: 10.1038/s41560-019-0450-y  doi: 10.1038/s41560-019-0450-y

    19. [19]

      Yang, C.; Zhu, Y.; Liu, J.; Qin, Y.; Wang, H.; Liu, H.; Chen, Y.; Zhang, Z.; Hu, W. Nano Energy 2020, 77, 105126. doi: 10.1016/j.nanoen.2020.105126  doi: 10.1016/j.nanoen.2020.105126

    20. [20]

      Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1, e9120010. doi: 10.26599/NRE.2022.9120010  doi: 10.26599/NRE.2022.9120010

    21. [21]

      Liu, C.; Li, S.; Li, Z.; Zhang, L.; Chen, H.; Zhao, D.; Sun, S.; Luo, Y.; Alshehri, A. A.; Hamdy, M. S.; et al. Sustain. Energy Fuels 2022, 6, 3344. doi: 10.1039/D2SE00557C  doi: 10.1039/D2SE00557C

    22. [22]

      Li, Q.; Shen, P.; Tian, Y.; Li, X.; Chu, K. J. Colloid Interface Sci. 2022, 606, 204. doi: 10.1016/j.jcis.2021.08.032  doi: 10.1016/j.jcis.2021.08.032

    23. [23]

      Chen, H.; Liang, J.; Dong, K.; Yue, L.; Li, T.; Luo, Y.; Feng, Z.; Li, N.; Hamdy, M. S.; Alshehri, A. A.; et al. Inorg. Chem. Front. 2022, 9, 1514. doi: 10.1039/D2QI00140C  doi: 10.1039/D2QI00140C

    24. [24]

      Liu, Q.; Xu, T.; Luo, Y.; Kong, Q.; Li, T.; Lu, S.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. Curr. Opin. Electrochem. 2021, 29, 100766. doi: 10.1016/j.coelec.2021.100766  doi: 10.1016/j.coelec.2021.100766

    25. [25]

      Xu, T.; Ma, B.; Liang, J.; Yue, L.; Liu, Q.; Li, T.; Zhao, H.; Luo, Y.; Lu, S.; Sun, X. Acta Phys.-Chim. Sin. 2021, 37, 2009043.  doi: 10.3866/PKU.WHXB202009043

    26. [26]

      Hao, D.; Sun, Z. Acta Phys.-Chim. Sin. 2021, 37, 2009033.  doi: 10.3866/PKU.WHXB202009033

    27. [27]

      Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Joule 2018, 2, 2551. doi: 10.1016/j.joule.2018.09.021  doi: 10.1016/j.joule.2018.09.021

    28. [28]

      Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Energy Environ. Sci. 2019, 12, 1730. doi: 10.1039/C8EE03781G  doi: 10.1039/C8EE03781G

    29. [29]

      Kong, X.; Peng, H.-Q.; Bu, S.; Gao, Q.; Jiao, T.; Cheng, J.; Liu, B.; Hong, G.; Lee, C.-S.; Zhang, W. J. Mater. Chem. A 2020, 8, 7457. doi: 10.1039/D0TA01453B  doi: 10.1039/D0TA01453B

    30. [30]

      Yan, D.; Li, H.; Chen, C.; Zou, Y.; Wang, S. Small Methods 2019, 3, 1800331. doi: 10.1002/smtd.201800331  doi: 10.1002/smtd.201800331

    31. [31]

      Guo, D.; Wang, S.; Xu, J.; Zheng, W.; Wang, D. J. Energy Chem. 2022, 65, 448. doi: 10.1016/j.jechem.2021.06.012  doi: 10.1016/j.jechem.2021.06.012

    32. [32]

      Li, W.; Wang, D.; Zhang, Y.; Tao, L.; Wang, T.; Zou, Y.; Wang, Y.; Chen, R.; Wang, S. Adv. Mater. 2020, 32, 1907879. doi: 10.1002/adma.201907879  doi: 10.1002/adma.201907879

    33. [33]

      Lu, Y.; Zhou, L.; Wang, S.; Zou, Y. Nano Res. 2022, doi: 10.1007/s12274-022-4858-5  doi: 10.1007/s12274-022-4858-5

    34. [34]

      Wang, J.; Liu, J.; Zhang, B.; Cheng, F.; Ruan, Y.; Ji, X.; Xu, K.; Chen, C.; Miao, L.; Jiang, J. Nano Energy 2018, 53, 144. doi: 10.1016/j.nanoen.2018.08.022  doi: 10.1016/j.nanoen.2018.08.022

    35. [35]

      Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Nano Energy 2018, 53, 296. doi: 10.1016/j.nanoen.2018.08.058  doi: 10.1016/j.nanoen.2018.08.058

    36. [36]

      Chen, H.-J.; Xu, Z.-Q.; Sun, S.; Luo, Y.; Liu, Q.; Hamdy, M. S.; Feng, Z.-S.; Sun, X.; Wang, Y. Inorg. Chem. Front. 2022, 9, 4608. doi: 10.1039/D2QI01173E  doi: 10.1039/D2QI01173E

    37. [37]

      Chu, K.; Liu, F.; Zhu, J.; Fu, H.; Zhu, H.; Zhu, Y.; Zhang, Y.; Lai, F.; Liu, T. Adv. Energy Mater. 2021, 11, 2003799. doi: 10.1002/aenm.202003799  doi: 10.1002/aenm.202003799

    38. [38]

      Zheng, H.; Zhang, Y.; Wang, Y.; Wu, Z.; Lai, F.; Chao, G.; Zhang, N.; Zhang, L.; Liu, T. Small 2022, doi: 10.1002/smll.202205625  doi: 10.1002/smll.202205625

    39. [39]

      Chu, K.; Ras, M. D.; Rao, D.; Martens, J. A.; Hofkens, J.; Lai, F.; Liu, T. ACS Appl. Mater. Interfaces 2021, 13, 13347. doi: 10.1021/acsami.1c01510  doi: 10.1021/acsami.1c01510

    40. [40]

      Chu, K.; Qin, J.; Zhu, H.; De Ras, M.; Wang, C.; Xiong, L.; Zhang, L.; Zhang, N.; Martens, J. A.; Hofkens, J.; et al. Sci. China Mater. 2022, 65, 2711. doi: 10.1007/s40843-022-2021-y  doi: 10.1007/s40843-022-2021-y

    41. [41]

      Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; et al. Nat. Commun. 2017, 8, 14503. doi: 10.1038/ncomms14503  doi: 10.1038/ncomms14503

    42. [42]

      Lai, F.; Zong, W.; He, G.; Xu, Y.; Huang, H.; Weng, B.; Rao, D.; Martens, J. A.; Hofkens, J.; Parkin, I. P.; et al. Angew. Chem. Int. Ed. 2020, 59, 13320. doi: 10.1002/anie.202003129  doi: 10.1002/anie.202003129

    43. [43]

      Zhang, N.; Zheng, F.; Huang, B.; Ji, Y.; Shao, Q.; Li, Y.; Xiao, X.; Huang, X. Adv. Mater. 2020, 32, 1906477. doi: 10.1002/adma.201906477  doi: 10.1002/adma.201906477

    44. [44]

      Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    45. [45]

      Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X. Adv. Mater. 2015, 27, 7204. doi: 10.1002/adma.201502725  doi: 10.1002/adma.201502725

    46. [46]

      Bu, L.; Guo, S.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J.; Guo, J.; Huang, X. Nat. Commun. 2016, 7, 11850. doi: 10.1038/ncomms11850  doi: 10.1038/ncomms11850

    47. [47]

      Zhang, N.; Li, L.; Wang, J.; Hu, Z.; Shao, Q.; Xiao, X.; Huang, X. Angew. Chem. Int. Ed. 2020, 59, 8066. doi: 10.1002/anie.201915747  doi: 10.1002/anie.201915747

    48. [48]

      Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X.; Duan, X.; et al. Nat. Catal. 2020, 3, 804. doi: 10.1038/s41929-020-00504-x  doi: 10.1038/s41929-020-00504-x

    49. [49]

      Jansonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P. ACS Energy Lett. 2019, 4, 980. doi: 10.1021/acsenergylett.9b00191  doi: 10.1021/acsenergylett.9b00191

    50. [50]

      Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nat. Rev. Mater. 2016, 1, 16009. doi: 10.1038/natrevmats.2016.9  doi: 10.1038/natrevmats.2016.9

    51. [51]

      Yu, D.; Gao, L.; Sun, T.; Guo, J.; Yuan, Y.; Zhang, J.; Li, M.; Li, X.; Liu, M.; Ma, C.; et al. Nano Lett. 2021, 21, 1003. doi: 10.1021/acs.nanolett.0c04051  doi: 10.1021/acs.nanolett.0c04051

    52. [52]

      Chen, Y.; Pei, J.; Chen, Z.; Li, A.; Ji, S.; Rong, H.; Xu, Q.; Wang, T.; Zhang, A.; Tang, H.; et al. Nano Lett. 2022, 22, 7563. doi: 10.1021/acs.nanolett.2c02572  doi: 10.1021/acs.nanolett.2c02572

