Citation: Yutong Wan, Fan Fang, Ruixue Sun, Jie Zhang, Kun Chang. Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 221204. doi: 10.3866/PKU.WHXB202212042 shu

Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives

  • Corresponding author: Fan Fang, fangfan1990@nuaa.edu.cn Kun Chang, changkun@nuaa.edu.cn
  • Received Date: 27 December 2022
    Revised Date: 16 February 2023
    Accepted Date: 16 February 2023
    Available Online: 2 March 2023

    Fund Project: the National Natural Science Foundation of China 51888103the Natural Science Foundation of Jiangsu Province, China BK20210308the Postdoctoral Science Foundation of China 2021M701695the Fundamental Research Funds for the Central Universities, China NE2019103the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China SJCX21_0097

  • Owing to the accelerated growth of the human economy and society, the increasing concentration of CO2 in the atmosphere has caused serious ecological and environmental problems because of the greenhouse effect. In response to the challenges posed by climate change, China has made a significant commitment to "peak carbon emissions by 2030 and achieve carbon neutrality by 2060". Ideally, converting CO2 into carbon-based energy and chemicals is supposed to be the best strategy of both worlds, mitigating the greenhouse effect while also addressing the shortage of energy supply. Among the proposed concepts for the above strategy, the scheme of reducing CO2 using renewable green H2 to produce chemicals is preferred, because it can stimulate the potential of clean energy while also reducing CO2 emission. To accelerate this reduction process, many catalytic reactions, including photocatalysis, have been designed and investigated. Owing to its high catalytic efficiency and extensive use of solar energy, photothermal catalytic CO2 hydrogenation in photocatalysis is desirable for increasing sun-to-fuel efficiency. There are two main interpretations of photothermal catalytic hydrogenation: (1) only sunlight is used as the energy source to drive the catalyst, which generates heat to promote CO2 conversion. In this case, the reaction still proceeds in the form of thermocatalysis, whereas photocatalysis has a limited effect. (2) Solar and heat energy are coupled to participate in the catalytic reaction, which has a synergistic effect. Therefore, according to the catalytic mode, the rational design and successful synthesis of photothermal catalysts are very important. Metal oxide semiconductors, owing to their unique energy band structure and chemical properties, high stability, and environmental friendliness, are widely used in the research of photothermal catalytic hydrogenation reactions. This paper reviews the research progress on metal oxide materials used in the CO2 hydrogenation reaction by photothermal catalysis. In particular, the most significant results of research in the last five years have been performed mainly from three different catalyst modulation strategies, such as supporting catalysts, applying microstructure engineering, and defect engineering. The mechanisms of these modulation strategies are summarized and presented for further understanding. In addition, this study introduces different types of photothermal hydrogenation reactors, accompanied by the effects of some key parameters on the reactions. Finally, design strategies for metal oxide catalysts are suggested, and an outlook of photothermal abatement technology is presented.
  • 加载中
    1. [1]

      Liu, Y.; Wang, Y.; Shi, C.; Zhang, W.; Luo, W.; Wang, J.; Li, K.; Yeung, N.; Kite, S. Renew. Sustain. Energy Rev. 2022, 154, 111811. doi: 10.1016/j.rser.2021.111811  doi: 10.1016/j.rser.2021.111811

    2. [2]

      Marc Perez, R. P. Solar Energy Adv. 2022, 2, 10014. doi: 10.1016/j.seja.2022.100014  doi: 10.1016/j.seja.2022.100014

    3. [3]

      Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104  doi: 10.1016/j.scitotenv.2018.12.104

    4. [4]

      Amjith, L. R.; Bavanish, B. Chemosphere 2022, 293, 133579. doi: 10.1016/j.chemosphere.2022.133579  doi: 10.1016/j.chemosphere.2022.133579

    5. [5]

      Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C. Y.; Zhu, X.; Wang, J.; et al. Chem. Soc. Rev. 2020, 49, 8584. doi: 10.1039/d0cs00025f  doi: 10.1039/d0cs00025f

    6. [6]

      Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. Sci. Adv. 2017, 3, 1701290. doi: 10.1126/sciadv.1701290  doi: 10.1126/sciadv.1701290

    7. [7]

