Citation: Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 221203. doi: 10.3866/PKU.WHXB202212039 shu

Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light

  • Corresponding author: Juqun Xi, xijq@yzu.edu.cn Ming Shen, shenming@yzu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 23 December 2022
    Revised Date: 6 February 2023
    Accepted Date: 8 February 2023
    Available Online: 17 February 2023

    Fund Project: the National Natural Science Foundation of China 21673201the Yangzhou Guangling District Science and Technology Plan Industry Foresight and Key Common Technology Key Project GL202206

  • Bacterial infections cause various serious diseases including tuberculosis, meningitis, and cellulitis. Moreover, there is an increase in the number of drug-resistant bacterial strains, which has caused a global health issue. Thus, it is highly essential to develop more effective antibacterial agents. Currently, zinc oxide (ZnO) is commonly used as an inorganic antibacterial agent, but with a notable limit in efficiency. In this work, to improve ZnO antibacterial activity under visible light, bismuth oxyiodide (BiOI) with a narrow bandgap of 1.8 eV was used as a suitable refinement to ZnO. Four different BiOI/ZnO nanocomposites were designed and synthesized via a simple mechanical stirring method in an atmospheric environment; these were denoted as BiOI/ZnO-2.5%, BiOI/ZnO-5%, BiOI/ZnO-10%, and BiOI/ZnO-20%. The successful synthesis of the BiOI/ZnO nanocomposites was verified through X-ray powder diffraction, energy-dispersive X-ray analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A unique BiOI/ZnO heterojunction was also observed for the nanocomposites through high-resolution TEM, XPS, and selected area electron diffraction. Ultraviolet-visible diffuse reflectance spectroscopy revealed that all four BiOI/ZnO nanocomposites exhibited improved visible light absorption and possessed narrower bandgaps than the ZnO nanoparticles (nano-ZnO). Furthermore, the antibacterial activities of all BiOI/ZnO nanocomposites were investigated under visible light against both gram-positive and gram-negative bacteria strains. The results indicated a significant improvement in the antibacterial activities of BiOI/ZnO-10% and BiOI/ZnO-20% against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Strong light exposure was found to be attributable to an increase in the antibacterial activity against S. aureus. In addition, the antibacterial mechanistic investigation was conducted upon visible light activation. The SEM images showed completely broken bacterial cell walls for both bacteria strains after treatment with the BiOI/ZnO nanocomposites. Hydroxyl radicals (•OH), which are strong reactive oxygen species, generated by the BiOI/ZnO nanocomposites under visible light, were also trapped by 5,5-dimethyl-1-pyrroline-N-oxide. Furthermore, zeta potential analysis revealed the presence of more positively charged BiOI/ZnO nanocomposite surfaces than the surfaces of nano-ZnO. The metal ions released from the BiOI/ZnO nanocomposites under visible light were also studied through inductively coupled plasma mass spectrometry. Based on the above results, BiOI/ZnO nanocomposites were found to exhibit antibacterial mechanism similar to that of nano-ZnO. In the dark, E. coli growth was only inhibited by Zn2+ released from both BiOI/ZnO nanocomposites and pure nano-ZnO. After visible light activation, •OH generated from the BiOI/ZnO nanocomposites mainly contributed to the bacterial cell death of both E. coli and S. aureus. This study proposes an effective strategy to enhance the antibacterial activity of nano-ZnO under visible light upon the formation of nanocomposites with BiOI. Besides, this study indicates that the ZnO-based nanocomposites can be used as a more effective antibacterial agent in clinical applications.
  • 加载中
    1. [1]

      Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Science 1999, 284 (5418), 1318. doi: 10.1126/science.284.5418.1318  doi: 10.1126/science.284.5418.1318

    2. [2]

      Lebeaux, D.; Ghigo, J. -M.; Beloin, C. Microbiol. Mol. Biol. Rev. 2014, 78 (3), 510. doi: 10.1128/mmbr.00013-14  doi: 10.1128/mmbr.00013-14

    3. [3]

      Cappelletty, D. Pediatr. Infect. Dis. J. 1998, 17 (8), S55. doi: 10.1097/00006454-199808001-00002  doi: 10.1097/00006454-199808001-00002

    4. [4]

      Saidin, S.; Jumat, M. A.; Mohd Amin, N. A. A.; Saleh Al-Hammadi, A. S. Mater. Sci. Eng. C 2021, 118, 111382. doi: 10.1016/j.msec.2020.111382  doi: 10.1016/j.msec.2020.111382

    5. [5]

