Citation: Huixian Han, Lan Chen, Jiancheng Zhao, Haitao Yu, Yang Wang, Helian Yan, Yingxiong Wang, Zhimin Xue, Tiancheng Mu. Biomass-based Acidic Deep Eutectic Solvents for Efficient Dissolution of Lignin: Towards Performance and Mechanism Elucidation[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221204. doi: 10.3866/PKU.WHXB202212043 shu

Biomass-based Acidic Deep Eutectic Solvents for Efficient Dissolution of Lignin: Towards Performance and Mechanism Elucidation

  • Corresponding author: Zhimin Xue, zmxue@bjfu.edu.cn Tiancheng Mu, tcmu@ruc.edu.cn
  • These authors contributed equally to the manuscript.
  • Received Date: 27 December 2022
    Revised Date: 16 January 2023
    Accepted Date: 18 January 2023
    Available Online: 31 January 2023

    Fund Project: the National Natural Science Foundation of China 21873012the National Natural Science Foundation of China 22073112

  • Lignocellulose utilization has the unique feature of net-zero carbon emissions. Thus, the utilization of lignocellulose as a renewable alternative to fossil-based carbon resources is one of the most promising strategies to achieve "carbon neutrality". Lignin has been recognized as the most abundant aromatic biopolymer on Earth; hence, it could be the most promising alternative to fossil-based aromatics. The efficient dissolution of lignin is crucial for lignin upgrading, which relies on the design of innovative and robust solvents. Herein, we designed several biomass-derived acidic deep eutectic solvents (DESs) using choline chloride, betaine, and L-carnitine as hydrogen bond acceptors (HBAs), and four protic compounds as hydrogen bond donors (HBDs), namely, oxalic acid, benzoic acid, ethyl gallate, and 5-methoxysalicylic acid. The designed DESs can dissolve different types of lignin, including alkali lignin (AL), dealkaline lignin (DAL), enzymatic hydrolysis lignin (EHL), and Kraft lignin (KL). Lignin dissolution was found to be affected by the relative contents of three phenylpropanoid monomers in lignin: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) units. More S and fewer H units in lignin could result in higher solubility. G-, S-, and H-type structural units were found in EHL, while AL, KL, and DAL had only G-type structural units. Therefore, EHL could be more easily dissolved than AL, KL, and DAL in the most developed DESs. The hydroxyl group content of the four lignin samples had a significant impact on lignin dissolution. AL (1.98 mmol·g−1) and EHL (1.93 mmol·g−1) had much higher contents of phenolic hydroxyl groups than DAL (0.62 mmol·g−1), implying that AL and EHL had higher polarity than DAL. This resulted in different dissolution behaviors in different DESs with varying polarities. However, the sulfonate groups afforded KL with much higher polarity, thus resulting in the special dissolution behavior of KL. It is to be noted that not all cases of dissolving lignin in the developed DESs conformed to the above rules. Therefore, it is necessary to further explore the effect of the properties of the DESs on the dissolution of different lignins. Choline chloride was the preferred HBA to construct DESs with good performance and adaptability to lignin dissolution, whereas suitable acidity enabled benzoic acid and ethyl gallate to be favorable HBDs. Systematic investigation revealed that an efficient DES for lignin dissolution should possess stronger hydrogen-bonding acidity (α > 0.95) and appropriate polarity matching with the dissolved lignin. In addition, the pKa value of the HBD and the acidity of the DESs were also efficient indices for estimating the performance of an acidic DES in dissolving lignin, and the pKa value and acidity could be well correlated with the polarity. Generally, HBDs (e.g., BA and EG in this study) with moderate pKa values can be employed to construct robust DESs to dissolve lignin with satisfactory solubility. Additionally, the viscosity of the DESs should have an impact on lignin dissolution, and a lower viscosity is helpful for dissolving lignin. Therefore, the better performance of the developed ChCl-based DESs than the Betaine- and L-Carnitine-based DESs was partially because of the lower viscosity of the ChCl-based DESs.
  • 加载中
    1. [1]

      Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Science 2012, 337 (6095), 695. doi: 10.1126/science.1222566  doi: 10.1126/science.1222566

    2. [2]

      Chen, Z.; Ragauskas, A.; Wan, C. Ind. Crops Prod. 2020, 147, 112241. doi: 10.1016/j.indcrop.2020.112241  doi: 10.1016/j.indcrop.2020.112241