      Chen, Z.; Zhang, G.; Chen, H.; Prakash, J.; Zheng, Y.; Sun, S. Renew. Sustain. Energy Rev. 2022, 155, 111922. doi: 10.1016/j.rser.2021.111922  doi: 10.1016/j.rser.2021.111922

    8. [8]

      Wang, S.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. ACS Appl. Energy Mater. 2020, 3, 1468. doi: 10.1021/acsaem.9b01927  doi: 10.1021/acsaem.9b01927

    9. [9]

      Wang, Z.; Yang, Z.; Kadirova, Z. C.; Guo, M.; Fang, R.; He, J.; Yan, Y.; Ran, J. Coord. Chem. Rev. 2022, 473, 214794. doi: 10.1016/j.ccr.2022.214794  doi: 10.1016/j.ccr.2022.214794

    10. [10]

      Liu, G.; Tran Phu, T.; Chen, H.; Tricoli, A. Adv. Sustain. Syst. 2018, 2, 1800028. doi: 10.1002/adsu.201800028  doi: 10.1002/adsu.201800028

    11. [11]

      Torrente-Murciano, L.; Mattia, D.; Jones, M. D.; Plucinski, P. K. J. CO2 Util. 2014, 6, 34. doi: 10.1016/j.jcou.2014.03.002  doi: 10.1016/j.jcou.2014.03.002

    12. [12]

      Gong, L.; Zhang, D.; Lin, C. Y.; Zhu, Y.; Shen, Y.; Zhang, J.; Han, X.; Zhang, L.; Xia, Z. Adv. Energy Mater. 2019, 9, 1902625. doi: 10.1002/aenm.201902625  doi: 10.1002/aenm.201902625

    13. [13]

      Shinde, G. Y.; Mote, A. S.; Gawande, M. B. Catalysts 2022, 12, 94. doi: 10.3390/catal12010094  doi: 10.3390/catal12010094

    14. [14]

      Hakami, O. Int. J. Energy Res. 2022, 46, 19929. doi: 10.1002/er.8702  doi: 10.1002/er.8702

    15. [15]

      Liu, X.; Chen, T.; Xue, Y.; Fan, J.; Shen, S.; Hossain, M. S. A.; Amin, M. A.; Pan, L.; Xu, X.; Yamauchi, Y. Coord. Chem. Rev. 2022, 459, 214440. doi: 10.1016/j.ccr.2022.214440  doi: 10.1016/j.ccr.2022.214440

    16. [16]

      Wang, Z.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2019, 59, 8016. doi: 10.1002/anie.201907443  doi: 10.1002/anie.201907443

    17. [17]

      Zhang, F.; Li, Y.; Qi, M.; Yamada, Y. M. A.; Xu, Y. Chem. Catal. 2021, 1, 272. doi: 10.1016/j.checat.2021.01.003  doi: 10.1016/j.checat.2021.01.003

    18. [18]

      Wang, Z.; Yang, Z.; Fang, R.; Yan, Y.; Ran, J.; Zhang, L. Chem. Eng. J. 2022, 429, 132322. doi: 10.1016/j.cej.2021.132322  doi: 10.1016/j.cej.2021.132322

    19. [19]

      Diego, M.; Jose L. C.; Sara, D.; Jorge, G. Chem. Soc. Rev. 2021, 50, 2173. doi: 10.1039/d0cs00357c  doi: 10.1039/d0cs00357c

    20. [20]

      Kim, S. S.; Lee, H. H.; Hong, S. C. Appl. Catal. B Environ. 2012, 119, 100. doi: 10.1016/j.apcatb.2012.02.023  doi: 10.1016/j.apcatb.2012.02.023

    21. [21]

      Albero, J.; Garcia, H.; Corma, A. Top Catal. 2016, 59, 787. doi: 10.1007/s11244-016-0550-x  doi: 10.1007/s11244-016-0550-x

    22. [22]

      Zhang, Z.; Mao, C.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C.; Tang, S.; Song, R.; Ding, X.; et al. Nat. Commun. 2022, 13, 1512. doi: 10.1038/s41467-022-29222-7  doi: 10.1038/s41467-022-29222-7

    23. [23]

