Citation: Cheng Hu, Hongwei Huang. Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 221204. doi: 10.3866/PKU.WHXB202212048 shu

Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion

  • Corresponding author: Hongwei Huang, hhw@cugb.edu.cn
  • Received Date: 28 December 2022
    Revised Date: 17 February 2023
    Accepted Date: 21 February 2023
    Available Online: 6 March 2023

    Fund Project: the National Natural Science Foundations of China 52272244the National Natural Science Foundations of China 51972288

  • Semiconductor-based photocatalysis is an efficient technology that reduces energy consumption and environmental pollution; however, it is impeded by Coulombic attraction-induced charge recombination, which reduces solar conversion efficiency. The internal electric field induced by heterointerface engineering, defect engineering, heteroatom doping, ferroelectric polarization, and polar surface terminations intervening in the uniform charge distribution can drive the directional migration of photogenerated electrons and holes, suppressing the charge recombination and back-reaction of intermediate species. However, the built-in electric field is static and easily shielded by internal active carriers and externally charged ions, which is detrimental to successive charge separation. Moreover, the internal electric field that relies solely on the structural design of the catalyst often requires complex preparation processes and is disqualified from simple and efficient solar energy conversion. By coupling the piezoelectric effect with the photoexcitation feature in piezo-photocatalysis, charge carrier dynamics can be persistently modulated. The noncentrosymmetric structures of piezoelectrics result in the deviation of positive and negative charge centers with the exerted external stress, generating nonzero dipole moments and polarization charges on the opposite terminals of the crystal. On the one hand, the polarized bound charges and initiated piezoelectric polarization field by mechanical stress promote the separation and transfer of photoinduced charges in both the bulk and on the surface of the catalyst, facilitating more active carriers to participate in the surface reaction. On the other hand, the accumulation of piezoelectric polarization charges on the surface contributes to the upward or downward bending of the band, which can flexibly manipulate the charge transfer behavior at the heterojunction interface, further steering the spatial distribution of electrons and holes. In addition, band tilting induced by piezoelectric polarization can also modulate the energy band structure of the catalyst to match the redox potential of the target reaction, breaking the intrinsic thermodynamic restriction. Hence, the coupling of solar and mechanical energy significantly improves the efficiency of catalytic energy conversion. As a complex reaction process of piezo-photocatalysis, diverse enhancement strategies have been implemented; however, there are few systematic and pertinent overviews for high-performance piezo-photocatalyst design. This study introduces the mechanism of piezoelectric polarization-enhanced photocatalysis and summarizes the catalytic enhancement strategy based on the piezo-photocatalysis reaction process, including morphology and polarization regulation, heterostructure construction, and surface engineering. Meanwhile, recent advances in piezo-photocatalysis for energy applications have been reviewed. Finally, the problems and challenges associated with the development of piezo-photocatalysis are analyzed and discussed.
  • 加载中
    1. [1]

      Colmenares, J. C.; Luque, R. Chem. Soc. Rev. 2014, 43, 765. doi: 10.1039/C3CS60262A  doi: 10.1039/C3CS60262A

    2. [2]

      Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Chem. Soc. Rev. 2015, 44, 2893. doi: 10.1039/C5CS00064E  doi: 10.1039/C5CS00064E

    3. [3]

      Wang, Z. L. Nano Today 2010, 5, 540. doi: 10.1016/j.nantod.2010.10.008  doi: 10.1016/j.nantod.2010.10.008

    4. [4]

      Qin, Y.; Wang, X.; Wang, Z. L. Nature 2008, 451, 809. doi: 10.1038/nature06601  doi: 10.1038/nature06601

    5. [5]

      Pan, L.; Sun, S.; Chen, Y.; Wang, P.; Wang, J.; Zhang, X.; Zou, J.-J.; Wang, Z. L. Adv. Energy Mater. 2020, 10, 2000214. doi: 10.1002/aenm.202000214  doi: 10.1002/aenm.202000214

    6. [6]

      Liu, Z.; Yu, X.; Li, L. Chin. J. Catal. 2020, 41, 534. doi: 10.1016/S1872-2067(19)63431-5  doi: 10.1016/S1872-2067(19)63431-5

    7. [7]

      Wang, M.; Wang, B.; Huang, F.; Lin, Z. Angew. Chem. Int. Ed. 2019, 58, 7526. doi: 10.1002/anie.201811709  doi: 10.1002/anie.201811709

    8. [8]

      Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. ACS Appl. Nano Mater. 2020, 3, 1063. doi: 10.1021/acsanm.0c00039  doi: 10.1021/acsanm.0c00039

    9. [9]

      Hu, C.; Tu, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Angew. Chem. Int. Ed. 2021, 60, 16309. doi: 10.1002/anie.202009518  doi: 10.1002/anie.202009518

    10. [10]

      Shi, J.; Starr, M. B.; Wang, X. Adv. Mater. 2012, 24, 4683. doi: 10.1002/adma.201104386  doi: 10.1002/adma.201104386

    11. [11]

      Pan, C.; Zhai, J.; Wang, Z. L. Chem. Rev. 2019, 119, 9303. doi: 10.1021/acs.chemrev.8b00599  doi: 10.1021/acs.chemrev.8b00599

    12. [12]

      Dai, B.; Biesold, G. M.; Zhang, M.; Zou, H.; Ding, Y.; Wang, Z. L.; Lin, Z. Chem. Soc. Rev. 2021, 50, 13646. doi: 10.1039/D1CS00506E  doi: 10.1039/D1CS00506E

