Citation: Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221202. doi: 10.3866/PKU.WHXB202212025 shu

Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst

  • Corresponding author: Jun Wan, wanj@wtu.edu.cn Yonggang Yao, yaoyg@hust.edu.cn
  • These authors contributed equally to the work.
  • Received Date: 16 December 2022
    Revised Date: 24 January 2023
    Accepted Date: 25 January 2023
    Available Online: 31 January 2023

    Fund Project: the National Natural Science Foundation of China 52203070Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies, China FZ2022005the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, China STRZ202203

  • The oxygen evolution reaction (OER) is considered the rate-limiting step in electrochemical water splitting, and has been widely used to solve energy and environmental issues. Perovskite oxides (ABO3) exhibit good OER activity, owing to their tunable electronic structures and highly flexible elemental compositions. However, the preparation of perovskite oxides usually requires long exposure to high temperatures, resulting in metal agglomeration and undesirable effects on intrinsic activity. Vapor-phase microwave technology can significantly reduce the duration of heat treatment and subsequently reduce the associated carbon emissions. This technology not only addresses the growing demand for carbon-neutral processes but also enables increased control of the synthesis to avoid undesirable agglomeration of the product. In this study, a 2D porous La0.2Sr0.8CoO3 perovskite was rapidly prepared using a microwave shock method. The rapid entropy increase associated with the microwave process can effectively expose abundant active sites in the La0.2Sr0.8CoO3 structure. Furthermore, the high-energy microwave shock process can precisely introduce Sr2+ into the lattice of LaCoO3, increasing the number of oxygen vacancies by increasing the oxidation state of Co. The oxygen vacancies introduced by replacing La with Sr can considerably improve the intrinsic catalytic activity of the material. For the OER in alkaline electrolytes, the prepared La0.2Sr0.8CoO3 catalyst displayed an excellent overpotential of 360 mV at 10 mA·cm−2 and a Tafel slope of 76.6 mV·dec−1. After a long-term cycle test of 30000 s, 97% of the initial current density was maintained. This study presents a facile and rapid strategy for the synthesis of highly active 2D perovskites.
  • 加载中
    1. [1]

      Jin, H.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y.; Zheng, Y.; Qiao, S. Z. ACS Nano 2018, 12, 12761. doi: 10.1021/acsnano.8b07841  doi: 10.1021/acsnano.8b07841

    2. [2]

      Yao, Y.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J.; Chi, M.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J.; et al. Science 2022, 376, eabn3103. doi: 10.1126/science.abn3103  doi: 10.1126/science.abn3103

    3. [3]

      Jin, H.; Song, T.; Paik, U.; Qiao, S. Z. Acc. Mater. Res. 2021, 2, 559. doi: 10.1021/accountsmr.1c00115  doi: 10.1021/accountsmr.1c00115

    4. [4]

      Yan, J.; Ye, F.; Dai, Q.; Ma, X.; Fang, Z.; Dai, L.; Hu, C. Nano Res. Energy 2023, 2, e9120047. doi: 10.26599/NRE.2023.9120047  doi: 10.26599/NRE.2023.9120047

    5. [5]

      Zhong, W.; Xiao, B.; Lin, Z.; Wang, Z.; Huang, L.; Shen, S.; Zhang, Q.; Gu, L. Adv. Mater. 2021, 33, 2007894. doi: 10.1002/adma.202007894  doi: 10.1002/adma.202007894

    6. [6]

      Xie, Y.; Sun, Y.; Tao, H.; Wang, X.; Wu, J.; Ma, K.; Wang, L.; Kang, Z.; Zhang, Y. Adv. Funct. Mater. 2022, 32, 2111777. doi: 10.1002/adfm.202111777  doi: 10.1002/adfm.202111777

    7. [7]

      Fabbri, E.; Schmidt, T. J. ACS Catal. 2018, 8, 9765. doi: 10.1021/acscatal.8b02712  doi: 10.1021/acscatal.8b02712