      Ye, R.; Liao, L.; Reina, T. R.; Liu, J.; Chevella, D.; Jin, Y.; Fan, M.; Liu, J. Fuel 2021, 285, 119151. doi: 10.1016/j.fuel.2020.119151  doi: 10.1016/j.fuel.2020.119151

    24. [24]

      Vogt, C.; Monai, M.; Kramer, G. J.; Weckhuysen, B. M. Nat. Catal. 2019, 2, 188. doi: 10.1038/s41929-019-0244-4  doi: 10.1038/s41929-019-0244-4

    25. [25]

      Li, Z.; Shi, R.; Ma, Y.; Zhao, J.; Zhang, T. J. Phys. Chem. Lett. 2022, 13, 5291. doi: 10.1021/acs.jpclett.2c01159  doi: 10.1021/acs.jpclett.2c01159

    26. [26]

      Puga, A. V. Top Catal. 2016, 59, 1268. doi: 10.1007/s11244-016-0658-z  doi: 10.1007/s11244-016-0658-z

    27. [27]

      Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478. doi: 10.1002/anie.201404953  doi: 10.1002/anie.201404953

    28. [28]

      Jia, J.; Wang, H.; Lu, Z.; O'Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z.; Li, P.; Qiao, Q.; Wang, L.; et al. Adv. Sci. 2017, 4, 1700252. doi: 10.1002/advs.201700252  doi: 10.1002/advs.201700252

    29. [29]

      Chen, G.; Gao, R.; Zhao, Y.; Li, Z.; Waterhouse, G. I. N.; Shi, R.; Zhao, J.; Zhang, M.; Shang, L.; Sheng, G.; et al. Adv. Mater. 2018, 30, 1704663. doi: 10.1002/adma.201704663  doi: 10.1002/adma.201704663

    30. [30]

      Qi, Y.; Song, L.; Ouyang, S.; Liang, X.; Ning, S.; Zhang, Q.; Ye, J. Adv. Mater. 2019, 32, 1903915. doi: 10.1002/adma.201903915  doi: 10.1002/adma.201903915

    31. [31]

      Cai, M.; Wu, Z.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C.; Wang, S.; Feng, K.; Xu, A.; et al. Nat. Energy 2021, 6, 807. doi: 10.1038/s41560-021-00867-w  doi: 10.1038/s41560-021-00867-w

    32. [32]

      Li, Q.; Gao, Y.; Zhang, M.; Gao, H.; Chen, J.; Jia, H. Appl. Catal. B Environ. 2022, 303, 120905. doi: 10.1016/j.apcatb.2021.120905  doi: 10.1016/j.apcatb.2021.120905

    33. [33]

      Cai, T.; Sun, H.; Qiao, J.; Zhu, L.; Zhang, F.; Zhang, J.; Tang, Z.; Wei, X.; Yang, J. Science 2021, 373, 1523. doi: 10.1126/science.abh4049  doi: 10.1126/science.abh4049

    34. [34]

      Yao, Y.; Wang, L.; Zhu, X.; Tu, W.; Zhou, Y.; Liu, R.; Tao, B.; Wang, C.; Yu, X.; Gao, L. Joule 2022, 6, 1008. doi:10.1016/j.joule.2022.04.011  doi: 10.1016/j.joule.2022.04.011

    35. [35]

      Védrine, J. C. ChemSusChem 2019, 12, 577. doi: 10.1002/cssc.201802248  doi: 10.1002/cssc.201802248

    36. [36]

      Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.; Zeng, J. Adv. Mater. 2021, 33, 2008145. doi: 10.1002/adma.202008145  doi: 10.1002/adma.202008145

    37. [37]

      Ghoussoub, M.; Xia, M.; Duchesne, P. N.; Segal, D.; Ozin, G. Energy Environ. Sci. 2019, 12, 1122. doi: 10.1039/C8EE02790K  doi: 10.1039/C8EE02790K

    38. [38]

      Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Nat. Catal. 2018, 1, 127. doi: 10.1038/s41929-017-0016-y  doi: 10.1038/s41929-017-0016-y

    39. [39]

      Wang, L.; Cheng, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Chem. Soc. Rev. 2019, 48, 5310. doi: 10.1039/C9CS00163H  doi: 10.1039/C9CS00163H

    40. [40]