    53. [53]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D.; et al. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    54. [54]

      Xia, Z.; Guo, S. Chem. Soc. Rev. 2019, 48, 3265. doi: 10.1039/C8CS00846A  doi: 10.1039/C8CS00846A

    55. [55]

      Luo, M.; Guo, S. Nat. Rev. Mater. 2017, 2, 17059. doi: 10.1038/natrevmats.2017.59  doi: 10.1038/natrevmats.2017.59

    56. [56]

      Li, H.; Zhang, N.; Bai, S.; Zhang, L.; Lai, F.; Chen, Y.; Zhu, X.; Liu, T. Chem. Mater. 2022, 34, 7995. doi: 10.1021/acs.chemmater.2c01917  doi: 10.1021/acs.chemmater.2c01917

    57. [57]

      Feng, Y.; Huang, B.; Yang, C.; Shao, Q.; Huang, X. Adv. Funct. Mater. 2019, 29, 1904429. doi: 10.1002/adfm.201904429  doi: 10.1002/adfm.201904429

    58. [58]

      Pi, Y.; Xu, Y.; Li, L.; Sun, T.; Huang, B.; Bu, L.; Ma, Y.; Hu, Z.; Pao, C.-W.; Huang, X. Adv. Funct. Mater. 2020, 30, 2004375. doi: 10.1002/adfm.202004375  doi: 10.1002/adfm.202004375

    59. [59]

      Tao, L.; Sun, M.; Zhou, Y.; Luo, M.; Lv, F.; Li, M.; Zhang, Q.; Gu, L.; Huang, B.; Guo, S. J. Am. Chem. Soc. 2022, 144, 10582. doi: 10.1021/jacs.2c03544  doi: 10.1021/jacs.2c03544

    60. [60]

      Han, G.; Li, M.; Liu, H.; Zhang, W.; He, L.; Tian, F.; Liu, Y.; Yu, Y.; Yang, W.; Guo, S. Adv. Mater. 2022, 34, 2202943. doi: 10.1002/adma.202202943  doi: 10.1002/adma.202202943

    61. [61]

      Wang, H.; Fang, Q.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. ACS Appl. Mater. Interfaces 2020, 12, 52234. doi: 10.1021/acsami.0c14007  doi: 10.1021/acsami.0c14007

    62. [62]

      Cai, B.; Eychmüller, A. Adv. Mater. 2019, 31, 1804881. doi: 10.1002/adma.201804881  doi: 10.1002/adma.201804881

    63. [63]

      Du, R.; Joswig, J.-O.; Hübner, R.; Zhou, L.; Wei, W.; Hu, Y.; Eychmüller, A. Angew. Chem. Int. Ed. 2020, 59, 8293. doi: 10.1002/anie.201916484  doi: 10.1002/anie.201916484

    64. [64]

      Du, R.; Fan, X.; Jin, X.; Hübner, R.; Hu, Y.; Eychmüller, A. Matter 2019, 1, 39. doi: 10.1016/j.matt.2019.05.006  doi: 10.1016/j.matt.2019.05.006

    65. [65]

      Jiang, X.; Du, R.; Hübner, R.; Hu, Y.; Eychmüller, A. Matter 2021, 4, 54. doi: 10.1016/j.matt.2020.10.001  doi: 10.1016/j.matt.2020.10.001

    66. [66]

      Zhang, Z.; Hu, J.; Li, B.; Qi, Q.; Zhang, Y.; Chen, J.; Dong, P.; Zhang, C.; Zhang, Y.; Leung, M. K. H. J. Alloys Compd. 2022, 918, 165585. doi: 10.1016/j.jallcom.2022.165585  doi: 10.1016/j.jallcom.2022.165585

    67. [67]

      Zhai, Y.; Ren, X.; Wang, B.; Liu, S. Adv. Funct. Mater. 2022, 32, 2207536. doi: 10.1002/adfm.202207536  doi: 10.1002/adfm.202207536

    68. [68]

      Löffler, T.; Ludwig, A.; Rossmeisl, J.; Schuhmann, W. Angew. Chem. Int. Ed. 2021, 60, 26894. doi: 10.1002/anie.202109212  doi: 10.1002/anie.202109212

    69. [69]

      Zhan, C.; Xu, Y.; Bu, L.; Zhu, H.; Feng, Y.; Yang, T.; Zhang, Y.; Yang, Z.; Huang, B.; Shao, Q.; et al. Nat. Commun. 2021, 12, 6261. doi: 10.1038/s41467-021-26425-2  doi: 10.1038/s41467-021-26425-2