    8. [8]

      Jin, H.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S. Z. Nano Energy 2018, 53, 690. doi: 10.1016/j.nanoen.2018.09.046  doi: 10.1016/j.nanoen.2018.09.046

    9. [9]

      Gao, F.; He, J.; Wang, H.; Lin, J.; Chen, R.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Nano Res. Energy 2022, 1, e9120029. doi: 10.26599/NRE.2022.9120029  doi: 10.26599/NRE.2022.9120029

    10. [10]

      Wang, Y.; Li, X.; Zhang, M.; Zhou, Y.; Rao, D.; Zhong, C.; Zhang, J.; Han, X.; Hu, W.; Zhang, Y.; et al. Adv. Mater. 2020, 32, 2000231. doi: 10.1002/adma.202000231  doi: 10.1002/adma.202000231

    11. [11]

      Wang, Y.; Li, X.; Zhang, M.; Zhang, J.; Chen, Z.; Zheng, X.; Tian, Z.; Zhao, N.; Han, X.; Zaghib, K.; et al. Adv. Mater. 2022, 34, 2107053. doi: 10.1002/adma.202107053  doi: 10.1002/adma.202107053

    12. [12]

      Jin, H.; Wang, X.; Tang, C.; Vasileff, A.; Li, L.; Slattery, A.; Qiao, S. Z. Adv. Mater. 2021, 33, 2007508. doi: 10.1002/adma.202007508  doi: 10.1002/adma.202007508

    13. [13]

      Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science 2018, 359, 1489. doi: 10.1126/science.aan5412  doi: 10.1126/science.aan5412

    14. [14]

      Shi, W.; Liu, H.; Li, Z.; Li, C.; Zhou, J.; Yuan, Y.; Jiang, F.; Fu, K.; Yao, Y. SusMat 2022, 2, 186. doi: 10.1002/sus2.56  doi: 10.1002/sus2.56

    15. [15]

      Liu, D.; Zeng, Q.; Hu, C.; Chen, D.; Liu, H.; Han, Y.; Xu, L.; Zhang, Q.; Yang, J. Nano Res. Energy 2022, 1, e9120017. doi: 10.26599/NRE.2022.9120017  doi: 10.26599/NRE.2022.9120017

    16. [16]

      Yu, L.; Zeng, K.; Li, C.; Lin, X.; Liu, H.; Shi, W.; Qiu, H. J.; Yuan, Y.; Yao, Y. Carbon Energy 2022, 4, 731. doi: 10.1002/cey2.228  doi: 10.1002/cey2.228

    17. [17]

      Han, X.; Wu, X.; Deng, Y.; Liu, J.; Lu, J.; Zhong, C.; Hu, W. Adv. Energy Mater. 2018, 8, 1800935. doi: 10.1002/aenm.201800935  doi: 10.1002/aenm.201800935

    18. [18]

      Zhang, J. Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; et al. Energy Environ. Sci. 2021, 14, 365. doi: 10.1039/D0EE03500A  doi: 10.1039/D0EE03500A

    19. [19]

      Yin, W. J.; Weng, B. C.; Ge, J.; Sun, Q. D.; Li, Z. Z.; Yan, Y. F. Energy Environ. Sci. 2019, 12, 442. doi: 10.1039/c8ee01574k  doi: 10.1039/c8ee01574k

    20. [20]

      Luo, J. L. Acta Phys. -Chim. Sin. 2018, 34, 7.  doi: 10.3866/PKU.WHXB201707051

    21. [21]

      Liu, K.; Jin, H.; Huang, L.; Luo, Y.; Zhu, Z.; Dai, S.; Zhuang, X.; Wang, Z.; Huang, L.; Zhou, J. Sci. Adv. 2022, 8, eabn2030. doi: 10.1126/sciadv.abn2030  doi: 10.1126/sciadv.abn2030

    22. [22]