      Li, K.; Peng, B.; Peng, T. ACS Catal. 2016, 6, 7485. doi: 10.1021/acscatal.6b02089  doi: 10.1021/acscatal.6b02089

    41. [41]

      Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Int. J. Hydrog. Energy 2020, 45, 30288. doi: 10.1016/j.ijhydene.2020.08.127  doi: 10.1016/j.ijhydene.2020.08.127

    42. [42]

      Hu, S.; Fang, Y. Chem. Soc. Rev. 2022, 51, 3609. doi: 10.1039/d1cs00782c  doi: 10.1039/d1cs00782c

    43. [43]

      Liu, H.; Meng, X.; Dao, T. D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Angew. Chem. 2015, 127, 11707. doi: 10.1002/ange.201504933  doi: 10.1002/ange.201504933

    44. [44]

      Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Adv. Mater. 2016, 28, 6781. doi: 10.1002/adma.201600305  doi: 10.1002/adma.201600305

    45. [45]

      Fan, W. K.; Tahir, M. Chem. Eng. J. 2022, 427, 131617. doi: 10.1016/j.cej.2021.131617  doi: 10.1016/j.cej.2021.131617

    46. [46]

      Sarina, S.; Zhu, H.; Xiao, Q.; Jaatinen, E.; Jia, J.; Huang, Y.; Zheng, Z.; Wu, H. Angew. Chem. 2014, 126, 2979. doi: 10.1002/ange.201308145  doi: 10.1002/ange.201308145

    47. [47]

      Liu, G.; Meng, X.; Zhang, H.; Zhao, G.; Pang, H.; Wang, T.; Li, P.; Kako, T.; Ye, J. Angew. Chem. 2017, 129, 5662. doi: 10.1002/ange.201701370  doi: 10.1002/ange.201701370

    48. [48]

      Gao, W.; Gao, R.; Zhao, Y.; Peng, M.; Song, C.; Li, M.; Li, S.; Liu, J.; Li, W.; Deng, Y.; et al. Chem 2018, 4, 2917. doi: 10.1016/j.chempr.2018.09.017  doi: 10.1016/j.chempr.2018.09.017

    49. [49]

      Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Nat. Catal. 2018, 1, 656. doi: 10.1038/s41929-018-0138-x  doi: 10.1038/s41929-018-0138-x

    50. [50]

      Liu, H.; Meng, X.; Dao, T. D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 11545. doi: 10.1002/anie.201504933  doi: 10.1002/anie.201504933

    51. [51]

      Lu, B.; Quan, F.; Sun, Z.; Jia, F.; Zhang, L. Catal. Commun. 2019, 29, 105724. doi: 10.1016/j.catcom.2019.105724  doi: 10.1016/j.catcom.2019.105724

    52. [52]

      Zhao, Z.; Doronkin, D. E.; Ye, Y.; Grunwaldt, J.; Huang, Z.; Zhou, Y. Chin. J. Catal. 2020, 41, 286. doi: 10.1016/S1872-2067(19)63445-5  doi: 10.1016/S1872-2067(19)63445-5

    53. [53]

      Upadhye, A. A.; Ro, I.; Zeng, X.; Kim, H. J.; Tejedor, I.; Anderson, M. A.; Dumesic, J. A.; Huber, G. W. Catal. Sci. Technol. 2015, 5, 2590. doi: 10.1039/C4CY01183J  doi: 10.1039/C4CY01183J

    54. [54]

      Sun, M.; Zhao, B.; Chen, F.; Liu, C.; Lu, S.; Yu, Y.; Zhang, B. Chem. Eng. J. 2021, 408, 127280. doi: 10.1016/j.cej.2020.127280  doi: 10.1016/j.cej.2020.127280

    55. [55]

      Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Chin. J. Catal. 2020, 41, 154. doi: 10.1016/S1872-2067(19)63475-3  doi: 10.1016/S1872-2067(19)63475-3

    56. [56]

      Zhou, S.; Shang, L.; Zhao, Y.; Huang, Y.; Zheng, L.; Zhang, T. Adv. Mater. 2019, 31, 1900509. doi:10.1002/adma.201900509  doi: 10.1002/adma.201900509

    57. [57]