    70. [70]

      Hu, J.; Cao, L.; Wang, Z.; Liu, J.; Zhang, J.; Cao, Y.; Lu, Z.; Cheng, H. Compos. Commun. 2021, 27, 100866. doi: 10.1016/j.coco.2021.100866  doi: 10.1016/j.coco.2021.100866

    71. [71]

      Li, H.; Huang, H.; Chen, Y.; Lai, F.; Fu, H.; Zhang, L.; Zhang, N.; Bai, S.; Liu, T. Adv. Mater. 2023, 35, 2209242. doi: 10.1002/adma.202209242  doi: 10.1002/adma.202209242

    72. [72]

      Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Nat. Mater. 2019, 18, 1222. doi: 10.1038/s41563-019-0445-x  doi: 10.1038/s41563-019-0445-x

    73. [73]

      Ge, W.; Chen, Y.; Fan, Y.; Zhu, Y.; Liu, H.; Song, L.; Liu, Z.; Lian, C.; Jiang, H.; Li, C. J. Am. Chem. Soc. 2022, 144, 6613. doi: 10.1021/jacs.2c02486  doi: 10.1021/jacs.2c02486

    74. [74]

      Chen, Y.; Shen, L.; Wang, C.; Feng, S.; Zhang, N.; Xiang, S.; Feng, T.; Yang, M.; Zhang, K.; Yang, B. Appl. Catal. B-Environ. 2020, 274, 119112. doi: 10.1016/j.apcatb.2020.119112  doi: 10.1016/j.apcatb.2020.119112

    75. [75]

      Ma, Y.; Wang, J.; Yu, J.; Zhou, J.; Zhou, X.; Li, H.; He, Z.; Long, H.; Wang, Y.; Lu, P.; et al. Matter 2021, 4, 888. doi: 10.1016/j.matt.2021.01.007  doi: 10.1016/j.matt.2021.01.007

    76. [76]

      Liu, H.; Xiang, K.; Liu, Y.; Zhu, F.; Zou, M.; Yan, X.; Chai, L. ChemElectroChem 2018, 5, 3991. doi: 10.1002/celc.201801132  doi: 10.1002/celc.201801132

    77. [77]

      Zhang, L.; Wei, Z.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. Angew. Chem. Int. Ed. 2019, 58, 15834. doi: 10.1002/anie.201909069  doi: 10.1002/anie.201909069

    78. [78]

      An, P.; Wei, L.; Li, H.; Yang, B.; Liu, K.; Fu, J.; Li, H.; Liu, H.; Hu, J.; Lu, Y.-R.; et al. J. Mater. Chem. A 2020, 8, 15936. doi: 10.1039/D0TA03645E  doi: 10.1039/D0TA03645E

    79. [79]

      Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. ACS Catal. 2018, 8, 4132. doi: 10.1021/acscatal.7b04347  doi: 10.1021/acscatal.7b04347

    80. [80]

      Lee, J. H.; Kattel, S.; Xie, Z.; Tackett, B. M.; Wang, J.; Liu, C.-J.; Chen, J. G. Adv. Funct. Mater. 2018, 28, 1804762. doi: 10.1002/adfm.201804762  doi: 10.1002/adfm.201804762

    81. [81]

      Zhou, X.; Liu, H.; Xia, B. Y.; Ostrikov, K.; Zheng, Y.; Qiao, S. Z. SmartMat 2022, 3, 111. doi: 10.1002/smm2.1109  doi: 10.1002/smm2.1109

    82. [82]

      Shi, R.; Shang, L.; Zhang, T. ACS Appl. Energy Mater. 2021, 4, 1045. doi: 10.1021/acsaem.0c02989  doi: 10.1021/acsaem.0c02989

    83. [83]

      Niu, Z.-Z.; Gao, F.-Y.; Zhang, X.-L.; Yang, P.-P.; Liu, R.; Chi, L.-P.; Wu, Z.-Z.; Qin, S.; Yu, X.; Gao, M.-R. J. Am. Chem. Soc. 2021, 143, 8011. doi: 10.1021/jacs.1c01190  doi: 10.1021/jacs.1c01190

    84. [84]

      Buckley, A. K.; Lee, M.; Cheng, T.; Kazantsev, R. V.; Larson, D. M.; Goddard III, W. A.; Toste, F. D.; Toma, F. M. J. Am. Chem. Soc. 2019, 141, 7355. doi: 10.1021/jacs.8b13655  doi: 10.1021/jacs.8b13655