      Bbosa, G. S.; Mwebaza, N.; Odda, J.; Kyegombe, D. B.; Ntale, M. Health N. Hav. 2014, 6 (5), 410. doi: 10.4236/health.2014.65059  doi: 10.4236/health.2014.65059

    6. [6]

      Frieri, M.; Kumar, K.; Boutin, A. J. Infect. Public Health 2017, 10 (4), 369. doi: 10.1016/j.jiph.2016.08.007  doi: 10.1016/j.jiph.2016.08.007

    7. [7]

      Mohapatra, D. P.; Debata, N. K.; Singh, S. K. J. Glob. Antimicrob. Resist. 2018, 15, 246. doi: 10.1016/j.jgar.2018.08.010  doi: 10.1016/j.jgar.2018.08.010

    8. [8]

      Danner, M. C.; Robertson, A.; Behrends, V.; Reiss, J. Sci. Total Environ. 2019, 664, 793. doi: 10.1016/J.SCITOTENV.2019.01.406  doi: 10.1016/J.SCITOTENV.2019.01.406

    9. [9]

      Horcajada, J. P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Clin. Microbiol. Rev. 2019, 32 (4), e00031. doi: 10.1128/CMR.00031-19  doi: 10.1128/CMR.00031-19

    10. [10]

      Schifano, E.; Cavallini, D.; Bellis, G. de; Bracciale, M. P.; Felici, A. C.; Santarelli, M. L.; Sarto, M. S.; Uccelletti, D. Nanomaterials 2020, 10 (2), 335. doi: 10.3390/nano10020335  doi: 10.3390/nano10020335

    11. [11]

      Qu, Y.; Duan, X. Chem. Soc. Rev. 2013, 42 (7), 2568. doi: 10.1039/C2CS35355E  doi: 10.1039/C2CS35355E

    12. [12]

      Xu, H.; Zhang, J.; Lv, X.; Niu, T.; Zeng, Y.; Duan, J.; Hou, B. Biofouling 2019, 35 (7), 719. doi: 10.1080/08927014.2019.1653453  doi: 10.1080/08927014.2019.1653453

    13. [13]

      Liu, B.; Mu, L.; Han, X.; Zhang, J.; Shi, H. J. Photochem. Photobiol. A-Chem. 2019, 380, 111866. doi: 10.1016/J.JPHOTOCHEM.2019.111866  doi: 10.1016/J.JPHOTOCHEM.2019.111866

    14. [14]

      Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Appl. Sci. 2019, 9 (12), 2489. doi: 10.3390/app9122489  doi: 10.3390/app9122489

    15. [15]

      Zhang, Y.; Lin, S.; Zhang, Y.; Song, X. M. Acta Phys. -Chim. Sin. 2013, 29 (11), 2399.  doi: 10.3866/PKU.WHXB201309061

    16. [16]

      Dryden, M. Int. J. Antimicrob. Agents 2018, 51 (3), 299. doi: 10.1016/j.ijantimicag.2017.08.029  doi: 10.1016/j.ijantimicag.2017.08.029

    17. [17]

      Zhang, J.; Wang, J.; Xu, H.; Lv, X.; Zeng, Y. X.; Duan, J.; Hou, B. RSC Adv. 2019, 9, 37109. doi: 10.1039/c9ra06810d  doi: 10.1039/c9ra06810d

    18. [18]

      Kołodziejczak-Radzimska, A.; Jesionowski, T. Materials 2014, 7 (4), 2833. doi: 10.3390/ma7042833  doi: 10.3390/ma7042833

    19. [19]

      Liu, H. L.; Yang, T. C. K. Process Biochem. 2003, 39 (4), 475. doi: 10.1016/S0032-9592(03)00084-0  doi: 10.1016/S0032-9592(03)00084-0

    20. [20]

      Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. J. Nanopart. Res. 2007, 9 (3), 479. doi: 10.1007/s11051-006-9150-1  doi: 10.1007/s11051-006-9150-1

    21. [21]

      Basnet, P.; Anderson, E.; Zhao, Y. ACS Appl. Nano Mater. 2019, 2 (4), 2446. doi: 10.1021/acsanm.9b00325  doi: 10.1021/acsanm.9b00325

    22. [22]

      Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    23. [23]

      Kong, J.; Zhang, S.; Shen, M.; Zhang, J.; Yoganathan, S. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 643, 128742. doi: 10.1016/J.COLSURFA.2022.128742  doi: 10.1016/J.COLSURFA.2022.128742

    24. [24]

      Yao, Y.; Fan, J.; Shen, M.; Li, W.; Du, B.; Li, X.; Dai, J. J. Colloid Interface Sci. 2019, 546, 70. doi: 10.1016/j.jcis.2019.03.021  doi: 10.1016/j.jcis.2019.03.021