      Zhuang, S. X.; Liu, S. Q.; Zhang, J. B.; Tu, F. Y.; Huang, H. X.; Huang, K. L.; Li, Y. H. Acta Phys. -Chim. Sin. 2012, 28, 355.  doi: 10.3866/PKU.WHXB201111293

    23. [23]

      Zeng, J.; Bi, L.; Cheng, Y.; Xu, B.; Jen, A. K. Y. Nano Res. Energy 2022, 1, e9120004. doi: 10.26599/NRE.2022.9120004  doi: 10.26599/NRE.2022.9120004

    24. [24]

      Chu, L.; Zhai, S.; Ahmad, W.; Zhang, J.; Zang, Y.; Yan, W.; Li, Y. Nano Res. Energy 2022, 1, e9120024. doi: 10.26599/NRE.2022.9120024  doi: 10.26599/NRE.2022.9120024

    25. [25]

      Guo, Y.; Tong, Y.; Chen, P.; Xu, K.; Zhao, J.; Lin, Y.; Chu, W.; Peng, Z.; Wu, C.; Xie, Y. Adv. Mater. 2015, 27, 5989. doi: 10.1002/adma.201502024  doi: 10.1002/adma.201502024

    26. [26]

      Li, B.; Li, Z.; Wu, X.; Zhu, Z. Nano Res. Energy 2022, 1, e9120011. doi: 10.26599/NRE.2022.9120011  doi: 10.26599/NRE.2022.9120011

    27. [27]

      Reszczyńska, J.; Grzyb, T.; Sobczak, J.W.; Lisowski, W.; Gazda, M.; Ohtani, B.; Zaleska, A. Appl. Catal. B-Environ. 2015, 163, 40. doi: 10.1016/j.apcatb.2014.07.010  doi: 10.1016/j.apcatb.2014.07.010

    28. [28]

      Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Nat. Commun. 2013, 4, 2439. doi: 10.1038/ncomms3439  doi: 10.1038/ncomms3439

    29. [29]

      Heo, Y.; Choi, S.; Bak, J.; Kim, H. S.; Bae, H. B.; Chung, S. Y. Adv. Energy Mater. 2018, 8, 1802481. doi: 10.1002/aenm.201802481  doi: 10.1002/aenm.201802481

    30. [30]

      Ji, D.; Liu, C.; Yao, Y.; Luo, L.; Wang, W.; Chen, Z. Nanoscale 2021, 13, 9952. doi: 10.1039/d1nr00069a  doi: 10.1039/d1nr00069a

    31. [31]

      Sun, J.; Du, L.; Sun, B.; Han, G.; Ma, Y.; Wang, J.; Huo, H.; Zuo, P.; Du, C.; Yin, G. J. Energy Chem. 2021, 54, 217. doi: 10.1016/j.jechem.2020.05.064  doi: 10.1016/j.jechem.2020.05.064

    32. [32]

      Wang, X.; Huang, K.; Qian, J.; Cong, Y.; Ge, C.; Feng, S. Sci. Bull. 2017, 62, 658. doi: 10.1016/j.scib.2017.03.017  doi: 10.1016/j.scib.2017.03.017

    33. [33]

      Shui, Z.; Tian, H.; Yu, S.; Xiao, H.; Zhao, W.; Chen, X. Sci. China Mater. 2022, doi: 10.1007/s40843-022-2203-5  doi: 10.1007/s40843-022-2203-5

    34. [34]

      She, S.; Yu, J.; Tang, W.; Zhu, Y.; Chen, Y.; Sunarso, J.; Zhou, W.; Shao, Z. ACS Appl. Mater. Interfaces 2018, 10, 11715. doi: 10.1021/acsami.8b00682  doi: 10.1021/acsami.8b00682

    35. [35]

      Shen, Z.; Qu, M.; Shi, J.; Oropeza, F. E.; de la Peña O'Shea, V. A.; Gorni, G.; Tian, C. M.; Hofmann, J. P.; Cheng, J.; Li, J.; et al. J. Energy Chem. 2022, 65, 637. doi: 10.1016/j.jechem.2021.06.032  doi: 10.1016/j.jechem.2021.06.032

