Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications
- Corresponding author: Huilong Fei, hlfei@hnu.edu.cn
Citation: Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221203. doi: 10.3866/PKU.WHXB202212038
Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Angew. Chem. Int. Ed. 2016, 55, 14209. doi: 10.1002/anie.201604656
doi: 10.1002/anie.201604656
Schlummer, B. Chem. unserer Zeit 2016, 50, 114. doi: 10.1002/ciuz.201500705
doi: 10.1002/ciuz.201500705
Rusdan, N. A.; Timmiati, S. N.; Isahak, W. N. R. W.; Yaakob, Z.; Lim, K. L.; Khaidar, D. Nanomaterials 2022, 12, 3877. doi: 10.3390/nano12213877
doi: 10.3390/nano12213877
Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 2005, 44, 8269. doi: 10.1143/jjap.44.8269
doi: 10.1143/jjap.44.8269
Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L. Z.; Amal, R.; Ng, Y. H. Adv. Mater. 2020, 32, 21. doi: 10.1002/adma.201904717
doi: 10.1002/adma.201904717
Bora, L. V.; Mewada, R. K. Renew. Sust. Energ. Rev. 2017, 76, 1393. doi: 10.1016/j.rser.2017.01.130
doi: 10.1016/j.rser.2017.01.130
Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Science 2015, 349, 632. doi: 10.1126/science.aac5443
doi: 10.1126/science.aac5443
Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Chem. Soc. Rev. 2021, 50, 2173. doi: 10.1039/d0cs00357c
doi: 10.1039/d0cs00357c
Li, Z.; Liu, J.; Zhao, Y.; Waterhouse, G. I. N.; Chen, G.; Shi, R.; Zhang, X.; Liu, X.; Wei, Y.; Wen, X. D.; et al. Adv. Mater. 2018, 30, e1800527. doi: 10.1002/adma.201800527
doi: 10.1002/adma.201800527
Jia, J.; O'Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y.; Liao, K.; Varela, M.; et al. Adv. Sci. 2016, 3, 1600189. doi: 10.1002/advs.201600189
doi: 10.1002/advs.201600189
Zhang, H.; Wang, T.; Wang, J.; Liu, H.; Dao, T. D.; Li, M.; Liu, G.; Meng, X.; Chang, K.; Shi, L.; et al. Adv. Mater. 2016, 28, 3703. doi: 10.1002/adma.201505187
doi: 10.1002/adma.201505187
Yang, Y.; Zhao, S.; Cui, L.; Bi, F.; Zhang, Y.; Liu, N.; Wang, Y.; Liu, F.; He, C.; Zhang, X. Green Energy Environ. 2022, doi: 10.1016/j.gee.2022.02.006
doi: 10.1016/j.gee.2022.02.006
Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Mater. Horiz. 2018, 5, 323. doi: 10.1039/c7mh01064h
doi: 10.1039/c7mh01064h
Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Adv. Mater. 2019, 31, e1900509. doi: 10.1002/adma.201900509
doi: 10.1002/adma.201900509
Fei, H. L.; Dong, J. C.; Arellano-Jimenez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M.; et al. Nat. Commun. 2015, 6, 8. doi: 10.1038/ncomms9668
doi: 10.1038/ncomms9668
Yan, H.; Zhao, M.; Feng, X.; Zhao, S.; Zhou, X.; Li, S.; Zha, M.; Meng, F.; Chen, X.; Liu, Y.; et al. Angew. Chem. Int. Ed. 2022, 61, e202116059. doi: 10.1002/anie.202116059
doi: 10.1002/anie.202116059
Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Energy Environ. Sci. 2021, 14, 2954. doi: 10.1039/d1ee00247c
doi: 10.1039/d1ee00247c
Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X.; et al. Angew. Chem. Int. Ed. 2016, 55, 10800. doi: 10.1002/anie.201604802
doi: 10.1002/anie.201604802
Li, X. Y.; Wang, C.; Tang, J. W. Nat. Rev. Mater. 2022, 7, 617. doi: 10.1038/s41578-022-00422-3
doi: 10.1038/s41578-022-00422-3
Li, X.; Wang, W.; Dong, F.; Zhang, Z.; Han, L.; Luo, X.; Huang, J.; Feng, Z.; Chen, Z.; Jia, G.; et al. ACS Catal. 2021, 11, 4739. doi: 10.1021/acscatal.0c05354
doi: 10.1021/acscatal.0c05354
Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res. 2010, 44, 2997. doi: 10.1016/j.watres.2010.02.039
doi: 10.1016/j.watres.2010.02.039
Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288
doi: 10.1002/adma.201400288
Pokrant, S. Nature 2020, 581, 386. doi: 10.1038/d41586-020-01455-w
doi: 10.1038/d41586-020-01455-w
Zhao, Y.; Gao, W.; Li, S.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3, 920. doi: 10.1016/j.joule.2019.03.003
doi: 10.1016/j.joule.2019.03.003
Tian, J.; Han, R.; Guo, Q.; Zhao, Z.; Sha, N. Catalysts 2022, 12, 612. doi: 10.3390/catal12060612
doi: 10.3390/catal12060612
Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Chem 2019, 5, 2296. doi: 10.1016/j.chempr.2019.05.008
doi: 10.1016/j.chempr.2019.05.008
Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Adv. Mater. 2019, 31, 23. doi: 10.1002/adma.201900709
doi: 10.1002/adma.201900709
Zhu, Z. Z.; Guo, W. Y.; Zhang, Y.; Pan, C. S.; Xu, J.; Zhu, Y. F.; Lou, Y. Carbon Energy 2021, 3, 519. doi: 10.1002/cey2.127
doi: 10.1002/cey2.127
Wang, J.; Gao, X. X.; Wang, Y. J.; Wang, S. Y.; Xie, Z. W.; Yang, B. Z.; Zhang, Z. G.; Yang, Z.; Kang, L.; Yao, W. Q. Appl. Catal. B: Environ. 2022, 317, 19. doi: 10.1016/j.apcatb.2022.121789
doi: 10.1016/j.apcatb.2022.121789
Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z.; Yamashita, H. Appl. Catal. B: Environ. 2022, 317, 121734. doi: 10.1016/j.apcatb.2022.121734
doi: 10.1016/j.apcatb.2022.121734
Guo, S.; Li, X.; Li, J.; Wei, B. Nat. Commun. 2021, 12, 1343. doi: 10.1038/s41467-021-21526-4
doi: 10.1038/s41467-021-21526-4
Wang, X.; Wu, L.; Wang, Z.; Feng, Y.; Liu, Y.; Dai, H.; Wang, Z.; Deng, J. Appl. Catal. B: Environ. 2023, 322, 122075. doi: 10.1016/j.apcatb.2022.122075
doi: 10.1016/j.apcatb.2022.122075
Feng. Y.; Dai, L.; Wang, Z.; Peng, Y.; Duan, E.; Liu, Y.; Jing, L.; Wang, X.; Rastegarpanah, A.; Dai, H.; et al. Environ. Sci. Technol. 2022, 56, 8722. doi: 10.1021/acs.est.1c08643
doi: 10.1021/acs.est.1c08643
Feng, Y.; Ma, P.; Wang, Z.; Shi, Y.; Wang, Z.; Peng, Y.; Jing, L.; Liu, Y.; Yu, X.; Wang, X.; et al. Environ. Sci. Technol. 2022, 56, 17341. doi: 10.1021/acs.est.2c07146
doi: 10.1021/acs.est.2c07146
Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z. Z. J. Hazard. Mater. 2020, 393, 122332. doi: 10.1016/j.jhazmat.2020.122332
doi: 10.1016/j.jhazmat.2020.122332
Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Int. J. Hydrog. Energy 2020, 45, 30288. doi: 10.1016/j.ijhydene.2020.08.127
doi: 10.1016/j.ijhydene.2020.08.127
Cheng, P.; Wang, D.; Schaaf, P. Adv. Sustain. Syst 2022, 46, 1900. doi: 10.1002/adsu.202200115
doi: 10.1002/adsu.202200115
Wu, Z.; Li, C.; Li, Z.; Feng, K.; Cai, M.; Zhang, D.; Wang, S.; Chu, M.; Zhang, C.; Shen, J.; et al. ACS Nano 2021, 15, 5696. doi: 10.1021/acsnano.1c00990
doi: 10.1021/acsnano.1c00990
Yue, X. Y.; Liu, X.; Wang, K.; Yang, Z.; Chen, X.; Dai, W. X.; Fu, X. Z. Inorg. Chem. Front. 2022, 9, 1258. doi: 10.1039/d2qi00004k
doi: 10.1039/d2qi00004k
Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Adv. Mater. 2021, 33, e2000086. doi: 10.1002/adma.202000086
doi: 10.1002/adma.202000086
Liang, C.; Li, C.; Zhu, Y.; Du, X.; Zeng, Y.; Zhou, Y.; Zhao, J.; Li, S.; Liu, X.; Yu, Q.; et al. Appl. Surf. Sci. 2022, 601, 154144. doi: 10.1016/j.apsusc.2022.154144
doi: 10.1016/j.apsusc.2022.154144
Xiong, R.; Tang, C.; Li, K.; Wan, J.; Jia, W.; Xiao, Y.; Cheng, B.; Lei, S. J. Mater. Chem. A 2022, 10, 22819. doi: 10.1039/d2ta05712c