    13. [13]

      Wu, W.; Wang, Z. L. Nat. Rev. Mater. 2016, 1, 16031. doi: 10.1038/natrevmats.2016.31  doi: 10.1038/natrevmats.2016.31

    14. [14]

      Wang, Z. L. Adv. Mater. 2012, 24, 4632. doi: 10.1002/adma.201104365  doi: 10.1002/adma.201104365

    15. [15]

      Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Appl. Catal. B 2019, 241, 256. doi: 10.1016/j.apcatb.2018.09.028  doi: 10.1016/j.apcatb.2018.09.028

    16. [16]

      Chen, F.; Ma, T.; Zhang, T.; Zhang, Y.; Huang, H. Adv. Mater. 2021, 33, 2005256. doi: 10.1002/adma.202005256  doi: 10.1002/adma.202005256

    17. [17]

      Wu, J.; Qin, N.; Bao, D. Nano Energy 2018, 45, 44. doi: 10.1016/j.nanoen.2017.12.034  doi: 10.1016/j.nanoen.2017.12.034

    18. [18]

      Xue, X.; Zang, W.; Deng, P.; Wang, Q.; Xing, L.; Zhang, Y.; Wang, Z. L. Nano Energy 2015, 13, 414. doi: 10.1016/j.nanoen.2015.02.029  doi: 10.1016/j.nanoen.2015.02.029

    19. [19]

      Tan, C. F.; Ong, W. L.; Ho, G. W. ACS Nano 2015, 9, 7661. doi: 10.1021/acsnano.5b03075  doi: 10.1021/acsnano.5b03075

    20. [20]

      Lv, T.; Li, J.; Arif, N.; Qi, L.; Lu, J.; Ye, Z.; Zeng, Y.-J. Matter 2022, 5, 2685. doi: 10.1016/j.matt.2022.06.004  doi: 10.1016/j.matt.2022.06.004

    21. [21]

      Wang, Z.; Li, Y.; Wu, C.; Tsang, S. C. E. Joule 2022, 6, 1798. doi: 10.1016/j.joule.2022.06.018  doi: 10.1016/j.joule.2022.06.018

    22. [22]

      Dues, C.; Schmidt, W. G.; Sanna, S. ACS Omega 2019, 4, 3850. doi: 10.1021/acsomega.8b03271  doi: 10.1021/acsomega.8b03271

    23. [23]

      Meroni, D.; Bianchi, C. L. Curr. Opin. Green Sustain. Chem. 2022, 36, 100639. doi: 10.1016/j.cogsc.2022.100639  doi: 10.1016/j.cogsc.2022.100639

    24. [24]

      Panda, D.; Manickam, S. Ultrason. Sonochem. 2017, 36, 481. doi: 10.1016/j.ultsonch.2016.12.022  doi: 10.1016/j.ultsonch.2016.12.022

    25. [25]

      Theerthagiri, J.; Lee, Seung, J.; Karuppasamy, K.; Arulmani, S.; Veeralakshmi, S.; Ashokkumar, M.; Choi, M. Y. J. Hazard. Mater. 2021, 412, 125245. doi: 10.1016/j.jhazmat.2021.125245  doi: 10.1016/j.jhazmat.2021.125245

    26. [26]

      Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/C4CS00126E  doi: 10.1039/C4CS00126E

    27. [27]

      Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.-X.; Tang, J. Energy Environ. Sci. 2015, 8, 731. doi: 10.1039/C4EE03271C  doi: 10.1039/C4EE03271C

    28. [28]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    29. [29]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    30. [30]

      Yu, D.; Liu, Z.; Zhang, J.; Li, S.; Zhao, Z.; Zhu, L.; Liu, W.; Lin, Y.; Liu, H.; Zhang, Z. Nano Energy 2019, 58, 695. doi: 10.1016/j.nanoen.2019.01.095  doi: 10.1016/j.nanoen.2019.01.095

    31. [31]

      Hu, J.; Yu, C.; Li, C.; Lan, S.; Zeng, L.; Zhu, M. Nano Energy 2022, 101, 107583. doi: 10.1016/j.nanoen.2022.107583  doi: 10.1016/j.nanoen.2022.107583

    32. [32]

      Zhou, X.; Sun, Q.; Zhai, D.; Xue, G.; Luo, H.; Zhang, D. Nano Energy 2021, 84, 105936. doi: 10.1016/j.nanoen.2021.105936  doi: 10.1016/j.nanoen.2021.105936

    33. [33]

      Liu, Q.; Li, Z.; Li, J.; Zhan, F.; Zhai, D.; Sun, Q.; Xiao, Z.; Luo, H.; Zhang, D. Nano Energy 2022, 98, 107267. doi: 10.1016/j.nanoen.2022.107267  doi: 10.1016/j.nanoen.2022.107267

    34. [34]

      Xie, Z.; Tang, X.; Shi, J.; Wang, Y.; Yuan, G.; Liu, J.-M. Nano Energy 2022, 98, 107247. doi: 10.1016/j.nanoen.2022.107247  doi: 10.1016/j.nanoen.2022.107247

    35. [35]

      Chen, F.; Huang, H.; Guo, L.; Zhang, Y.; Ma, T. Angew. Chem. Int. Ed. 2019, 58, 10061. doi: 10.1002/anie.201901361  doi: 10.1002/anie.201901361

    36. [36]