    36. [36]

      Wang, A.; Zhao, C.; Yu, M.; Wang, W. Appl. Catal. B-Environ. 2021, 281, 119514. doi: 10.1016/j.apcatb.2020.119514  doi: 10.1016/j.apcatb.2020.119514

    37. [37]

      Wang, D.; Zhou, W.; Zhang, R.; Zeng, J.; Du, Y.; Qi, S.; Cong, C.; Ding, C.; Huang, X.; Wen, G.; Yu, T. Adv. Mater. 2018, 30, 1803569. doi: 10.1002/adma.201803569  doi: 10.1002/adma.201803569

    38. [38]

      Fang, Z.; Jin, Z.; Tang, S.; Li, P.; Wu, P.; Yu, G. ACS Nano 2022, 16, 1072. doi: 10.1021/acsnano.1c08814  doi: 10.1021/acsnano.1c08814

    39. [39]

      Gao, X.; Li, J.; Zuo, Z. Nano Res. Energy 2022, 1, e9120036. doi: 10.26599/NRE.2022.9120036  doi: 10.26599/NRE.2022.9120036

    40. [40]

      Guo, F.; Zhang, M.; Yi, S.; Li, X.; Xin, R.; Yang, M.; Liu, B.; Chen, H.; Li, H.; Liu, Y. Nano Res. Energy 2022, 1, e9120027. doi: 10.26599/NRE.2022.9120027  doi: 10.26599/NRE.2022.9120027

    41. [41]

      Zhao, C.; Zhang, H.; Si, W.; Wu, H. Nat. Commun. 2016, 7, 12543. doi: 10.1038/ncomms12543  doi: 10.1038/ncomms12543

    42. [42]

      Siebert, J. P.; Hamm, C. M.; Birkel, C. S. Appl. Phys. Rev. 2019, 6, 041314. doi: 10.1063/1.5121442  doi: 10.1063/1.5121442

    43. [43]

      Hu, Q.; Huang, X. W.; Wang, Z. Y.; Li, G. M.; Han, Z.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. J. Mater. Chem. A 2020, 8, 2140. doi: 10.1039/c9ta12713e  doi: 10.1039/c9ta12713e

    44. [44]

      Zhong, G.; Xu, S. M.; Chen, C. J.; Kline, D. J.; Giroux, M.; Pei, Y.; Jiao, M. L.; Liu, D. P.; Mi, R. Y.; Xie, H.; et al. Adv. Funct. Mater. 2019, 29, 9. doi: 10.1002/adfm.201904282  doi: 10.1002/adfm.201904282

    45. [45]

      Hu, R.; Jiang, H.; Xian, J.; Mi, S.; Wei, L.; Fang, G.; Guo, J.; Xu, S.; Liu, Z.; Jin, H.; et al. Appl. Catal. B-Environ. 2022, 317, 121728. doi: 10.1016/j.apcatb.2022.121728  doi: 10.1016/j.apcatb.2022.121728

    46. [46]

      Liu, X.; Antonietti, M. Adv. Mater. 2013, 25, 6284. doi: 10.1002/adma.201302034  doi: 10.1002/adma.201302034

    47. [47]

      Khan, T. S.; Al-Shehhi, M. S. J. Nat. Gas Sci. Eng. 2015, 25, 66. doi: 10.1016/j.jngse.2015.04.025  doi: 10.1016/j.jngse.2015.04.025

    48. [48]

      Mishra, R. R.; Sharma, A. K. Compos. Part A 2016, 81, 78. doi: 10.1016/j.compositesa.2015.10.035  doi: 10.1016/j.compositesa.2015.10.035

    49. [49]

      Zhang, L.; Zhu, H.; Hao, J.; Wang, C.; Wen, Y.; Li, H.; Lu, S.; Duan, F.; Du, M. Electrochim. Acta 2019, 327, 135033. doi: 10.1016/j.electacta.2019.135033  doi: 10.1016/j.electacta.2019.135033