      Liu, H.; Gao, X.; Shi, D.; He, D.; Meng, Q.; Qi, P.; Zhang, Q. Energy Technol. 2022, 10, 2100804. doi:10.1002/ente.202100804  doi: 10.1002/ente.202100804

    58. [58]

      Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C.; Storey, E. E.; et al. Nat. Commun. 2020, 11, 2432. doi: 10.1038/s41467-020-16336-z  doi: 10.1038/s41467-020-16336-z

    59. [59]

      Bi, Q.; Hu, K.; Chen, J.; Zhang, Y.; Riaz, M. S.; Xu, J.; Han, Y.; Huang, F. Appl. Catal. B Environ. 2021, 295, 120211. doi:10.1016/j.apcatb.2021.120211  doi: 10.1016/j.apcatb.2021.120211

    60. [60]

      Zhang, X.; Zhang, Z.; Li, J.; Zhao, X.; Wu, D.; Zhou, Z. J. Mater. Chem. A 2017, 1, 2899-2903. doi: 10.1039/c7ta03557h  doi: 10.1039/c7ta03557h

    61. [61]

      Sastre, F.; Versluis, C.; Meulendijks, N.; Rodríguez-Fernández, J.; Sweelssen, J.; Elen, K.; Van Bael, M. K.; den Hartog, T.; Verheijen, M. A.; Buskens, P. ACS Omega 2019, 4, 7369. doi: 10.1021/acsomega.9b00581  doi: 10.1021/acsomega.9b00581

    62. [62]

      Wang, C.; Fang, S.; Xie, S.; Zheng, Y.; Hu, Y. H. J. Mater. Chem. A 2020, 15, 7390. doi: 10.1039/C9TA13275A  doi: 10.1039/C9TA13275A

    63. [63]

      Kim, C.; Hyeon, S.; Lee, J.; Kim, W. D.; Lee, D. C.; Kim, J.; Lee, H. Nat. Commun. 2018, 9, 3027. doi: 10.1038/s41467-018-05542-5  doi: 10.1038/s41467-018-05542-5

    64. [64]

      Zhang, X.; Li, X.; Zhang, D.; Su, N. Q.; Yang, W.; Everitt, H. O.; Liu, J. Nat. Commun. 2017, 8, 14542. doi: 10.1038/ncomms14542  doi: 10.1038/ncomms14542

    65. [65]

      Li, X.; Everitt, H. O.; Liu, J. Nano Res. 2019, 12, 1906. doi: 10.1007/s12274-019-2457-x  doi: 10.1007/s12274-019-2457-x

    66. [66]

      Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H. J. Mater. Chem. A 2021, 24, 13898. doi: 10.1039/D1TA02277F  doi: 10.1039/D1TA02277F

    67. [67]

      Wu, D.; Deng, K.; Hu, B.; Lu, Q.; Liu, G.; Hong, X. ChemCatChem 2019, 11, 1598. doi: 10.1016/S0740-5472(96)90021-5  doi: 10.1016/S0740-5472(96)90021-5

    68. [68]

      Li, N.; Liu, M.; Yang, B.; Shu, W.; Shen, Q.; Liu, M.; Zhou, J. J. Phys. Chem. C 2017, 121, 2923. doi: 10.1021/acs.jpcc.6b12683  doi: 10.1021/acs.jpcc.6b12683

    69. [69]

      Zhao, J.; Bai, Y.; Liang, X.; Wang, T.; Wang, C. J. CO2 Util. 2021, 49, 101562. doi: 10.1016/j.jcou.2021.10156  doi: 10.1016/j.jcou.2021.10156

    70. [70]

      Wang, K.; Cao, M.; Lu, J.; Lu, Y.; Lau, C. H.; Zheng, Y.; Fan, X. Appl. Catal. B Environ. 2021, 296, 120341. doi: 10.1016/j.apcatb.2021.120341  doi: 10.1016/j.apcatb.2021.120341

    71. [71]

      Bueno-Alejo, C. J.; Arca-Ramos, A.; Hueso, J. L.; Santamaria, J. Catal. Today 2020, 355, 678. doi: 10.1016/j.cattod.2019.06.022  doi: 10.1016/j.cattod.2019.06.022

    72. [72]