      Chang, S. C.; Chen, H.-Y.; Chen, P.-H.; Lee, J.-T.; Wu, J. M. Appl. Catal. B 2023, 324, 122204. doi: 10.1016/j.apcatb.2022.122204  doi: 10.1016/j.apcatb.2022.122204

    37. [37]

      Huang, H.; Tu, S.; Zeng, C.; Zhang, T.; Reshak, A. H.; Zhang, Y. Angew. Chem. Int. Ed. 2017, 56, 11860. doi: 10.1002/anie.201706549  doi: 10.1002/anie.201706549

    38. [38]

      Yu, C.; He, J.; Tan, M.; Hou, Y.; Zeng, H.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Lookman, T.; et al. Adv. Funct. Mater. 2022, 32, 2209365. doi: 10.1002/adfm.202209365  doi: 10.1002/adfm.202209365

    39. [39]

      Lan, S.; Yu, C.; Sun, F.; Chen, Y.; Chen, D.; Mai, W.; Zhu, M. Nano Energy 2022, 93, 106792. doi: 10.1016/j.nanoen.2021.106792  doi: 10.1016/j.nanoen.2021.106792

    40. [40]

      Yuan, J.; Huang, X.; Zhang, L.; Gao, F.; Lei, R.; Jiang, C.; Feng, W.; Liu, P. Appl. Catal. B 2020, 278, 119291. doi: 10.1016/j.apcatb.2020.119291  doi: 10.1016/j.apcatb.2020.119291

    41. [41]

      Zhou, L.; Yang, T.; Fang, Z.; Zhou, J.; Zheng, Y.; Guo, C.; Zhu, L.; Wang, E.; Hou, X.; Chou, K.-C.; et al. Nano Energy 2022, 104, 107876. doi: 10.1016/j.nanoen.2022.107876  doi: 10.1016/j.nanoen.2022.107876

    42. [42]

      Lan, S.; Jing, B.; Yu, C.; Yan, D.; Li, Z.; Ao, Z.; Zhu, M. Small 2022, 18, 2105279. doi: 10.1002/smll.202105279  doi: 10.1002/smll.202105279

    43. [43]

      Hu, C.; Hu, J.; Zhu, Z.; Lu, Y.; Chu, S.; Ma, T.; Zhang, Y.; Huang, H. Angew. Chem. Int. Ed. 2022, 61, e202212397. doi: 10.1002/anie.202212397  doi: 10.1002/anie.202212397

    44. [44]

      Yu, H.; Chen, F.; Li, X.; Huang, H.; Zhang, Q.; Su, S.; Wang, K.; Mao, E.; Mei, B.; Mul, G.; et al. Nat. Commun. 2021, 12, 4594. doi: 10.1038/s41467-021-24882-3  doi: 10.1038/s41467-021-24882-3

    45. [45]

      Tu, S.; Zhang, Y.; Reshak, A. H.; Auluck, S.; Ye, L.; Han, X.; Ma, T.; Huang, H. Nano Energy 2019, 56, 840. doi: 10.1016/j.nanoen.2018.12.016  doi: 10.1016/j.nanoen.2018.12.016

    46. [46]

      Zhang, Y.; Luo, N.; Zeng, D.; Xu, C.; Ma, L.; Luo, G.; Qian, Y.; Feng, Q.; Chen, X.; Hu, C.; et al. ACS Appl. Mater. Interfaces 2022, 14, 22313. doi: 10.1021/acsami.2c04408  doi: 10.1021/acsami.2c04408

    47. [47]

      Sun, H.; Xu, Z.; Xie, X.; Niu, J.; Wang, M.; Zhang, X.; Chen, X.; Han, J. J. Alloys Compd. 2021, 882, 160609. doi: 10.1016/j.jallcom.2021.160609  doi: 10.1016/j.jallcom.2021.160609

    48. [48]

      Liu, Y.-L.; Wu, J. M. Nano Energy 2019, 56, 74. doi: 10.1016/j.nanoen.2018.11.028  doi: 10.1016/j.nanoen.2018.11.028

    49. [49]

      Kumar, S.; Sharma, M.; Kumar, A.; Powar, S.; Vaish, R. J. Ind. Eng. Chem. 2019, 77, 355. doi: 10.1016/j.jiec.2019.04.058  doi: 10.1016/j.jiec.2019.04.058

    50. [50]

      Yu, X.; Wang, S.; Zhang, X.; Qi, A.; Qiao, X.; Liu, Z.; Wu, M.; Li, L.; Wang, Z. L. Nano Energy 2018, 46, 29. doi: 10.1016/j.nanoen.2018.01.033  doi: 10.1016/j.nanoen.2018.01.033

    51. [51]

      Wan, G.; Yin, L.; Chen, X.; Xu, X.; Huang, J.; Zhen, C.; Zhu, H.; Huang, B.; Hu, W.; Ren, Z.; et al. J. Am. Chem. Soc. 2022, 144, 20342. doi: 10.1021/jacs.2c08177  doi: 10.1021/jacs.2c08177

    52. [52]

      Liu, Y.; Ye, S.; Xie, H.; Zhu, J.; Shi, Q.; Ta, N.; Chen, R.; Gao, Y.; An, H.; Nie, W.; et al. Adv. Mater. 2020, 32, 1906513. doi: 10.1002/adma.201906513  doi: 10.1002/adma.201906513

    53. [53]

      Fu, B.; Li, J.; Jiang, H.; He, X.; Ma, Y.; Wang, J.; Hu, C. Nano Energy 2022, 93, 106841. doi: 10.1016/j.nanoen.2021.106841  doi: 10.1016/j.nanoen.2021.106841