    3. [3]

      Wang, W.; Wang, Y.; Zhan, Z.; Tan, T.; Deng, W.; Zhang, Q.; Wang, Y. Acta Phys. -Chim. Sin. 2022, 38 (10), 2205032  doi: 10.3866/PKU.WHXB2022205032

    4. [4]

      Zhou, H.; Jing, Y.; Wang, Y. Acta Phys. -Chim. Sin. 2022, 38 (10), 2203016  doi: 10.3866/PKU.WHXB202203016

    5. [5]

      Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; et al. Science 2014, 344 (6185), 1246843. doi: 10.1126/science.124684  doi: 10.1126/science.124684

    6. [6]

      Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Chem. Rev. 2018, 118 (2), 614. doi: 10.1021/acs.chemrev.7b00588  doi: 10.1021/acs.chemrev.7b00588

    7. [7]

      Luo, H.; Weeda, E. P.; Alherech, M.; Anson, C. W.; Karlen, S. D.; Cui, Y.; Foster, C. E.; Stahl, S. S. J. Am. Chem. Soc. 2021, 143 (37), 15462. doi: 10.1021/jacs.1c08635  doi: 10.1021/jacs.1c08635

    8. [8]

      Adler, A.; Kumaniaev, I.; Karacic, A.; Baddigam, K. R.; Hanes, R. J.; Subbotina, E.; Bartling, A. W.; Huertas-Alonso, A. J.; Moreno, A.; Håkansson, H. Joule 2022, 6 (8), 1845. doi: 10.1016/j.joule.2022.06.021  doi: 10.1016/j.joule.2022.06.021

    9. [9]

      Sun, Z.; Cheng, J.; Wang, D.; Yuan, T. -Q.; Song, G.; Barta, K. ChemSusChem 2020, 13 (19), 5199. doi: 10.1002/cssc.202001085  doi: 10.1002/cssc.202001085

    10. [10]

      Rinaldi, R. Joule 2017, 1 (3), 427. doi: 10.1016/j.joule.2017.11.001  doi: 10.1016/j.joule.2017.11.001

    11. [11]

      Hong, S.; Shen, X.; Xue, Z.; Sun, Z.; Yuan, T. Green Chem. 2020, 22 (21), 7219. doi: 10.1039/D0GC02439B  doi: 10.1039/D0GC02439B

    12. [12]

      New, E. K.; Tnah, S. K.; Voon, K. S.; Yong, K. J.; Procentese, A.; Yee Shak, K. P.; Subramonian, W.; Cheng, C. K.; Wu, T. Y. J. Environ. Manage. 2022, 307, 114385. doi: 10.1016/j.jenvman.2021.114385  doi: 10.1016/j.jenvman.2021.114385

    13. [13]

      Xue, Z.; Zhao, X.; Sun, R.; Mu, T. ACS Sustain. Chem. Eng. 2016, 4 (7), 3864. doi: 10.1021/acssuschemeng.6b00639  doi: 10.1021/acssuschemeng.6b00639

    14. [14]

      Zhang, H.; Bai, Y.; Yu, B.; Liu, X.; Chen, F. Green Chem. 2017, 19 (21), 5152. doi: 10.1039/C7GC01974B  doi: 10.1039/C7GC01974B

    15. [15]

      Yin, X.; Cai, T.; Liu, C.; Huang, C.; Wang, J.; Hu, J.; Li, N.; Jiang, J.; Wang, K. Chem. Eng. J. 2022, 437, 135408. doi: 10.1016/j.cej.2022.135408  doi: 10.1016/j.cej.2022.135408

    16. [16]

      Yang, S.; Yang, X.; Meng, X.; Wang, L. Green Chem. 2022, 24 (10), 4082. doi: 10.1039/D2GC00409G  doi: 10.1039/D2GC00409G

    17. [17]

      Jahan, N.; Huda, M. M.; Tran, Q. X.; Rai, N. J. Phys. Chem. B 2022, 126 (31), 5752. doi: 10.1021/acs.jpcb.2c03147  doi: 10.1021/acs.jpcb.2c03147

    18. [18]

      Prinsen, P.; Narani, A.; Rothenberg, G. A. ChemSusChem 2017, 10 (5), 1022. doi: 10.1002/cssc.201601608  doi: 10.1002/cssc.201601608