    25. [25]

      Yao, Y.; Yuan, J.; Shen, M.; Du, B. Inorg. Chem. Front. 2021, 8 (22), 4903. doi: 10.1039/d1qi00968k  doi: 10.1039/d1qi00968k

    26. [26]

      Suresh, S.; Karthikeyan, S. J. Iran. Chem. Soc. 2016, 13 (11), 2049. doi: 10.1007/s13738-016-0922-y  doi: 10.1007/s13738-016-0922-y

    27. [27]

      Yu, Y. -X.; Ouyang, W. -X.; Zhang, W. -D. J. Solid State Electrochem. 2014, 18 (6), 1743. doi: 10.1007/s10008-014-2402-6  doi: 10.1007/s10008-014-2402-6

    28. [28]

      Dai, G.; Yu, J.; Liu, G. J. Phys. Chem. C 2011, 115 (15), 7339. doi: 10.1021/jp200788n  doi: 10.1021/jp200788n

    29. [29]

      Yao, Y.; Yuan, J.; Shen, M.; Du, B.; Xing, R. Chin. J. Inorg. Chem. 2022, 38 (2), 261.  doi: 10.11862/CJIC.2022.022

    30. [30]

      Yao, Y.; Zhang, Y.; Shen, M.; Li, W.; Xia, W. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 591, 124556. doi: 10.1016/j.colsurfa.2020.124556  doi: 10.1016/j.colsurfa.2020.124556

    31. [31]

      Domenico, P.; Salo, R. J.; Novick, S. G.; Schoch, P. E.; van Horn, K.; Cunha, B. A. Antimicrob. Agents Chemother. 1997, 41 (8), 1697. doi: 10.1128/AAC.41.8.1697  doi: 10.1128/AAC.41.8.1697

    32. [32]

      Thomas, F.; Bialek, B.; Hensel, R. J. Clin. Toxicol. 2013, s3, 004. doi: 10.4172/2161-0495.S3-004  doi: 10.4172/2161-0495.S3-004

    33. [33]

      Meng, X.; Zhang, Z. J. Mol. Catal. A-Chem. 2016, 423, 533. doi: 10.1016/j.molcata.2016.07.030  doi: 10.1016/j.molcata.2016.07.030

    34. [34]

      Zhou, H.; Zhong, S.; Shen, M.; Hou, J.; Chen, W. J. Alloys Compd. 2018, 769, 301. doi: 10.1016/j.jallcom.2018.08.007  doi: 10.1016/j.jallcom.2018.08.007

    35. [35]

      Wei, X.; Akbar, M. U.; Raza, A.; Li, G. Nanoscale Adv. 2021, 3 (12), 3353. doi: 10.1039/D1NA00223F  doi: 10.1039/D1NA00223F

    36. [36]

      Zhou, H.; Kalware, K.; Shen, M.; Zhong, S.; Yao, Y. CrystEngComm 2020, 22 (8), 1368. doi: 10.1039/c9ce01960j  doi: 10.1039/c9ce01960j

    37. [37]

      Huang, W. L. J. Comput. Chem. 2009, 30 (12), 1882. doi: 10.1002/JCC.21191  doi: 10.1002/JCC.21191

    38. [38]

      Zhang, M.; Qin, J.; Yu, P.; Zhang, B.; Ma, M.; Zhang, X.; Liu, R. Beilstein J. Nanotechnol. 2018, 9 (1), 789. doi: 10.3762/BJNANO.9.72  doi: 10.3762/BJNANO.9.72

    39. [39]

      Khodja, A. A.; Sehili, T.; Pilichowski, J. F.; Boule, P. J. Photochem. Photobiol. A-Chem. 2001, 141 (2–3), 231. doi: 10.1016/S1010-6030(01)00423-3  doi: 10.1016/S1010-6030(01)00423-3

    40. [40]

      Jamil, T. S.; Mansor, E. S.; Azab El-Liethy, M. J. Environ. Chem. Eng. 2015, 3 (4), 2463. doi: 10.1016/j.jece.2015.09.017  doi: 10.1016/j.jece.2015.09.017

    41. [41]

      Pang, S.; He, Y.; Zhong, R.; Guo, Z.; He, P.; Zhou, C.; Xue, B.; Wen, X.; Li, H. Ceram. Int. 2019, 45 (10), 12663. doi: 10.1016/j.ceramint.2019.03.076  doi: 10.1016/j.ceramint.2019.03.076

    42. [42]