    54. [54]

      Chen, F.; Ma, Z.; Ye, L.; Ma, T.; Zhang, T.; Zhang, Y.; Huang, H. Adv. Mater. 2020, 32, 1908350. doi: 10.1002/adma.201908350  doi: 10.1002/adma.201908350

    55. [55]

      He, T.; Cao, Z.; Li, G.; Jia, Y.; Peng, B. J. Adv. Ceram. 2022, 11, 1641. doi: 10.1007/s40145-022-0637-8  doi: 10.1007/s40145-022-0637-8

    56. [56]

      Wu, L.; Podpirka, A.; Spanier, J. E.; Davies, P. K. Chem. Mater. 2019, 31, 4184. doi: 10.1021/acs.chemmater.9b00996  doi: 10.1021/acs.chemmater.9b00996

    57. [57]

      Lin, E.; Wu, J.; Qin, N.; Yuan, B.; Kang, Z.; Bao, D. Catal. Sci. Technol. 2019, 9, 6863. doi: 10.1039/C9CY01713E  doi: 10.1039/C9CY01713E

    58. [58]

      Zhang, M.; Nie, S.; Cheng, T.; Feng, Y.; Zhang, C.; Zheng, L.; Wu, L.; Hao, W.; Ding, Y. Nano Energy 2021, 90, 106635. doi: 10.1016/j.nanoen.2021.106635  doi: 10.1016/j.nanoen.2021.106635

    59. [59]

      Zhao, Q.; Zou, Y.; Liu, Z. J. Catal. 2022, 416, 398. doi: 10.1016/j.jcat.2022.11.024  doi: 10.1016/j.jcat.2022.11.024

    60. [60]

      You, D.; Liu, L.; Yang, Z.; Xing, X.; Li, K.; Mai, W.; Guo, T.; Xiao, G.; Xu, C. Nano Energy 2022, 93, 106852. doi: 10.1016/j.nanoen.2021.106852  doi: 10.1016/j.nanoen.2021.106852

    61. [61]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    62. [62]

      Zhou, X.; Wu, S.; Li, C.; Yan, F.; Bai, H.; Shen, B.; Zeng, H.; Zhai, J. Nano Energy 2019, 66, 104127. doi: 10.1016/j.nanoen.2019.104127  doi: 10.1016/j.nanoen.2019.104127

    63. [63]

      Liu, Q.; Zhai, D.; Xiao, Z.; Tang, C.; Sun, Q.; Bowen, C. R.; Luo, H.; Zhang, D. Nano Energy 2022, 92, 106702. doi: 10.1016/j.nanoen.2021.106702  doi: 10.1016/j.nanoen.2021.106702

    64. [64]

      Zhang, Y.; Shen, G.; Sheng, C.; Zhang, F.; Fan, W. Appl. Surf. Sci. 2021, 562, 150164. doi: 10.1016/j.apsusc.2021.150164  doi: 10.1016/j.apsusc.2021.150164

    65. [65]

      Liu, Q.; Zhan, F.; Luo, H.; Zhai, D.; Xiao, Z.; Sun, Q.; Yi, Q.; Yang, Y.; Zhang, D. Appl. Catal. B 2022, 318, 121817. doi: 10.1016/j.apcatb.2022.121817  doi: 10.1016/j.apcatb.2022.121817

    66. [66]

      Zhou, X.; Yan, F.; Wu, S.; Shen, B.; Zeng, H.; Zhai, J. Small 2020, 16, 2001573. doi: 10.1002/smll.202001573  doi: 10.1002/smll.202001573

    67. [67]

      Huang, X.; Lei, R.; Yuan, J.; Gao, F.; Jiang, C.; Feng, W.; Zhuang, J.; Liu, P. Appl. Catal. B 2021, 282, 119586. doi: 10.1016/j.apcatb.2020.119586  doi: 10.1016/j.apcatb.2020.119586

    68. [68]

      Hong, D.; Zang, W.; Guo, X.; Fu, Y.; He, H.; Sun, J.; Xing, L.; Liu, B.; Xue, X. ACS Appl. Mater. Interfaces 2016, 8, 21302. doi: 10.1021/acsami.6b05252  doi: 10.1021/acsami.6b05252

    69. [69]

      Liu, Z.; Wang, L.; Yu, X.; Zhang, J.; Yang, R.; Zhang, X.; Ji, Y.; Wu, M.; Deng, L.; Li, L.; et al. Adv. Funct. Mater. 2019, 29, 1807279. doi: 10.1002/adfm.201807279  doi: 10.1002/adfm.201807279

    70. [70]

      Zhou, L.; Dai, S.; Xu, S.; She, Y.; Li, Y.; Leveneur, S.; Qin, Y. Appl. Catal. B 2021, 291, 120019. doi: 10.1016/j.apcatb.2021.120019  doi: 10.1016/j.apcatb.2021.120019

    71. [71]

      Yao, Z.; Sun, H.; Xiao, S.; Hu, Y.; Liu, X.; Zhang, Y. Appl. Surf. Sci. 2021, 560, 150037. doi: 10.1016/j.apsusc.2021.150037  doi: 10.1016/j.apsusc.2021.150037

    72. [72]

      Nhan Nguyen, T. N.; Chang, K.-S. Renew. Energy 2022, 197, 89. doi: 10.1016/j.renene.2022.07.095  doi: 10.1016/j.renene.2022.07.095

