Citation: Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221202. doi: 10.3866/PKU.WHXB202212026 shu

A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction

  • Corresponding author: Bicheng Zhu, zhubicheng1991@163.com Linxi Wang, linxiwang91@126.com
  • Received Date: 16 December 2022
    Revised Date: 10 January 2023
    Accepted Date: 11 January 2023
    Available Online: 16 January 2023

    Fund Project: the National Key Research and Development Program of China 2022YFB3803600the National Key Research and Development Program of China 2022YFE0115900National Natural Science Foundation of China 22238009National Natural Science Foundation of China 51932007National Natural Science Foundation of China 52173065National Natural Science Foundation of China 21905219National Natural Science Foundation of China 22208332National Natural Science Foundation of China 22278324Natural Science Foundation of Hubei Province of China 2022CFA001China Postdoctoral Science Foundation 2022M710137Innovative Research Funds of SKLWUT, China 2022-CL-A1-01

  • Photocatalytic CO2 reduction to renewable hydrocarbon fuels provides a feasible protocol for alleviating the greenhouse effect and addressing energy shortage. However, the CO2 reduction activity of a single-component photocatalyst is very low because of two problems. One is the fast recombination of photogenerated charge carriers, which leads to low photon efficiency, while the other is the large energy barrier to CO2 activation. There have been considerable research efforts to develop photocatalysts with improved CO2 reduction performance. For example, step-scheme (S-scheme) heterojunctions have been developed to improve charge carrier separation and enhance the redox abilities of photocatalysts. Single-atom metals have also been applied cocatalysts to optimize the reaction thermodynamics. Thus, the synergy between S-scheme heterojunctions and single-atom metal cocatalysts is anticipated to promote both charge carrier transfer and CO2 reduction reaction processes. In this study, a Pt-C3N4/BiOCl heterojunction photocatalyst is modeled, composed of single-atom Pt-loaded g-C3N4 and BiOCl, and its photocatalytic properties are studied using density functional theory calculations. Its structure and electronic property are explored, and the process of CO2 conversion is also simulated. The charge density difference results show that electrons in g-C3N4 are transferred to BiOCl owing to the higher Fermi level of g-C3N4 than that of BiOCl. Therefore, an interfacial electric field from g-C3N4 to BiOCl is established at the g-C3N4/BiOCl interface. Under light irradiation, charge carrier transfer in the g-C3N4/BiOCl composite is consistent with the S-scheme mechanism. Specifically, the photogenerated electrons in the CB of BiOCl recombine with the photogenerated holes in the VB of g-C3N4, while the photogenerated electrons in the CB of g-C3N4 and the photogenerated holes in the VB of BiOCl are retained. After the loading of Pt atom at each sixfold cavity of g-C3N4, the work function of g-C3N4 decreases, thereby enlarging the difference between the Fermi levels of the two semiconductors. Consequently, more electrons are transferred from Pt-C3N4 to BiOCl, and the strength of the interfacial electric field is increased. This enhanced electric field is beneficial to the S-scheme charge transfer in Pt-C3N4/BiOCl heterojunctions. Besides, based on the calculated variation in reaction energy, the rate-limiting step involved in CO2 reduction on g-C3N4/BiOCl heterojunction is the hydrogenation of CO2 to COOH, which has an energy barrier of 1.13 eV. After Pt loading, the hydrogenation of CO to HCO is the rate-limiting step and the corresponding energy increase is 0.71 eV. These results manifest that the introduction of Pt single-atom cocatalysts improves the CO2 reduction performance of g-C3N4/BiOCl S-scheme photocatalysts by strengthening the interfacial electric field and reducing the energy barrier. This study provides guidance for constructing metal-atom-incorporated S-scheme heterojunction photocatalysts to realize efficient CO2 reduction.
  • 加载中
    1. [1]

      Wang, S.; Tountas, A. A.; Pan, W.; Zhao, J.; He, L.; Sun, W.; Yang, D.; Ozin, G. A. Small 2021, 17, 2007025. doi: 10.1002/smll.202007025  doi: 10.1002/smll.202007025

    2. [2]

      Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2558. doi: 10.1021/ie0505763  doi: 10.1021/ie0505763

    3. [3]

      Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030  doi: 10.1016/j.apsusc.2016.07.030

    4. [4]