    19. [19]

      Strassberger, Z.; Prinsen, P.; Klis, F. V. D.; Es, D. S. V.; Tanase, S.; Rothenberg, G. Green Chem. 2015, 17 (1), 325. doi: 10.1039/C4GC01143K  doi: 10.1039/C4GC01143K

    20. [20]

      Miao, S.; Atkin, R.; Warr, G. Green Chem. 2022, 24 (19), 7281. doi: 10.1039/D2GC02282F  doi: 10.1039/D2GC02282F

    21. [21]

      Zhao, W.; Wei, C.; Cui, Y.; Ye, J.; He, B.; Liu, X.; Sun, J. Chem. Eng. J. 2022, 443, 136486. doi: 10.1016/j.cej.2022.136486  doi: 10.1016/j.cej.2022.136486

    22. [22]

      Sathitsuksanoh, N.; Holtman, K. M.; Yelle, D. J.; Morgan, T.; Stavila, V.; Pelton, J.; Blanch, H.; Simmons, B. A.; George, A. Green Chem. 2014, 16 (3), 1236. doi: 10.1039/C3GC42295J  doi: 10.1039/C3GC42295J

    23. [23]

      Liu, Q.; Zhao, X.; Yu, D.; Yu, H.; Zhang, Y.; Xue, Z.; Mu, T. Green Chem. 2019, 21 (19), 5291. doi: 10.1039/C9GC02306B  doi: 10.1039/C9GC02306B

    24. [24]

      Yu, H.; Xue, Z.; Shi, R.; Zhou, F.; Mu, T. Ind. Crops Prod. 2022, 184, 115049. doi: 10.1016/j.indcrop.2022.115049  doi: 10.1016/j.indcrop.2022.115049

    25. [25]

      Wang, Z.; Liu, Y.; Barta, K.; Deuss, P. J. ACS Sustain. Chem. Eng. 2022, 10 (38), 12569. doi: 10.1021/acssuschemeng.2c02954  doi: 10.1021/acssuschemeng.2c02954

    26. [26]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, No. 1, 70. doi: 10.1039/B210714G  doi: 10.1039/B210714G

    27. [27]

      Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114 (21), 11060. doi: 10.1021/cr300162p  doi: 10.1021/cr300162p

    28. [28]

      Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126 (29), 9142. doi: 10.1021/ja048266j  doi: 10.1021/ja048266j

    29. [29]

      Yu, D.; Xue, Z.; Mu, T. Chem. Soc. Rev. 2021, 50 (15), 8596. doi: 10.1039/D1CS90065J  doi: 10.1039/D1CS90065J

    30. [30]

      Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Green Chem. 2018, 20 (12), 2711. doi: 10.1039/C8GC00900G  doi: 10.1039/C8GC00900G

    31. [31]

      Sosa, F. H. B.; Abranches, D. O.; Lopes, A. M.; Coutinho, J. A. P.; da Costa, M. C. ACS Sustain. Chem. Eng. 2020, 8 (50), 18577. doi: 10.1021/acssuschemeng.0c06655  doi: 10.1021/acssuschemeng.0c06655

    32. [32]

      Malaeke, H.; Housaindokht, M. R.; Monhemi, H.; Izadyar, M. J. Mol. Liq. 2018, 263, 193. doi: 10.1016/j.molliq.2018.05.001  doi: 10.1016/j.molliq.2018.05.001

    33. [33]

      Francisco, M.; Bruinhorst, A.; Kroon, M. C. Green Chem. 2012, 14 (8), 2153. doi: 10.1039/C2GC35660K  doi: 10.1039/C2GC35660K

    34. [34]

      Wang, Y.; Meng, X.; Jeong, K.; Li, S.; Leem, G.; Kim, K. H.; Pu, Y.; Ragauskas, A. J.; Yoo, C. G. ACS Sustain. Chem. Eng. 2020, 8 (33), 12542. doi: 10.1021/acssuschemeng.0c03533  doi: 10.1021/acssuschemeng.0c03533

    35. [35]

      Meng, X.; Wang, Y.; Conte, A. J.; Zhang, S.; Ryu, J.; Wie, J. J.; Pu, Y.; Davison, B. H.; Yoo, C. G.; Ragauskas, A. J. Bioresour. Technol. 2023, 368, 128280. doi: 10.1016/j.biortech.2022.128280  doi: 10.1016/j.biortech.2022.128280

