Citation: Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221205. doi: 10.3866/PKU.WHXB202212051 shu

Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure

  • Corresponding author: Hui Xia, xiahui@njust.edu.cn
  • Received Date: 29 December 2022
    Revised Date: 24 January 2023
    Accepted Date: 29 January 2023
    Available Online: 9 February 2023

    Fund Project: the National Key R&D Program of China 2020YFB2007400the National Natural Science Foundation of China 52002183the National Natural Science Foundation of China 52272218the China Postdoctoral Science Foundation 2021M700073

  • All-solid-state thin film lithium batteries (TFBs) are regarded as the ideal power source for microelectronics in the upcoming era of the Internet of Things, owing to their solid-state architecture, flexible size and shape, long cycle life, low self-discharge rate, and facile miniaturization. Even though tremendous improvements have been made in TFBs in the last decades, recycling of TFBs, which is supposed to be a serious issue in the future, is rarely studied. With continuous TFB market expansion, the sustainable development of TFBs is becoming an increasingly important research topic. To date, Li anode failure has been regarded as the most common reason for the failure of TFBs due to the following aspects of Li metal anode: strong reactivity with moisture, large volume change during cycling, and inevitable dendrite growth during Li plating. In this work, a facile recycling strategy is developed based on the most commonly used TFBs of LiCoO2 (LCO)/lithium phosphorus oxynitride (LiPON)/Li (F-TFB). Our findings indicate that the Li anode in F-TFB is partially oxidized during cycling with noticeable surface morphology change, which leads to an obvious increase in Li/LiPON interfacial resistance associated with rapid capacity loss. To directly recycle the F-TFB, we developed a simple method to remove the spent Li anode by dissolving the metallic Li metal of the F-TFB in an ethanol solution. The efficient dissolution of metallic Li allows the oxidized Li residues to be easily wiped away from the surface of the LiPON electrolyte film with the assistance of a dust-free cloth, resulting in the rapid recycling of the underlying LCO/LiPON film. Structural and surface characterization results indicate that the obtained LCO/LiPON which was part of the failed F-TFB remains in a good condition without structural degradation, which enables its direct reuse in fabricating new TFBs. Consequently, a recycled LCO/LiPON/Li TFB (R-TFB) is constructed by sequentially depositing new LiPON and Li films on the used LCO/LiPON film, exhibiting a small interfacial resistance, recovered Li anode morphology and surface, and restorative electrochemical performance. Specifically, the R-TFB delivers a specific capacity of 0.223 mAh·cm−2 at 0.1 mA·cm−2, acceptable rate performance (0.120 mAh·cm−2 at 0.8 mA·cm−2), and good cycle performance (77.3% capacity retention after 500 cycles), which are very close to those of a newly fabricated TFB, demonstrating the feasibility of this direct recycling approach. Such a simple yet efficient recycling approach may effectively extend the lifespan of solid-state batteries and provide important insights to develop sustainable TFBs for microelectronic devices.
  • 加载中
    1. [1]

      Zhu, M.; Schmidt, O. G. Nature 2021, 589, 195. doi: 10.1038/d41586-021-00021-2  doi: 10.1038/d41586-021-00021-2

    2. [2]

      Xia, Q.; Zan, F.; Xu, J.; Liu, W.; Li, Q.; He, Y.; Hua, J.; Liu, J.; Zhang, Q.; Wang, J.; Wu, C.; Xia, H. Adv. Mater. 2022, 35, 2200538. doi: 10.1002/adma.202200538  doi: 10.1002/adma.202200538

    3. [3]

      Wu, Y. M.; Wu, X. M.; Zhu, L.; Xu, D. H.; Tian, W. S.; Tang, W. P. Energy Storage Sci. Technol. 2016, 5, 678.  doi: 10.12028/j.issn.2095-4239.2016.0045

    4. [4]

      Xia, Q.; Sun, S.; Xu, J.; Zan, F.; Yue, J. L.; Xia, H. Energy Storage Sci. Technol. 2018, 7, 565.  doi: 10.12028/j.issn.2095-4239.2018.0088

    5. [5]

      Chen, M.; Yan, Y.; Liu, W. M.; Zhou, C.; Guo, Z. Q.; Zhang, X. F.; Wang, Y. L.; Li, L.; Zhang, G. L. J. Aeron. Mater. 2014, 6, 1.  doi: 10.11868/j.issn.1005-5053.2014.6.001

    6. [6]

      Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D. J. Electrochem. Soc. 1996, 143, 3203. doi: 10.1149/1.1837188  doi: 10.1149/1.1837188

    7. [7]

      Wu, T.; Dai, W.; Ke, M.; Huang, Q.; Lu, L. Adv. Sci. 2021, 8, e2100774. doi: 10.1002/advs.202100774  doi: 10.1002/advs.202100774

    8. [8]

      Moitzheim, S.; Put, B.; Vereecken, P. M. Adv. Mater. Interfaces 2019, 6, 1900805. doi: 10.1002/admi.201900805  doi: 10.1002/admi.201900805

    9. [9]

      Zhou, Y.; Xue, M.; Fu, Z. J. Power Sources 2013, 234, 310. doi: 10.1016/j.jpowsour.2013.01.183  doi: 10.1016/j.jpowsour.2013.01.183

    10. [10]

      Patil, A.; Patil, V.; Wook Shin, D.; Choi, J. -W.; Paik, D. -S.; Yoon, S. -J. Mater. Res. Bull. 2008, 43, 1913. doi: 10.1016/j.materresbull.2007.08.031  doi: 10.1016/j.materresbull.2007.08.031

    11. [11]

      Yue, X.; Ma, C.; Bao, J.; Yang, S.; Chen, D.; Wu, X. J.; Zhou, Y. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    12. [12]

      Wang, T.; Song, Z.; Zhang, Y.; Gao, Y.; Huang, L.; Lin, S.; Luo, W. Energy Storage Mater. 2022, 52, 365. doi: 10.1016/j.ensm.2022.08.017  doi: 10.1016/j.ensm.2022.08.017

    13. [13]

      Huang, J.; Zhu, Y.; Feng, Y.; Han, Y.; Gu, Z.; Liu, R.; Yang, D.; Chen, K.; Zhang, X.; Sun, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2208008.  doi: 10.3866/PKU.WHXB202208008

    14. [14]

      Nowroozi, M.; Waidha, A.; Jacob, M.; Aken, P. A.; Predel, F.; Ensinger, W.; Clemens, O. ChemistryOpen 2022, 3, e202100274. doi: 10.1002/open.202100274  doi: 10.1002/open.202100274

    15. [15]

      Azhari, L.; Bong, S.; Ma, X.; Wang, Y. Matter 2020, 6, 1845. doi: 10.1016/j.matt.2020.10.027  doi: 10.1016/j.matt.2020.10.027

    16. [16]

      Tan, D. H. S.; Xu, P.; Yang, H.; Kim, M. -C.; Nguyen, H.; Wu, E. A.; Doux, J. -M.; Banerjee, A.; Meng, Y. S.; Chen, Z. MRS Energy Sustain. 2020, 7, e23. doi: 10.1557/mre.2020.25  doi: 10.1557/mre.2020.25

    17. [17]

      Qin, Z.; Xie, Y.; Meng, X.; Qian, D.; Mao, D.; Ma, X.; Shan, C.; Chen, J.; Wan, L.; Huang, Y. Energy Storage Mater. 2022, 49, 360. doi: 10.1016/j.ensm.2022.04.024  doi: 10.1016/j.ensm.2022.04.024

    18. [18]

      Wang, Z.; Lee, J. Z.; Xin, H. L.; Han, L.; Grillon, N.; Guy-Bouyssou, D.; Bouyssou, E.; Proust, M.; Meng, Y. S. J. Power Sources 2016, 324, 342. doi: 10.1016/j.jpowsour.2016.05.098  doi: 10.1016/j.jpowsour.2016.05.098

    19. [19]

      Larfaillou, S.; Guy-Bouyssou, D.; Cras, F.; Franger, S. J. Power Sources 2016, 319, 139. doi: 10.1016/j.jpowsour.2016.04.057  doi: 10.1016/j.jpowsour.2016.04.057

    20. [20]

      Bates, J. B.; Dudney, N. J.; Neudecker, B. J.; Hart, F. X.; Jun, H. P.; Hackney, S. A. J. Electrochem. Soc. 2000, 147, 59. doi: 10.1149/1.1393157  doi: 10.1149/1.1393157

    21. [21]

      Dudney, N. J. J. Electroceram. 2017, 38, 222. doi: 10.1007/s10832-017-0073-2  doi: 10.1007/s10832-017-0073-2

    22. [22]