      Wu, S.; Li, X.; Tian, Y.; Lin, Y.; Hu, Y. H. Chem. Eng. J. 2021, 406, 126747. doi: 10.1016/j.cej.2020.126747  doi: 10.1016/j.cej.2020.126747

    5. [5]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    6. [6]

      Wang, Q.; Wang, G.; Wang, J.; Li, J.; Wang, K.; Zhou, S.; Su, Y. Adv. Sustain. Syst. 2022, 6, 2200027. doi: 10.1002/adsu.202200027  doi: 10.1002/adsu.202200027

    7. [7]

      Ong, C. B.; Ng, L. Y.; Mohammad, A. W. Renew. Sust. Energ. Rev. 2018, 81, 536. doi: 10.1016/j.rser.2017.08.020  doi: 10.1016/j.rser.2017.08.020

    8. [8]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    9. [9]

      Wageh, S.; Al-Hartomy, O. A.; Alotaibi, M. F.; Liu, L. -J. Rare Met. 2022, 41, 1077. doi: 10.1007/s12598-021-01902-1  doi: 10.1007/s12598-021-01902-1

    10. [10]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6  doi: 10.1016/s1872-2067(19)63382-6

    11. [11]

      Ke, Z.; Zheng, Y.; Zhang, J.; Zhang, G.; Wu, H.; Xu, X.; Zhou, W.; Zhu, X. Ceram. Int. 2020, 46, 20138. doi: 10.1016/j.ceramint.2020.05.089  doi: 10.1016/j.ceramint.2020.05.089

    12. [12]

      Yang, M.; Li, J.; Ke, G.; Liu, B.; Dong, F.; Yang, L.; He, H.; Zhou, Y. J. Energy Chem. 2021, 56, 37. doi: 10.1016/j.jechem.2020.07.059  doi: 10.1016/j.jechem.2020.07.059

    13. [13]

      Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008.
       

    14. [14]

      Wang, J.; Cheng, H.; Wei, D.; Li, Z. Chin. J. Catal. 2022, 43, 2606. doi: 10.1016/S1872-2067(22)64091-9  doi: 10.1016/S1872-2067(22)64091-9

    15. [15]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    16. [16]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Solar RRL 2022, 6, 2100587. doi: 10.1002/solr.202100587  doi: 10.1002/solr.202100587

    17. [17]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37, 2010024.
       

    18. [18]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43, 1657. doi: 10.1016/S1872-2067(21)64010-X  doi: 10.1016/S1872-2067(21)64010-X

    19. [19]

      Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J. B.; Yu, J. Green Chem. 2022, 24, 5739. doi: 10.1039/D2GC01684B  doi: 10.1039/D2GC01684B

    20. [20]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473  doi: 10.1021/acs.chemrev.1c00473

    21. [21]

      Silva, A. M.; Rojas, M. I. Comput. Theor. Chem. 2016, 1098, 41. doi: 10.1016/j.comptc.2016.11.004  doi: 10.1016/j.comptc.2016.11.004

    22. [22]

      Xu, Y.; Gao, S. -P. Int. J. Hydrog. Energy 2012, 37, 11072. doi: 10.1016/j.ijhydene.2012.04.138  doi: 10.1016/j.ijhydene.2012.04.138

    23. [23]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016  doi: 10.1016/j.jmst.2021.10.016

    24. [24]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. -M. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    25. [25]

      Li, Y.; Ho, W.; Lv, K.; Zhu, B.; Lee, S. C. Appl. Surf. Sci. 2018, 430, 380. doi: 10.1016/j.apsusc.2017.06.054  doi: 10.1016/j.apsusc.2017.06.054

    26. [26]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    27. [27]

      Wang, Z.; Xu, J.; Zhou, H.; Zhang, X. Rare Met. 2019, 38, 459. doi: 10.1007/s12598-019-01222-5  doi: 10.1007/s12598-019-01222-5

    28. [28]

      Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Small Struct. 2021, 2, 2100086. doi: 10.1002/sstr.202100086  doi: 10.1002/sstr.202100086

    29. [29]

      Nguyen, V. -H.; Singh, P.; Sudhaik, A.; Raizada, P.; Le, Q. V.; Helmy, E. T. Mater. Lett. 2022, 313, 131781. doi: 10.1016/j.matlet.2022.131781  doi: 10.1016/j.matlet.2022.131781

    30. [30]

      Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014.
       