    73. [73]

      Yu, Y.; Yao, B.; He, Y.; Cao, B.; Ren, Y.; Sun, Q. Appl. Surf. Sci. 2020, 528, 146819. doi: 10.1016/j.apsusc.2020.146819  doi: 10.1016/j.apsusc.2020.146819

    74. [74]

      Xiong, S.; Zeng, H.; Deng, Y.; Feng, C.; Tang, R.; Zhou, Z.; Li, L.; Wang, J.; Gong, D. Chem. Eng. J. 2023, 451, 138399. doi: 10.1016/j.cej.2022.138399  doi: 10.1016/j.cej.2022.138399

    75. [75]

      Kang, Z.; Ke, K.; Lin, E.; Qin, N.; Wu, J.; Huang, R.; Bao, D. J. Colloid Interface Sci. 2022, 607, 1589. doi: 10.1016/j.jcis.2021.09.007  doi: 10.1016/j.jcis.2021.09.007

    76. [76]

      Han, Q.; Du, S.; Wang, Y.; Han, Z.; Li, H.; Xu, H.; Fang, P. J. Colloid Interface Sci. 2022, 622, 637. doi: 10.1016/j.jcis.2022.04.139  doi: 10.1016/j.jcis.2022.04.139

    77. [77]

      Xu, M.-L.; Lu, M.; Qin, G.-Y.; Wu, X.-M.; Yu, T.; Zhang, L.-N.; Li, K.; Cheng, X.; Lan, Y.-Q. Angew. Chem. Int. Ed. 2022, 61, e202210700. doi: 10.1002/anie.202210700  doi: 10.1002/anie.202210700

    78. [78]

      Fu, Y.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Xing, L.; Ma, J.; Wang, H.; Xue, X. Appl. Catal. B 2021, 285, 119785. doi: 10.1016/j.apcatb.2020.119785  doi: 10.1016/j.apcatb.2020.119785

    79. [79]

      Li, H.; Sang, Y.; Chang, S.; Huang, X.; Zhang, Y.; Yang, R.; Jiang, H.; Liu, H.; Wang, Z. L. Nano Lett. 2015, 15, 2372. doi: 10.1021/nl504630j  doi: 10.1021/nl504630j

    80. [80]

      Feng, Y.; Li, H.; Ling, L.; Yan, S.; Pan, D.; Ge, H.; Li, H.; Bian, Z. Environ. Sci. Technol. 2018, 52, 7842. doi: 10.1021/acs.est.8b00946  doi: 10.1021/acs.est.8b00946

    81. [81]

      Lin, M.-C.; Lai, S.-N.; Le, K. T.; Wu, J. M. Nano Energy 2022, 91, 106640. doi: 10.1016/j.nanoen.2021.106640  doi: 10.1016/j.nanoen.2021.106640

    82. [82]

      Jhang, S.-R.; Lin, H.-Y.; Liao, Y.-S.; Chou, J.-P.; Wu, J. M. Nano Energy 2022, 102, 107619. doi: 10.1016/j.nanoen.2022.107619  doi: 10.1016/j.nanoen.2022.107619

    83. [83]

      Batzill, M. Energy Environ. Sci. 2011, 4, 3275. doi: 10.1039/C1EE01577J  doi: 10.1039/C1EE01577J

    84. [84]

      Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Adv. Sci. 2017, 4, 1600216. doi: 10.1002/advs.201600216  doi: 10.1002/advs.201600216

    85. [85]

      Tu, W.; Guo, W.; Hu, J.; He, H.; Li, H.; Li, Z.; Luo, W.; Zhou, Y.; Zou, Z. Mater. Today 2020, 33, 75. doi: 10.1016/j.mattod.2019.09.003  doi: 10.1016/j.mattod.2019.09.003

    86. [86]

      Wang, Y.-C.; Wu, J. M. Adv. Funct. Mater. 2020, 30, 1907619. doi: 10.1002/adfm.201907619  doi: 10.1002/adfm.201907619

    87. [87]

      Zheng, H.; Li, X.; Zhu, K.; Liang, P.; Wu, M.; Rao, Y.; Jian, R.; Shi, F.; Wang, J.; Yan, K.; et al. Nano Energy 2022, 93, 106831. doi: 10.1016/j.nanoen.2021.106831  doi: 10.1016/j.nanoen.2021.106831

    88. [88]

      Zhu, Q.; Dar, A. A.; Zhou, Y.; Zhang, K.; Qin, J.; Pan, B.; Lin, J.; Patrocinio, A. O. T.; Wang, C. ACS EST Eng. 2022, 2, 1365. doi: 10.1021/acsestengg.1c00479  doi: 10.1021/acsestengg.1c00479

    89. [89]

      Zhao, Q.; Liu, Z.; Guo, Z.; Ruan, M.; Yan, W. Chem. Eng. J. 2022, 433, 133226. doi: 10.1016/j.cej.2021.133226  doi: 10.1016/j.cej.2021.133226

    90. [90]

      Chen, P.; Ni, J.; Liang, Y.; Yang, B.; Jia, F.; Song, S. ACS Sustain. Chem. Eng. 2021, 9, 589. doi: 10.1021/acssuschemeng.0c08465  doi: 10.1021/acssuschemeng.0c08465

    91. [91]

      Ma, H.; Yang, W.; Gao, S.; Geng, W.; Lu, Y.; Zhou, C.; Shang, J. K.; Shi, T.; Li, Q. Chem. Eng. J. 2022, 140471. doi: 10.1016/j.cej.2022.140471  doi: 10.1016/j.cej.2022.140471