      Golovanova, V.; Spadaro, M. C.; Arbiol, J.; Golovanov, V.; Rantala, T. T.; Andreu, T.; Morante, J. R. Appl. Catal. B Environ. 2021, 291, 120038. doi: 10.1016/j.apcatb.2021.120038  doi: 10.1016/j.apcatb.2021.120038

    73. [73]

      Jantarang, S.; Lovell, E. C.; Tan, T. H.; Scott, J.; Amal, R. Prog. Nat. Sci. Mater. 2018, 28, 168. doi: 10.1016/j.pnsc.2018.02.004  doi: 10.1016/j.pnsc.2018.02.004

    74. [74]

      Zhang, H.; Itoi, T.; Konishi, T.; Izumi, Y. Angew. Chem. 2021, 133, 9127. doi: 10.1002/ange.202016346  doi: 10.1002/ange.202016346

    75. [75]

      Wang, Z.; Song, H.; Pang, H.; Ning, Y.; Dao, T. D.; Wang, Z.; Chen, H.; Weng, Y.; Fu, Q.; Nagao, T.; et al. Appl. Catal. B Environ. 2019, 250, 10. doi: 10.1016/j.apcatb.2019.03.003  doi: 10.1016/j.apcatb.2019.03.003

    76. [76]

      Xie, B.; Wong, R. J.; Tan, T. H.; Higham, M.; Gibson, E. K.; Decarolis, D.; Callison, J.; Aguey-Zinsou, K.; Bowker, M.; Catlow, C. R. A.; et al. Nat. Commun. 2020, 11, 1615. doi: 10.1038/s41467-020-15445-z  doi: 10.1038/s41467-020-15445-z

    77. [77]

      Ullah, S.; Lovell, E. C.; Tan, T. H.; Xie, B.; Kumar, P. V.; Amal, R.; Scott, J. Appl. Catal. B Environ. 2021, 294, 120248. doi: 10.1016/j.apcatb.2021.120248  doi: 10.1016/j.apcatb.2021.120248

    78. [78]

      Zhao, B.; Sun, M.; Chen, F.; Wang, W.; Lu, S.; Zhang, B. ACS Catal. 2021, 11, 10316. doi: 10.1021/acscatal.1c02644  doi: 10.1021/acscatal.1c02644

    79. [79]

      Li, Z.; Liu, J.; Shi, R.; Waterhouse, G. I. N.; Wen, X.; Zhang, A. T. Adv. Energy Mater. 2021, 11, 2002783. doi: 10.1002/aenm.202002783  doi: 10.1002/aenm.202002783

    80. [80]

      Song, C.; Liu, X.; Xu, M.; Masi, D.; Wang, Y.; Deng, Y.; Zhang, M.; Qin, X.; Feng, K.; Yan, J.; et al. ACS Catal. 2020, 10, 10364. doi: 10.1021/acscatal.0c02244  doi: 10.1021/acscatal.0c02244

    81. [81]

      Stanley, J. N. G.; García-García, I.; Perfrement, T.; Lovell, E. C.; Schmidt, T. W.; Scott, J.; Amal, R. Chem. Eng. Sci. 2019, 194, 94. doi: 10.1016/j.ces.2018.04.003  doi: 10.1016/j.ces.2018.04.003

    82. [82]

      Li, Y. F.; Lu, W.; Chen, K.; Duchesne, P.; Jelle, A.; Xia, M.; Wood, T. E.; Ulmer, U.; Ozin, G. A. J. Am. Chem. Soc. 2019, 141, 14991. doi: 10.1021/jacs.9b08030  doi: 10.1021/jacs.9b08030

    83. [83]

      He, Z.; Li, Z.; Wang, Z.; Wang, K.; Sun, Y.; Wang, S.; Wang, W.; Yang, Y.; Liu, Z. Green Chem. 2021, 23, 5775. doi: 10.1039/d1gc01152a  doi: 10.1039/d1gc01152a

    84. [84]

      Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Energy Environ. 2011, 4, 3779. doi: 10.1039/c1ee01297e  doi: 10.1039/c1ee01297e

    85. [85]

      O'Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Adv. Sci. 2014, 1, 1400001. doi: 10.1002/advs.201400001  doi: 10.1002/advs.201400001

    86. [86]