doi: 10.1039/d2ta05712c
Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Appl. Catal. B: Environ. 2020, 266, 14. doi: 10.1016/j.apcatb.2020.118618
doi: 10.1016/j.apcatb.2020.118618
Li, L.; Li, Y.; Jiao, L.; Liu, X.; Ma, Z.; Zeng, Y. -J.; Zheng, X.; Jiang, H. -L. J. Am. Chem. Soc. 2022, 144, 17075. doi: 10.1021/jacs.2c06720
doi: 10.1021/jacs.2c06720
Liu, Y.; Zhang, Z.; Fang, Y.; Liu, B.; Huang, J.; Miao, F.; Bao, Y.; Dong, B. Appl. Catal. B: Environ. 2019, 252, 164. doi: 10.1016/j.apcatb.2019.04.035
doi: 10.1016/j.apcatb.2019.04.035
Zhang, L.; Pan, J.; Liu, L.; Zhang, S.; Wang, X.; Song, S.; Zhang, H. Small 2022, 18, e2201271. doi: 10.1002/smll.202201271
doi: 10.1002/smll.202201271
Song, C.; Liu, X.; Xu, M.; Masi, D.; Wang, Y.; Deng, Y.; Zhang, M.; Qin, X.; Feng, K.; Yan, J.; et al. ACS Catal. 2020, 10, 10364. doi: 10.1021/acscatal.0c02244
doi: 10.1021/acscatal.0c02244
Ding, X.; Liu, X.; Cheng, J.; Kong, L.; Guo, Y. Catal. Sci. Technol. 2022, 12, 4740. doi: 10.1039/D2CY00439A
doi: 10.1039/D2CY00439A
Zhang, Z.; Mao, C.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C.; Tang, S.; Song, R.; Ding, X.; et al. Nat. Commun. 2022, 13, 1512. doi: 10.1038/s41467-022-29222-7
doi: 10.1038/s41467-022-29222-7
Ding, X.; Liu, X.; Cheng, J. H.; Kong, L. Z.; Guo, Y. Catal. Sci. Technol. 2022, 12, 4740. doi: 10.1039/d2cy00439a
doi: 10.1039/d2cy00439a
Li, Y.; Liu, Z.; Rao, Z.; Yu, F.; Bao, W.; Tang, Y.; Zhao, H.; Zhang, J.; Wang, Z.; Li, J.; et al. Appl. Catal. B: Environ. 2022, 319, 121903. doi: 10.1016/j.apcatb.2022.121903
doi: 10.1016/j.apcatb.2022.121903
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095
doi: 10.1038/nchem.1095
Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C.; et al. Angew. Chem. Int. Ed. 2021, 60, 9480. doi: 10.1002/anie.202017152
doi: 10.1002/anie.202017152
Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P. A.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Adv. Mater. 2020, 32, 9. doi: 10.1002/adma.202002246
doi: 10.1002/adma.202002246
Kerketta, U.; Tesler, A. B.; Schmuki, P. Catalysts 2022, 12, 1223. doi: 10.3390/catal12101223
doi: 10.3390/catal12101223
Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Angew. Chem. Int. Ed. 2020, 59, 6827. doi: 10.1002/anie.201914565
doi: 10.1002/anie.201914565
Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Nano Res. 2022, 15, 4411. doi: 10.1007/s12274-021-4029-0
doi: 10.1007/s12274-021-4029-0
Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Adv. Funct. Mater. 2021, 31, 39. doi: 10.1002/adfm.202008318
doi: 10.1002/adfm.202008318
Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385. doi: 10.1038/s41929-018-0090-9
doi: 10.1038/s41929-018-0090-9
Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Chem. Rev. 2020, 120, 11986. doi: 10.1021/acs.chemrev.0c00797
doi: 10.1021/acs.chemrev.0c00797
Shi, Q.; Yu, T.; Wu, R.; Liu, J. ACS Appl. Mater. Interfaces 2021, 13, 60815. doi: 10.1021/acsami.1c18797
doi: 10.1021/acsami.1c18797
Speranza, G. Nanomaterials 2021, 11, 99. doi: 10.3390/nano11040967
doi: 10.3390/nano11040967
Li, Z.; Lei, H.; Kan, A.; Xie, H.; Yu, W. Energy 2021, 216, 119262. doi: 10.1016/j.energy.2020.119262
doi: 10.1016/j.energy.2020.119262
Yang, Q.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 3511. doi: 10.1002/anie.201813494
doi: 10.1002/anie.201813494
Gong, L.; Sun, J.; Liu, Y. S.; Yang, G. C. J. Mater. Chem. A 2021, 9, 21689. doi: 10.1039/d1ta06159c