    31. [31]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    32. [32]

      Li, Y.; Xia, Z.; Yang, Q.; Wang, L.; Xing, Y. J. Mater. Sci. Technol. 2022, 125, 128. doi: 10.1016/j.jmst.2022.02.035  doi: 10.1016/j.jmst.2022.02.035

    33. [33]

      Zhao, X.; Xu, M.; Song, X.; Zhou, W.; Liu, X.; Huo, P. Chin. J. Catal. 2022, 43, 2625. doi: 10.1016/S1872-2067(22)64115-9  doi: 10.1016/S1872-2067(22)64115-9

    34. [34]

      Tahir, M.; Tahir, B. J. Mater. Sci. Technol. 2022, 106, 195. doi: 10.1016/j.jmst.2021.08.019  doi: 10.1016/j.jmst.2021.08.019

    35. [35]

      Ali Khan, A.; Tahir, M. ACS Appl. Energy Mater. 2022, 5, 784. doi: 10.1021/acsaem.1c03266  doi: 10.1021/acsaem.1c03266

    36. [36]

      Meng, A.; Cheng, B.; Tan, H.; Fan, J.; Su, C.; Yu, J. Appl. Catal. B 2021, 289, 120039. doi: 10.1016/j.apcatb.2021.120039  doi: 10.1016/j.apcatb.2021.120039

    37. [37]

      Wang, G.; Quan, Y.; Yang, K.; Jin, Z. J. Mater. Sci. Technol. 2022, 121, 28. doi: 10.1016/j.jmst.2021.11.073  doi: 10.1016/j.jmst.2021.11.073

    38. [38]

      Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 303. doi: 10.1016/S1872-2067(21)63818-4  doi: 10.1016/S1872-2067(21)63818-4

    39. [39]

      Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustainable Syst. 2022, 6, 2100264. doi: 10.1002/adsu.202100264  doi: 10.1002/adsu.202100264

    40. [40]

      Chen, Y.; Wang, F.; Cao, Y.; Zhang, F.; Zou, Y.; Huang, Z.; Ye, L.; Zhou, Y. ACS Appl. Energy Mater. 2020, 3, 4610. doi: 10.1021/acsaem.0c00273  doi: 10.1021/acsaem.0c00273

    41. [41]

      Qi, S.; Liu, X.; Zhang, R.; Zhang, Y.; Xu, H. Inorg. Chem. Commun. 2021, 133, 108907. doi: 10.1016/j.inoche.2021.108907  doi: 10.1016/j.inoche.2021.108907

    42. [42]

      Zhang, R.; Niu, S.; Xiang, J.; Zheng, J.; Jiang, Z.; Guo, C. Sep. Purif. Technol. 2021, 261, 118258. doi: 10.1016/j.seppur.2020.118258  doi: 10.1016/j.seppur.2020.118258

    43. [43]

      Yang, Q.; Li, R.; Wei, S.; Yang, R. Appl. Surf. Sci. 2022, 572, 151525. doi: 10.1016/j.apsusc.2021.151525  doi: 10.1016/j.apsusc.2021.151525

    44. [44]

      Cai, J.; Maimaitizi, H.; Okitsu, K.; Tursun, Y.; Abulizi, A. Int. J. Energy Res. 2022, 46, 12147. doi: 10.1002/er.7978  doi: 10.1002/er.7978

    45. [45]

      Fu, J.; Zhu, L.; Jiang, K.; Liu, K.; Wang, Z.; Qiu, X.; Li, H.; Hu, J.; Pan, H.; Lu, Y.; Chan, T.; Liu, M. Chem. Eng. J. 2021, 415, 128982. doi: 10.1016/j.cej.2021.128982  doi: 10.1016/j.cej.2021.128982

    46. [46]

      Azofra, L. M.; MacFarlane, D. R.; Sun, C. Phys. Chem. Chem. Phys. 2016, 18, 18507. doi: 10.1039/C6CP02453J  doi: 10.1039/C6CP02453J

    47. [47]

      Xia, Y.; Sayed, M.; Zhang, L.; Cheng, B.; Yu, J. Chem Catal. 2021, 1, 1173. doi: 10.1016/j.checat.2021.08.009  doi: 10.1016/j.checat.2021.08.009

    48. [48]