    92. [92]

      Wang, F.; Zhang, J.; Jin, C.-C.; Ke, X.; Wang, F.; Liu, D. Nano Energy 2022, 101, 107573. doi: 10.1016/j.nanoen.2022.107573  doi: 10.1016/j.nanoen.2022.107573

    93. [93]

      Feng, Y.; Xu, M.; Liu, H.; Li, W.; Li, H.; Bian, Z. Nano Energy 2020, 73, 104768. doi: 10.1016/j.nanoen.2020.104768  doi: 10.1016/j.nanoen.2020.104768

    94. [94]

      Hu, J.; Chen, Y.; Zhou, Y.; Zeng, L.; Huang, Y.; Lan, S.; Zhu, M. Appl. Catal. B 2022, 311, 121369. doi: 10.1016/j.apcatb.2022.121369  doi: 10.1016/j.apcatb.2022.121369

    95. [95]

      Liu, H.; Zhu, R.; Shi, N.; Zhang, L.; Li, S.; Zhang, J. ACS Appl. Mater. Interfaces 2022, 14, 55548. doi: 10.1021/acsami.2c15965  doi: 10.1021/acsami.2c15965

    96. [96]

      Xu, S.; Guo, L.; Sun, Q.; Wang, Z. L. Adv. Funct. Mater. 2019, 29, 1808737. doi: 10.1002/adfm.201808737  doi: 10.1002/adfm.201808737

    97. [97]

      Xiang, D.; Liu, Z.; Wu, M.; Liu, H.; Zhang, X.; Wang, Z.; Wang, Z. L.; Li, L. Small 2020, 16, 1907603. doi: 10.1002/smll.201907603  doi: 10.1002/smll.201907603

    98. [98]

      Li, S.; Zhao, Z.; Liu, M.; Liu, X.; Huang, W.; Sun, S.; Jiang, Y.; Liu, Y.; Zhang, J.; Zhang, Z. Nano Energy 2022, 95, 107031. doi: 10.1016/j.nanoen.2022.107031  doi: 10.1016/j.nanoen.2022.107031

    99. [99]

      Guo, L.; Zhong, C.; Cao, J.; Hao, Y.; Lei, M.; Bi, K.; Sun, Q.; Wang, Z. L. Nano Energy 2019, 62, 513. doi: 10.1016/j.nanoen.2019.05.067  doi: 10.1016/j.nanoen.2019.05.067

    100. [100]

      Jiang, Y.; Xie, J.; Lu, Z.; Hu, J.; Hao, A.; Cao, Y. J. Colloid Interface Sci. 2022, 612, 111. doi: 10.1016/j.jcis.2021.10.170  doi: 10.1016/j.jcis.2021.10.170

    101. [101]

      Ma, X.; Gao, Y.; Yang, B.; Lou, X.; Huang, J.; Ma, L.; Jing, D. Mater. Today Nano 2023, 21, 100289. doi: 10.1016/j.mtnano.2022.100289  doi: 10.1016/j.mtnano.2022.100289

    102. [102]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    103. [103]

      Nguyen, T. N. N.; Chang, K.-S. J. Environ. Chem. Eng. 2022, 10, 107213. doi: 10.1016/j.jece.2022.107213  doi: 10.1016/j.jece.2022.107213

    104. [104]

      You, J.; Liu, Z.; Guo, Z.; Ruan, M.; Yan, W. ACS Appl. Energy Mater. 2022, 5, 11472. doi: 10.1021/acsaem.2c01917  doi: 10.1021/acsaem.2c01917

    105. [105]

      Zhao, Y.; Huang, X.; Gao, F.; Zhang, L.; Tian, Q.; Fang, Z.-B.; Liu, P. Nanoscale 2019, 11, 9085. doi: 10.1039/C9NR01676G  doi: 10.1039/C9NR01676G

    106. [106]

      Zhao, Y.; Fang, Z.-B.; Feng, W.; Wang, K.; Huang, X.; Liu, P. ChemCatChem 2018, 10, 3397. doi: 10.1002/cctc.201800666  doi: 10.1002/cctc.201800666

    107. [107]

      Ma, X.; Gao, Y.; Yang, B.; Lou, X.; Huang, J.; Ma, L.; Jing, D. Nanoscale 2022, 14, 7083. doi: 10.1039/D2NR01202B  doi: 10.1039/D2NR01202B

    108. [108]

      Singh, S.; Khare, N. Nano Energy 2017, 38, 335. doi: 10.1016/j.nanoen.2017.05.029  doi: 10.1016/j.nanoen.2017.05.029

    109. [109]

      Jiang, Y.; Li, M.; Mi, Y.; Guo, L.; Fang, W.; Zeng, X.; Zhou, T.; Liu, Y. Nano Energy 2021, 85, 105949. doi: 10.1016/j.nanoen.2021.105949  doi: 10.1016/j.nanoen.2021.105949

    110. [110]

      Shi, J.; Starr, M. B.; Xiang, H.; Hara, Y.; Anderson, M. A.; Seo, J.-H.; Ma, Z.; Wang, X. Nano Lett. 2011, 11, 5587. doi: 10.1021/nl203729j  doi: 10.1021/nl203729j

    111. [111]

      Liu, S.-Q.; Huang, K.-Z.; Liu, W.-X.; Meng, Z.-D.; Luo, L. New J. Chem. 2020, 44, 14291. doi: 10.1039/D0NJ01053G  doi: 10.1039/D0NJ01053G