doi: 10.1039/d1ta06159c
Liu, Y.; Wang, X. C.; Li, Q. Y.; Yan, T. R.; Lou, X. X.; Zhang, C. Y.; Cao, M. H.; Zhang, L.; Sham, T. K.; Zhang, Q.; et al. Adv. Funct. Mater. 2022, 2210283. doi: 10.1002/adfm.202210283
doi: 10.1002/adfm.202210283
Guo, Y. C.; Chen, W. J.; Feng, L.; Fan, Y. C.; Liang, J. S.; Wang, X. M.; Zhang, X. J. Mater. Chem. A 2022, 10, 12418. doi: 10.1039/d2ta02885a
doi: 10.1039/d2ta02885a
Tan, K. W.; Yap, C. M.; Zheng, Z. Y.; Haw, C. Y.; Khiew, P. S.; Chiu, W. S. Adv. Sustain. Syst. 2022, 6, 29. doi: 10.1002/adsu.202100416
doi: 10.1002/adsu.202100416
Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e
doi: 10.1021/ar300227e
Zhou, L. A.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61. doi: 10.1038/s41560-019-0517-9
doi: 10.1038/s41560-019-0517-9
Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Adv. Mater. 2022, 34, 2200057. doi: 10.1002/adma.202200057
doi: 10.1002/adma.202200057
Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Appl. Catal. B: Environ. 2021, 283, 119660. doi: 10.1016/j.apcatb.2020.119660
doi: 10.1016/j.apcatb.2020.119660
Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Sol. RRL 2020, 5, 2000313. doi: 10.1002/solr.202000313
doi: 10.1002/solr.202000313
Zheng, J.; Lu, L.; Lebedev, K.; Wu, S.; Zhao, P.; McPherson, I. J.; Wu, T. -S.; Kato, R.; Li, Y.; Ho, P. -L.; et al. Chem. Catal. 2021, 1, 162. doi: 10.1016/j.checat.2021.03.002
doi: 10.1016/j.checat.2021.03.002
Dao, T. D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T. ACS Photonics 2015, 2, 964. doi: 10.1021/acsphotonics.5b00195
doi: 10.1021/acsphotonics.5b00195
Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Nat. Commun. 2019, 10, 9. doi: 10.1038/s41467-019-10304-y
doi: 10.1038/s41467-019-10304-y
Li, Y. G.; Guan, Q. Q.; Huang, G. Y.; Yuan, D. C.; Xie, F.; Li, K. L.; Zhang, Z. B.; San, X. Y.; Ye, J. H. Adv. Energy Mater. 2022, 12, 2202459. doi: 10.1002/aenm.202202459
doi: 10.1002/aenm.202202459
Wang, Z.; Xie, S.; Feng, Y.; Ma, P.; Zheng, K.; Duan, E.; Liu, Y.; Dai, H.; Deng, J. Appl. Catal. B: Environ. 2021, 298, 120612. doi: 10.1016/j.apcatb.2021.120612
doi: 10.1016/j.apcatb.2021.120612
Li, X.; Zhu, J.; Wei, B. Chem. Soc. Rev. 2016, 45, 3145. doi: 10.1039/c6cs00195e
doi: 10.1039/c6cs00195e
Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Chem. Soc. Rev. 2021, 50, 12070. doi: 10.1039/d1cs00237f
doi: 10.1039/d1cs00237f
Shao, T.; Wang, X.; Dong, H.; Liu, S.; Duan, D.; Li, Y.; Song, P.; Jiang, H.; Hou, Z.; Gao, C.; et al. Adv. Mater. 2022, 34, e2202367. doi: 10.1002/adma.202202367
doi: 10.1002/adma.202202367
Han, L.; Zhang, L.; Wu, H.; Zu, H.; Cui, P.; Guo, J.; Guo, R.; Ye, J.; Zhu, J.; Zheng, X.; et al. Adv. Sci. 2019, 6, 1900006. doi: 10.1002/advs.201900006
doi: 10.1002/advs.201900006
Zhou, L. A.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61. doi: 10.1038/s41560-019-0517-9
doi: 10.1038/s41560-019-0517-9
Yang, J. L.; Wang, H. J.; Zhu, Z.; Yue, M. F.; Yang, W. M.; Zhang, X. G.; Ruan, X.; Guan, Z.; Yang, Z. L.; Cai, W.; et al. Angew. Chem. Int. Ed. 2022, 61, e202112749. doi: 10.1002/anie.202112749
doi: 10.1002/anie.202112749
Li, Y.; Bai, X.; Yuan, D.; Zhang, F.; Li, B.; San, X.; Liang, B.; Wang, S.; Luo, J.; Fu, G. Nat. Commun. 2022, 13, 776. doi: 10.1038/s41467-022-28364-y
doi: 10.1038/s41467-022-28364-y
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019