      Otto, S. -K.; Fuchs, T.; Moryson, Y.; Lerch, C.; Mogwitz, B.; Sann, J.; Janek, J.; Henss, A. ACS Appl. Energy Mater. 2021, 4, 12798. doi: 10.1021/acsaem.1c02481  doi: 10.1021/acsaem.1c02481

    23. [23]

      Kumar, P.; Babu, K.; Hussain, O. M. Mater. Chem. Phys. 2014, 143, 536. doi: 10.1016/j.matchemphys.2013.09.029  doi: 10.1016/j.matchemphys.2013.09.029

    24. [24]

      Wang, Z.; Santhanagopalan, D.; Zhang, W.; Wang, F.; Xin, H. L.; He, K.; Li, J.; Dudney, N.; Meng, Y. S. Nano Lett. 2016, 16, 3760. doi: 10.1021/acs.nanolett.6b01119  doi: 10.1021/acs.nanolett.6b01119

    25. [25]

      Xia, Q.; Zhang, Q.; Sun, S.; Hussain, F.; Zhang, C.; Zhu, X.; Meng, F.; Liu, K.; Geng, H.; Xu, J.; et al. Adv. Mater. 2021, 33, e2003524. doi: 10.1002/adma.202003524  doi: 10.1002/adma.202003524

    26. [26]

      Uhart, A.; Ledeuil, J. B.; Pecquenard, B.; Le Cras, F.; Proust, M.; Martinez, H. ACS Appl. Mater. Interfaces 2017, 9, 33238. doi: 10.1021/acsami.7b07270  doi: 10.1021/acsami.7b07270

    27. [27]

      Xia, H.; Wang, X.; Ren, G; Wang, W.; Zhou, Y.; Shadike, Z.; Hu, E.; Yang, X.; Zheng, J.; Liu, X.; Fu, Z. J. Power Sources 2021, 514, 230603. doi: 10.1016/j.jpowsour.2021.230603  doi: 10.1016/j.jpowsour.2021.230603

    28. [28]

      Nimisha, C. S.; Rao, K. Y.; Venkatesh, G.; Rao, G. M.; Munichandraiah, N. Thin Solid Films 2011, 519, 3401. doi: 10.1016/j.tsf.2011.01.087  doi: 10.1016/j.tsf.2011.01.087

    29. [29]

      Fingerle, M.; Buchheit, R.; Sicolo, S.; Albe, K.; Hausbrand, R. Chem. Mater. 2017, 29, 7675. doi:10.1021/acs.chemmater.7b00890  doi: 10.1021/acs.chemmater.7b00890

    30. [30]

      Cheng, D.; Wynn, T. A.; Wang, X.; Wang, S.; Zhang, M.; Shimizu, R.; Bai, S.; Nguyen, H.; Fang, C.; Kim, M. -C.; et al. Joule 2020, 11, 2484. doi: 10.1016/j.joule.2020.08.013  doi: 10.1016/j.joule.2020.08.013

    31. [31]

      Zhu, Y.; He, X.; Mo, Y. J. Mater. Chem. A 2016, 9, 3253. doi: 10.1039/c5ta08574h  doi: 10.1039/c5ta08574h

    32. [32]

      Dai, W.; Qiao, Y.; Ma, Z.; Wang, T.; Fu, Z. Materials Futures 2022, 3, 032101. doi: 10.1088/2752-5724/ac7db2  doi: 10.1088/2752-5724/ac7db2

    33. [33]

      Matsuda, Y.; Kuwata, N.; Kawamura, J. Solid State Ion. 2018, 320, 38. doi: 10.1016/j.ssi.2018.02.024  doi: 10.1016/j.ssi.2018.02.024

    34. [34]

      Laïk, B.; Ressejac, I.; Venet, C.; Pereira-Ramos, J. -P. Thin Solid Films 2018, 649, 69. doi: 10.1016/j.tsf.2018.01.033  doi: 10.1016/j.tsf.2018.01.033

    35. [35]

      Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.; Wei, F.; Mai, L. Joule 2018, 10, 1991. doi: 10.1016/j.joule.2018.07.009  doi: 10.1016/j.joule.2018.07.009

  • 加载中
    1. [1]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    2. [2]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    3. [3]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    4. [4]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    5. [5]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    10. [10]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    11. [11]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    12. [12]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    13. [13]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    14. [14]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    15. [15]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    16. [16]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    17. [17]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    18. [18]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    19. [19]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    20. [20]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

Metrics
  • PDF Downloads(5)
  • Abstract views(517)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return