    112. [112]

      Lin, S.; Li, S.; Huang, H.; Yu, H.; Zhang, Y. Small 2022, 18, 2106420. doi: 10.1002/smll.202106420  doi: 10.1002/smll.202106420

    113. [113]

      Zhao, Z.; Wei, L.; Li, S.; Zhu, L.; Su, Y.; Liu, Y.; Bu, Y.; Lin, Y.; Liu, W.; Zhang, Z. J. Mater. Chem. A 2020, 8, 16238. doi: 10.1039/C9TA14007G  doi: 10.1039/C9TA14007G

    114. [114]

      Wang, M.; Zuo, Y.; Wang, J.; Wang, Y.; Shen, X.; Qiu, B.; Cai, L.; Zhou, F.; Lau, S. P.; Chai, Y. Adv. Energy Mater. 2019, 9, 1901801. doi: 10.1002/aenm.201901801  doi: 10.1002/aenm.201901801

    115. [115]

      Hu, C.; Chen, F.; Wang, Y.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Adv. Mater. 2021, 33, 2101751. doi: 10.1002/adma.202101751  doi: 10.1002/adma.202101751

    116. [116]

      Wang, Y.; Guo, Y.; Zeng, C.; Yang, D.; Zhang, Y.; Wu, L.; Wu, Y.; Hao, J.; Wang, J.; Yang, R. Nano Energy 2022, 104, 107983. doi: 10.1016/j.nanoen.2022.107983  doi: 10.1016/j.nanoen.2022.107983

    117. [117]

      Tu, C.-Y.; Wu, J. M. Nano Energy 2021, 87, 106131. doi: 10.1016/j.nanoen.2021.106131  doi: 10.1016/j.nanoen.2021.106131

    118. [118]

      You, J.; Liu, Z.; Guo, Z.; Meng, Y.; Li, J. Int. J. Hydrog. Energy 2022, 47, 38609. doi: 10.1016/j.ijhydene.2022.09.045  doi: 10.1016/j.ijhydene.2022.09.045

    119. [119]

      Zhao, T.; Wang, Q.; Du, A. Mater. Lett. 2021, 294, 129752. doi: 10.1016/j.matlet.2021.129752  doi: 10.1016/j.matlet.2021.129752

    120. [120]

      Singh, S.; Khare, N. Nano Energy 2017, 42, 173. doi: 10.1016/j.nanoen.2017.10.061  doi: 10.1016/j.nanoen.2017.10.061

    121. [121]

      Wu, Y.; Yang, D.; Zhang, Y.; Jiao, S.; Tang, W.; Wang, Z.; Wu, N.; Wang, Y.; Zhong, W.; Zhang, A.; et al. Chem. Eng. J. 2022, 439, 135640. doi: 10.1016/j.cej.2022.135640  doi: 10.1016/j.cej.2022.135640

    122. [122]

      Wang, Z.; Hu, T.; He, H.; Fu, Y.; Zhang, X.; Sun, J.; Xing, L.; Liu, B.; Zhang, Y.; Xue, X. ACS Sustain. Chem. Eng. 2018, 6, 10162. doi: 10.1021/acssuschemeng.8b01480  doi: 10.1021/acssuschemeng.8b01480

    123. [123]

      Zhao, Q.; Liu, Z.; Li, J.; Yan, W.; Ya, J.; Wu, X. Int. J. Hydrog. Energy 2021, 46, 36113. doi: 10.1016/j.ijhydene.2021.08.123  doi: 10.1016/j.ijhydene.2021.08.123

    124. [124]

      Lee, G.-C.; Lyu, L.-M.; Hsiao, K.-Y.; Huang, Y.-S.; Perng, T.-P.; Lu, M.-Y.; Chen, L.-J. Nano Energy 2022, 93, 106867. doi: 10.1016/j.nanoen.2021.106867  doi: 10.1016/j.nanoen.2021.106867

    125. [125]

      Li, M.; Sun, J.; Chen, G.; Yao, S.; Cong, B. Appl. Catal. B 2022, 301, 120792. doi: 10.1016/j.apcatb.2021.120792  doi: 10.1016/j.apcatb.2021.120792

    126. [126]

      Guo, S.-L.; Lai, S.-N.; Wu, J. M. ACS Nano 2021, 15, 16106. doi: 10.1021/acsnano.1c04774  doi: 10.1021/acsnano.1c04774

    127. [127]

      Jia, S.; Su, Y.; Zhang, B.; Zhao, Z.; Li, S.; Zhang, Y.; Li, P.; Xu, M.; Ren, R. Nanoscale 2019, 11, 7690. doi: 10.1039/C9NR00246D  doi: 10.1039/C9NR00246D

    128. [128]

      Lin, S.; Wang, Q.; Huang, H.; Zhang, Y. Small 2022, 18, 2200914. doi: 10.1002/smll.202200914  doi: 10.1002/smll.202200914

    129. [129]

      Hu, C.; Huang, H.; Chen, F.; Zhang, Y.; Yu, H.; Ma, T. Adv. Funct. Mater. 2020, 30, 1908168. doi: 10.1002/adfm.201908168  doi: 10.1002/adfm.201908168

    130. [130]

      Zhou, X.; Yan, F.; Lyubartsev, A.; Shen, B.; Zhai, J.; Conesa, J. C.; Hedin, N. Adv. Sci. 2022, 9, 2105792. doi: 10.1002/advs.202105792  doi: 10.1002/advs.202105792