      Ao, C.; Feng, B.; Qian, S.; Wang, L.; Zhao, W.; Zhai, Y.; Zhang, L. J. CO2 Util. 2020, 36, 116. doi: 10.1016/j.jcou.2019.11.007  doi: 10.1016/j.jcou.2019.11.007

    49. [49]

      Li, Y.; Li, B.; Zhang, D.; Cheng, L.; Xiang, Q. ACS Nano 2020, 14, 10552. doi: 10.1021/acsnano.0c04544  doi: 10.1021/acsnano.0c04544

    50. [50]

      Yao, W.; Zhang, J.; Wang, Y.; Ren, F. Appl. Surf. Sci. 2018, 435, 1351. doi: 10.1016/j.apsusc.2017.11.259  doi: 10.1016/j.apsusc.2017.11.259

    51. [51]

      Wang, M.; Tan, G.; Feng, S.; Dang, M.; Wang, Y.; Zhang, B.; Ren, H.; Lv, L.; Xia, A.; Liu, W.; et al. J. Hazard. Mater. 2021, 408, 124897. doi: 10.1016/j.jhazmat.2020.124897  doi: 10.1016/j.jhazmat.2020.124897

    52. [52]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi: 10.1016/s1872-2067(20)63598-7  doi: 10.1016/s1872-2067(20)63598-7

    53. [53]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.
       

    54. [54]

      Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015  doi: 10.1016/j.jmat.2021.02.015

    55. [55]

      Zhu, Z.; Tang, X.; Wang, T.; Fan, W.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Appl. Catal. B 2019, 241, 319. doi: 10.1016/j.apcatb.2018.09.009  doi: 10.1016/j.apcatb.2018.09.009

    56. [56]

      Gao, G.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Am. Chem. Soc. 2016, 138, 6292. doi: 10.1021/jacs.6b02692  doi: 10.1021/jacs.6b02692

    57. [57]

      Wang, Y.; Liu, J.; Yu, M.; Zhong, J.; Zhou, Q.; Qiu, J.; Zhang, X. Acta Phys. -Chim. Sin. 2021, 37, 2006030.
       

    58. [58]

      Yuan, Y.; Guo, R.; Hong, L.; Lin, Z.; Ji, X.; Pan, W. Chemosphere 2022, 287, 132241. doi: 10.1016/j.chemosphere.2021.132241  doi: 10.1016/j.chemosphere.2021.132241

    59. [59]

      Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2022, 43, 2548. doi: 10.1016/S1872-2067(22)64111-1  doi: 10.1016/S1872-2067(22)64111-1

    60. [60]

      Sun, H.; Tian, Z.; Zhou, G.; Zhang, J.; Li, P. Appl. Surf. Sci. 2019, 469, 125. doi: 10.1016/j.apsusc.2018.11.006  doi: 10.1016/j.apsusc.2018.11.006

    61. [61]

      Shi, S.; Gondal, M. A.; Al-Saadi, A. A.; Fajgar, R.; Kupcik, J.; Chang, X.; Shen, K.; Xu, Q.; Seddigi, Z. S. J. Colloid Interface Sci. 2014, 416, 212. doi: 10.1016/j.jcis.2013.10.052  doi: 10.1016/j.jcis.2013.10.052

    62. [62]

      Wang, X.; Wang, Q.; Li, F.; Yang, W.; Zhao, Y.; Hao, Y.; Liu, S. Chem. Eng. J. 2013, 234, 361. doi: 10.1016/j.cej.2013.08.112  doi: 10.1016/j.cej.2013.08.112

    63. [63]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    64. [64]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6  doi: 10.1016/S1872-2067(20)63705-6

    65. [65]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, J. Appl. Catal. B 2018, 224, 983. doi: 10.1016/j.apcatb.2017.11.025  doi: 10.1016/j.apcatb.2017.11.025

    66. [66]

      Zhu, B.; Zhang, L.; Xu, D.; Cheng, B.; Yu, J. J. CO2 Util. 2017, 21, 327. doi: 10.1016/j.jcou.2017.07.021  doi: 10.1016/j.jcou.2017.07.021

    67. [67]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.
       

    68. [68]

      Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2022, 5, 4187. doi: 10.1016/j.matt.2022.09.009  doi: 10.1016/j.matt.2022.09.009

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    4. [4]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    5. [5]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    10. [10]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    18. [18]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

Metrics
  • PDF Downloads(19)
  • Abstract views(624)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return