      Hoch, L. B.; O'Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. ACS Nano 2016, 10, 9017. doi: 10.1021/acsnano.6b05416  doi: 10.1021/acsnano.6b05416

    87. [87]

      Nguyen, N. T.; Xia, M.; Duchesne, P. N.; Wang, L.; Mao, C.; Jelle, A. A.; Yan, T.; Li, P.; Lu, Z.; Ozin, G. A. Nano Lett. 2021, 21, 1311. doi: 10.1021/acs.nanolett.0c04008  doi: 10.1021/acs.nanolett.0c04008

    88. [88]

      Jelle, A. A.; Ghuman, K. K.; O'Brien, P. G.; Hmadeh, M.; Sandhel, A.; Perovic, D. D.; Singh, C. V.; Mims, C. A.; Ozin, G. A. Adv. Energy Mater. 2018, 8, 1702277. doi: 10.1002/aenm.201702277  doi: 10.1002/aenm.201702277

    89. [89]

      Lou, D.; Zhu, Z.; Xu, Y.; Li, C.; Feng, K.; Zhang, D.; Lv, K.; Wu, Z.; Zhang, C.; Ozin, G. A.; et al. Sci. China Mater. 2021, 64, 2212. doi: 10.1007/s40843-020-1630-2  doi: 10.1007/s40843-020-1630-2

    90. [90]

      Shen, J.; Tang, R.; Wu, Z.; Wang, X.; Chu, M.; Cai, M.; Zhang, C.; Zhang, L.; Yin, K.; He, L.; et al. Trans. Tianjin Univ. 2022, 28, 236. doi: 10.1007/s12209-022-00333-y  doi: 10.1007/s12209-022-00333-y

    91. [91]

      Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y.; et al. Joule 2018, 2, 1369. doi: 10.1016/j.joule.2018.03.007  doi: 10.1016/j.joule.2018.03.007

    92. [92]

      Hurtado, L.; Mohan, A.; Ulmer, U.; Natividad, R.; Tountas, A. A.; Sun, W.; Wang, L.; Kim, B.; Sain, M. M.; Ozin, G. A. Chem. Eng. J. 2022, 435, 134864. doi: 10.1016/j.cej.2022.134864  doi: 10.1016/j.cej.2022.134864

    93. [93]

      Fan, W. K.; Tahir, M. Ind. Eng. Chem. Res. 2021, 60, 13149. doi: 10.1021/acs.iecr.1c02058  doi: 10.1021/acs.iecr.1c02058

    94. [94]

      Chen, X.; Li, Q.; Zhang, M.; Li, J.; Cai, S.; Chen, J.; Jia, H. ACS Appl. Mater. Interfaces 2020, 12, 39304. doi: 10.1021/acsami.0c11576  doi: 10.1021/acsami.0c11576

    95. [95]

      Deng, B.; Song, H.; Peng, K.; Li, Q.; Ye, J. Appl. Catal. B Environ. 2021, 298, 120519. doi: 10.1016/j.apcatb.2021.120519  doi: 10.1016/j.apcatb.2021.120519

    96. [96]

      Ye, J.; Liu, C.; Mei, D.; Ge, Q. ACS Catal. 2013, 3, 1296. doi: 10.1021/cs400132a  doi: 10.1021/cs400132a

    97. [97]

      Li, J.; Ye, Y.; Ye, L.; Su, F.; Ma, Z.; Huang, J.; Xie, H.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J.; Zhou, Y. J. Mater. Chem. A 2019, 6, 2821. doi: 10.1039/C8TA10922B  doi: 10.1039/C8TA10922B

    98. [98]

      Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z.; Yamashita, H. Appl. Catal. B Environ. 2022, 317, 121734. doi: 10.1016/j.apcatb.2022.121734  doi: 10.1016/j.apcatb.2022.121734

    99. [99]

      Yin, H.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Catal. Sci. Technol. 2020, 10, 4141. doi:10.1039/c9cy02511a  doi: 10.1039/c9cy02511a

    100. [100]

      Li, Y. F.; Soheilnia, N.; Greiner, M.; Ulmer, U.; Wood, T.; Jelle, A. A.; Dong, Y.; Yin Wong, A. P.; Jia, J.; Ozin, G. A. ACS Appl. Mater. Interfaces 2019, 11, 5610. doi: 10.1021/acsami.8b04982  doi: 10.1021/acsami.8b04982