    131. [131]

      Yein, W. T.; Wang, Q.; Liu, Y.; Li, Y.; Jian, J.; Wu, X. J. Environ. Chem. Eng. 2020, 8, 103626. doi: 10.1016/j.jece.2019.103626  doi: 10.1016/j.jece.2019.103626

    132. [132]

      Wu, T.; Liang, Q.; Tang, L.; Tang, J.; Wang, J.; Shao, B.; Gong, S.; He, Q.; Pan, Y.; Liu, Z. J. Hazard. Mater. 2023, 443, 130251. doi: 10.1016/j.jhazmat.2022.130251  doi: 10.1016/j.jhazmat.2022.130251

    133. [133]

      Zhou, X.; Yan, F.; Shen, B.; Zhai, J.; Hedin, N. ACS Appl. Mater. Interfaces 2021, 13, 29691. doi: 10.1021/acsami.1c06912  doi: 10.1021/acsami.1c06912

    134. [134]

      Wong, K. T.; Choong, C. E.; Nah, I. W.; Kim, S.-H.; Jeon, B.-H.; Yoon, Y.; Choi, E. H.; Jang, M. Appl. Catal. B 2022, 315, 121581. doi: 10.1016/j.apcatb.2022.121581  doi: 10.1016/j.apcatb.2022.121581

    135. [135]

      Zhou, X.; Shen, B.; Zhai, J.; Hedin, N. Adv. Funct. Mater. 2021, 31, 2009594. doi: 10.1002/adfm.202009594  doi: 10.1002/adfm.202009594

    136. [136]

      Zhou, X.; Shen, B.; Zhai, J.; Conesa, J. C. Small Methods 2021, 5, 2100269. doi: 10.1002/smtd.202100269  doi: 10.1002/smtd.202100269

    137. [137]

      Zhang, L.; Wang, K.; Jia, Y.; Fang, L.; Han, C.; Li, J.; Shao, Z.; Li, X.; Qiu, J.; Liu, S. Adv. Funct. Mater. 2022, 32, 2205121. doi: 10.1002/adfm.202205121  doi: 10.1002/adfm.202205121

    138. [138]

      Tang, R.; Gong, D.; Zhou, Y.; Deng, Y.; Feng, C.; Xiong, S.; Huang, Y.; Peng, G.; Li, L. Appl. Catal. B 2022, 303, 120929. doi: 10.1016/j.apcatb.2021.120929  doi: 10.1016/j.apcatb.2021.120929

    139. [139]

      Ma, J.; Jing, S.; Wang, Y.; Liu, X.; Gan, L.-Y.; Wang, C.; Dai, J.-Y.; Han, X.; Zhou, X. Adv. Energy Mater. 2022, 12, 2200253. doi: 10.1002/aenm.202200253  doi: 10.1002/aenm.202200253

    140. [140]

      Ren, Z.; Chen, F.; Zhao, Q.; Zhao, G.; Li, H.; Sun, W.; Huang, H.; Ma, T. Appl. Catal. B 2023, 320, 122007. doi: 10.1016/j.apcatb.2022.122007  doi: 10.1016/j.apcatb.2022.122007

    141. [141]

      Yue, S.; Chen, L.; Zhang, M.; Liu, Z.; Chen, T.; Xie, M.; Cao, Z.; Han, W. Nano-Micro Lett. 2021, 14, 15. doi: 10.1007/s40820-021-00749-6  doi: 10.1007/s40820-021-00749-6

    142. [142]

      Wang, K.; Fang, Z.; Huang, X.; Feng, W.; Wang, Y.; Wang, B.; Liu, P. Chem. Commun. 2017, 53, 9765. doi: 10.1039/C7CC05112C  doi: 10.1039/C7CC05112C

    143. [143]

      Hu, C.; Sun, H.-Y.; Jia, X.-M.; Lin, H.-L.; Cao, J.; Chen, S.-F. ChemPhotoChem 2022, 6, e202200150. doi: 10.1002/cptc.202200150  doi: 10.1002/cptc.202200150

    144. [144]

      Chen, L.; Wang, J.; Li, X.; Zhang, J.; Zhao, C.; Hu, X.; Lin, H.; Zhao, L.; Wu, Y.; He, Y. Green Energy Environ. 2023, doi: 10.1016/j.gee.2022.03.007  doi: 10.1016/j.gee.2022.03.007

    145. [145]

      Chen, L.; Zhang, W.; Wang, J.; Li, X.; Li, Y.; Hu, X.; Zhao, L.; Wu, Y.; He, Y. Green Energy Environ. 2021, 8, 283. doi: 10.1016/j.gee.2021.04.009  doi: 10.1016/j.gee.2021.04.009

    146. [146]

      Wang, P.; Li, X.; Fan, S.; Yin, Z.; Wang, L.; Tadé, M. O.; Liu, S. Nano Energy 2021, 83, 105831. doi: 10.1016/j.nanoen.2021.105831  doi: 10.1016/j.nanoen.2021.105831

    147. [147]

      Wang, P.; Fan, S.; Li, X.; Wang, J.; Liu, Z.; Bai, C.; Tadé, M. O.; Liu, S. Nano Energy 2021, 89, 106349. doi: 10.1016/j.nanoen.2021.106349  doi: 10.1016/j.nanoen.2021.106349

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    18. [18]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(24)
  • Abstract views(1495)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return