      Seredych, M.; Łoś, S.; Giannakoudakis, D. A.; Rodríguez-Castellón, E.; Bandosz, T. J. ChemSusChem 2016, 9 (8), 795. doi: 10.1002/cssc.201501658  doi: 10.1002/cssc.201501658

    43. [43]

      Mulwa, W. M. Appl. Phys. A 2020, 126 (7), 546. doi: 10.1007/s00339-020-03735-8  doi: 10.1007/s00339-020-03735-8

    44. [44]

      Intaphong, P.; Phuruangrat, A.; Thongtem, T.; Thongtem, S. J. Aust. Ceram. Soc. 2019, 55, 1021. doi: 10.1007/s41779-019-00314-w  doi: 10.1007/s41779-019-00314-w

    45. [45]

      Zhou, T.; Zhang, H.; Zhang, X.; Yang, W.; Cao, Y.; Yang, P. J. Phys. Chem. C 2020, 124 (37), 20294. doi: 10.1021/ACS.JPCC.0C06833  doi: 10.1021/ACS.JPCC.0C06833

    46. [46]

      Al-Keisy, A.; Ren, L.; Xu, X.; Hao, W.; Dou, S. X.; Du, Y. J. Phys. Chem. C 2019, 123 (1), 517. doi: 10.1021/ACS.JPCC.8B09816  doi: 10.1021/ACS.JPCC.8B09816

    47. [47]

      Huang, N.; Shu, J.; Wang, Z.; Chen, M.; Ren, C.; Zhang, W. J. Alloys Compd. 2015, 648, 919. doi: 10.1016/J.JALLCOM.2015.07.039  doi: 10.1016/J.JALLCOM.2015.07.039

    48. [48]

      Wang, Y.; Deng, K.; Zhang, L. J. Phys. Chem. C 2011, 115 (29), 14300. doi: 10.1021/jp2042069  doi: 10.1021/jp2042069

    49. [49]

      Tauc, J. Mater. Res. Bull. 1968, 3 (1), 37. doi: 10.1016/0025-5408(68)90023-8  doi: 10.1016/0025-5408(68)90023-8

    50. [50]

      Jiang, J.; Zhang, X.; Sun, P.; Zhang, L. J. Phys. Chem. C 2011, 115 (42), 20555. doi: 10.1021/JP205925Z  doi: 10.1021/JP205925Z

    51. [51]

      Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Nanomicro. Lett. 2015, 7 (3), 219. doi: 10.1007/s40820-015-0040-x  doi: 10.1007/s40820-015-0040-x

    52. [52]

      Jiang, Y.; Zhang, L.; Wen, D.; Ding, Y. Mater. Sci. Eng. C 2016, 69, 1361. doi: 10.1016/j.msec.2016.08.044  doi: 10.1016/j.msec.2016.08.044

    53. [53]

      Bayer, M. E.; Sloyer, J. L. J. Gen. Microbiol. 1990, 136, 867. doi: 10.1099/00221287-136-5-867  doi: 10.1099/00221287-136-5-867

    54. [54]

      Abebe, B.; Zereffa, E. A.; Tadesse, A.; Murthy, H. C. A. Nanoscale Res. Lett. 2020, 15, 190. doi: 10.1186/s11671-020-03418-6  doi: 10.1186/s11671-020-03418-6

    55. [55]

      Zhang, Y. -M.; Rock, C. O. Nat. Rev. Microbiol. 2008, 6 (3), 222. doi: 10.1038/nrmicro1839  doi: 10.1038/nrmicro1839

    56. [56]

      Koe, W. S.; Lee, J. W.; Chong, W. C.; Pang, Y. L.; Sim, L. C. Environ. Sci. Pollut. Res. 2020, 27, 2522. doi: 10.1007/s11356-019-07193-5  doi: 10.1007/s11356-019-07193-5

    57. [57]

      He, W.; Kim, H. K.; Wamer, W. G.; Melka, D.; Callahan, J. H.; Yin, J. J. J. Am. Chem. Soc. 2014, 136 (2), 750. doi: 10.1021/ja410800y  doi: 10.1021/ja410800y

    58. [58]

      Liu, J.; Zou, S.; Lou, B.; Chen, C.; Xiao, L.; Fan, J. Inorg. Chem. 2019, 58 (13), 8525. doi: 10.1021/acs.inorgchem.9b00834  doi: 10.1021/acs.inorgchem.9b00834

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    3. [3]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    4. [4]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    7. [7]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    12. [12]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    13. [13]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    14. [14]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    15. [15]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    16. [16]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

Metrics
  • PDF Downloads(7)
  • Abstract views(1037)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return