    101. [101]

      Li, Y.; Wen, M.; Wang, Y.; Tian, G.; Wang, C.; Zhao, J. Angew. Chem. Int. Ed. 2021, 133, 923. doi: 10.1002/ange.202010156  doi: 10.1002/ange.202010156

    102. [102]

      Ali, S.; Razzaq, A.; Kim, H.; In, S. Chem. Eng. J. 2022, 429, 131579. doi: 10.1016/j.cej.2021.131579  doi: 10.1016/j.cej.2021.131579

    103. [103]

      Ii, C. O. W. M.; Wang, W.; Deng, C.; Xie, S.; Li, Y.; Zhang, W.; Sheng, H.; Chen, C.; Zhao, J. J. Am. Chem. Soc. 2021, 143, 2984. doi: 10.1021/jacs.1c00206  doi: 10.1021/jacs.1c00206

    104. [104]

      Lv, C.; Bai, X.; Ning, S.; Song, C.; Guan, Q.; Liu, B.; Li, Y.; Ye, J. ACS Nano 2023, 17, 1725. doi:10.1021/acsnano.2c09025  doi: 10.1021/acsnano.2c09025

    105. [105]

      Tahir, B.; Tahir, M.; Amin, N. S. Energy Convers. Manag. 2015, 90, 272. doi: 10.1016/j.enconman.2014.11.018  doi: 10.1016/j.enconman.2014.11.018

    106. [106]

      Zhang, M.; Wang, C.; Wang, Y.; Li, S.; Zhang, X.; Liu, Y. Nano Res. 2023, 2, 2142. doi:10.1007/s12274-022-4949-3  doi: 10.1007/s12274-022-4949-3

    107. [107]

      Nam, H.; Kim, J. H.; Kim, H.; Kim, M. J.; Jeon, S.; Jin, G.; Won, Y.; Hwang, B. W.; Lee, S.; Baek, J.; et al. Energy 2021, 214, 118895. doi: 10.1016/j.energy.2020.118895  doi: 10.1016/j.energy.2020.118895

    108. [108]

      Zhao, J.; Yang, Q.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Wu, L.; Tung, C.; Zhang, T. NPG Asia Mater. 2020, 12, 5. doi: 10.1038/s41427-019-0171-5  doi: 10.1038/s41427-019-0171-5

    109. [109]

      Bhatta, S.; Nagassou, D.; Mohsenian, S.; Trelles, J. P. Solar Energy 2019, 178, 201. doi: 10.1016/j.solener.2018.12.019  doi: 10.1016/j.solener.2018.12.019

    110. [110]

      Usubharatana, P.; Mcmartin, D.; Veawab, A.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2558. doi: 10.1021/ie0505763  doi: 10.1021/ie0505763

    111. [111]

      Zoller, S.; Koepf, E.; Nizamian, D.; Stephan, M.; Patane, A.; Haueter, P.; Romero, M.; Lez-Aguilar, J. G.; Lieftink, D.; de Wit, E.; et al. Joule 2022, 6, 1606. doi: 10.1016/j.joule.2022.06.012  doi: 10.1016/j.joule.2022.06.012

    112. [112]

      Khan, A. A.; Tahir, M. J. CO2 Util. 2019, 29, 205. doi: 10.1016/j.jcou.2018.12.008  doi: 10.1016/j.jcou.2018.12.008

    113. [113]

      Zhang, X.; Li, X.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W.; Everitt, H. O.; Liu, J. Nano Lett. 2018, 8, 1714. doi: 10.1021/acs.nanolett.7b04776  doi: 10.1021/acs.nanolett.7b04776

    114. [114]

      Wang, A.; Zhu, Q.; Xing, Z. Chem. Eng. J. 2020, 393, 124781. doi: 10.1016/j.cej.2020.124781  doi: 10.1016/j.cej.2020.124781

  • 加载中
    1. [1]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    6. [6]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    7. [7]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    8. [8]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    9. [9]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    12. [12]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    13. [13]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

Metrics
  • PDF Downloads(7)
  • Abstract views(1258)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return