    36. [36]

      Wang, Y.; Kim, K. H.; Jeong, K.; Kim, N. -K.; Yoo, C. G. Curr. Opin. Green Sustain. Chem. 2021, 27, 100396. doi: 10.1016/j.cogsc.2020.100396  doi: 10.1016/j.cogsc.2020.100396

    37. [37]

      Kim, K. H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S. Green Chem. 2018, 20 (4), 809. doi: 10.1039/C7GC03029K  doi: 10.1039/C7GC03029K

    38. [38]

      Huang, C.; Cheng, J.; Zhan, Y.; Liu, X.; Wang, J.; Wang, Y.; Yoo, C. G.; Fang, G.; Meng, X.; Ragauskas, A. J.; et al. Bioresour. Technol. 2022, 362, 127771. doi: 10.1016/j.biortech.2022.127771  doi: 10.1016/j.biortech.2022.127771

    39. [39]

      Shen, X.; Wen, J.; Mei, Q.; Chen, X.; Sun, D.; Yuan, T.; Sun, R. Green Chem. 2019, 21 (2), 275. doi: 10.1039/C8GC03064B  doi: 10.1039/C8GC03064B

    40. [40]

      Yu, H.; Xue, Z.; Wang, Y.; Yan, C.; Chen, L.; Mu, T. Sep. Purif. Technol. 2023, 306, 122688. doi: 10.1016/j.seppur.2022.122688  doi: 10.1016/j.seppur.2022.122688

    41. [41]

      Su, H.; Yin, J.; Liu, Q.; Li, C. Acta Phys. -Chim. Sin. 2015, 31, 1468.  doi: 10.3866/PKU.WHXB201506111

    42. [42]

      Zhou, F.; Shi, R.; Wang, Y.; Xue, Z.; Zhang, B.; Mu, T. Phys. Chem. Chem. Phys. 2022, 24, 16973. doi: 10.1039/D2CP01816K  doi: 10.1039/D2CP01816K

    43. [43]

      Wang, Y.; Zhang, W.; Yang, J.; Li, M.; Peng, F.; Bian, J. Bioresour. Technol. 2022, 354, 127139. doi: 10.1016/j.biortech.2022.127139  doi: 10.1016/j.biortech.2022.127139

    44. [44]

      Chen, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. Acta Phys. -Chim. Sin. 2018, 34 (8), 904  doi: 10.3866/PKU.WHXB201712281

    45. [45]

      Ma, Q.; Wang, L.; Zhai, H.; Ren, H. Int. J. Biol. Macromol. 2021, 182, 51. doi: 10.1016/j.ijbiomac.2021.03.179  doi: 10.1016/j.ijbiomac.2021.03.179

    46. [46]

      Zheng, A.; Liu, S. -B.; Deng, F. Chem. Rev. 2017, 117 (19), 12475. doi: 10.1021/acs.chemrev.7b00289  doi: 10.1021/acs.chemrev.7b00289

    47. [47]

      Zhou, F.; Shi, R.; Wang, Y.; Xue, Z.; Zhang, B.; Mu, T. Phys. Chem. Chem. Phys. 2022, 24 (28), 16973. doi: 10.1039/D2CP01816K  doi: 10.1039/D2CP01816K

    48. [48]

      Sosa, F.; Bjelic, A.; Coutinho, J.; Costa, M.; Lopes, A. Sustain. Energy Fuels 2022, 6 (20), 4800. doi: 10.1039/D2SE00859A  doi: 10.1039/D2SE00859A

    49. [49]

      Hong, S.; Shen, X.; Pang, B.; Xue, Z.; Cao, X.; Wen, J.; Yuan, T. Green Chem. 2020, 22 (6), 1851. doi: 10.1039/D0GC00006J  doi: 10.1039/D0GC00006J

  • 加载中
    1. [1]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    2. [2]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    3. [3]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    4. [4]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    5. [5]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    6. [6]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    9. [9]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    10. [10]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    13. [13]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    14. [14]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    15. [15]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    16. [16]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    17. [17]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    18. [18]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    19. [19]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    20. [20]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

Metrics
  • PDF Downloads(10)
  • Abstract views(745)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return