    85. [85]

      Sheng, X.; Ge, W.; Jiang, H.; Li, C. Adv. Mater. 2022, 34, 2201295. doi: 10.1002/adma.202201295  doi: 10.1002/adma.202201295

    86. [86]

      Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. Nat. Commun. 2021, 12, 136. doi: 10.1038/s41467-020-20397-5  doi: 10.1038/s41467-020-20397-5

    87. [87]

      Liu, S.; Qian, T.; Wang, M.; Ji, H.; Shen, X.; Wang, C.; Yan, C. Nat. Catal. 2021, 4, 322. doi: 10.1038/s41929-021-00599-w  doi: 10.1038/s41929-021-00599-w

    88. [88]

      Zheng, W.; Nayak, S.; Yuan, W.; Zeng, Z.; Hong, X.; Vincent, K. A.; Tsang, S. C. E. Chem. Commun. 2016, 52, 13901. doi: 10.1039/C6CC07212G  doi: 10.1039/C6CC07212G

    89. [89]

      Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernández, A.; Ko, J. H.; Gan, Q.; Goddard III, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143, 2857. doi: 10.1021/jacs.0c12478  doi: 10.1021/jacs.0c12478

    90. [90]

      Chen, C.; Yan, X.; Wu, Y.; Liu, S.; Zhang, X.; Sun, X.; Zhu, Q.; Wu, H.; Han, B. Angew. Chem. Int. Ed. 2022, 61, e202202607. doi: 10.1002/anie.202202607  doi: 10.1002/anie.202202607

    91. [91]

      Jeong, S.; Ohto, T.; Nishiuchi, T.; Nagata, Y.; Fujita, J.-I.; Ito, Y. ACS Catal. 2021, 11, 9962. doi: 10.1021/acscatal.1c02646  doi: 10.1021/acscatal.1c02646

    92. [92]

      Ozden, A.; Li, F.; Garcı́a de Arquer, F. P.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S.-F.; Wang, X.; Chen, B.; Li, J.; et al. ACS Energy Lett. 2020, 5, 2811. doi: 10.1021/acsenergylett.0c01266  doi: 10.1021/acsenergylett.0c01266

    93. [93]

      Shen, X.; Liu, S.; Xia, X.; Wang, M.; Ji, H.; Wang, Z.; Liu, J.; Zhang, X.; Yan, C.; Qian, T. Adv. Funct. Mater. 2022, 32, 2109422. doi: 10.1002/adfm.202109422  doi: 10.1002/adfm.202109422

    94. [94]

      Sa, Y. J.; Lee, C. W.; Lee, S. Y.; Na, J.; Lee, U.; Hwang, Y. J. Chem. Soc. Rev. 2020, 49, 6632. doi: 10.1039/D0CS00030B  doi: 10.1039/D0CS00030B

    95. [95]

      Li, F.; Zhao, S.-F.; Chen, L.; Khan, A.; MacFarlane, D. R.; Zhang, J. Energy Environ. Sci. 2016, 9, 216. doi: 10.1039/C5EE02879E  doi: 10.1039/C5EE02879E

    96. [96]

      Li, J.; Li, F.; Liu, C.; Wei, F.; Gong, J.; Li, W.; Xue, L.; Yin, J.; Xiao, L.; Wang, G.; et al. ACS Energy Lett. 2022, 7, 4045. doi: 10.1021/acsenergylett.2c01955  doi: 10.1021/acsenergylett.2c01955

    97. [97]

      Wei, X.; Yin, Z.; Lyu, K.; Li, Z.; Gong, J.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Catal. 2020, 10, 4103. doi: 10.1021/acscatal.0c00049  doi: 10.1021/acscatal.0c00049

    98. [98]

      Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4, 20. doi: 10.1038/s41929-020-00547-0  doi: 10.1038/s41929-020-00547-0

    99. [99]

      Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p  doi: 10.1021/jz201461p

    100. [100]

      Fan, Q.; Zhang, X.; Ge, X.; Bai, L.; He, D.; Qu, Y.; Kong, C.; Bi, J.; Ding, D.; Cao, Y.; et al. Adv. Energy Mater. 2021, 11, 2101424. doi: 10.1002/aenm.202101424  doi: 10.1002/aenm.202101424

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    4. [4]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    5. [5]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    9. [9]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    10. [10]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    11. [11]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    12. [12]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    13. [13]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    14. [14]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    15. [15]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    18. [18]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

Metrics
  • PDF Downloads(11)
  • Abstract views(439)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return