    50. [50]

      Yang, G.; Park, S. J. Materials 2019, 12, 1177. doi: 10.3390/ma12071177  doi: 10.3390/ma12071177

    51. [51]

      Wang, X.; Zhang, Y.; Zhi, C.; Wang, X.; Tang, D.; Xu, Y.; Weng, Q.; Jiang, X.; Mitome, M.; Golberg, D.; et al. Nat. Commun. 2013, 4, 2905. doi: 10.1038/ncomms3905  doi: 10.1038/ncomms3905

    52. [52]

      Cui, H.; Cheng, Z.; Zhou, Z. J. Mater. Chem. A 2020, 8, 18280. doi: 10.1039/D0TA06170K  doi: 10.1039/D0TA06170K

    53. [53]

      Bingol, D.; Aydogan, S.; Gultekin, S. S. Chem. Eng. J. 2010, 165, 617. doi: 10.1016/j.cej.2010.10.007  doi: 10.1016/j.cej.2010.10.007

    54. [54]

      Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Nat. Commun. 2016, 7, 11053. doi: 10.1038/ncomms11053  doi: 10.1038/ncomms11053

    55. [55]

      Lee, D.; Lee, Y. L.; Grimaud, A.; Hong, W. T.; Biegalski, M. D.; Morgan, D.; Shao-Horn, Y. J. Phys. Chem. C 2014, 118, 14326. doi: 10.1021/jp502192m  doi: 10.1021/jp502192m

    56. [56]

      Cheng, X.; Fabbri, E.; Nachtegaal, M.; Castelli, I. E.; El Kazzi, M.; Haumont, R.; Marzari, N.; Schmidt, T. J. Chem. Mater. 2015, 27, 7662. doi: 10.1021/acs.chemmater.5b03138  doi: 10.1021/acs.chemmater.5b03138

    57. [57]

      Crumlin, E. J.; Mutoro, E.; Liu, Z.; Grass, M. E.; Biegalski, M. D.; Lee, Y. L.; Morgan, D.; Christen, H. M.; Bluhm, H.; Shao-Horn, Y. Energy Environ. Sci. 2012, 5, 6081. doi: 10.1039/C2EE03397F  doi: 10.1039/C2EE03397F

    58. [58]

      Vazhayil, A.; Thomas, J.; Thomas, N. J. Electroanal. Chem. 2022, 918, 116426. doi: 10.1016/j.jelechem.2022.116426  doi: 10.1016/j.jelechem.2022.116426

    59. [59]

      Yi, Y.; Wu, Q.; Li, J.; Yao, W.; Cui, C. ACS Appl. Mater. Interfaces 2021, 13, 17439. doi: 10.1021/acsami.0c22355  doi: 10.1021/acsami.0c22355

    60. [60]

      Yan, D.; Xia, C.; Zhang, W.; Hu, Q.; He, C.; Xia, B. Y.; Wang, S. Adv. Energy Mater. 2022, 12, 2202317. doi: 10.1002/aenm.202202317  doi: 10.1002/aenm.202202317

    61. [61]

      Kumar, N.; Kumar, M.; Nagaiah, T. C.; Siruguri, V.; Rayaprol, S.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Paul, A. K. ACS Appl. Mater. Interfaces 2020, 12, 9190. doi: 10.1021/acsami.9b20199  doi: 10.1021/acsami.9b20199

    62. [62]

      Wang, H.; Wang, J.; Pi, Y.; Shao, Q.; Tan, Y.; Huang, X. Angew. Chem. Int. Ed. 2019, 58, 2316. doi: 10.1002/anie.201812545  doi: 10.1002/anie.201812545

    63. [63]

      Li, Z.; Xue, K. H.; Wang, J.; Li, J. G.; Ao, X.; Sun, H.; Song, X.; Lei, W.; Cao, Y.; Wang, C. ACS Appl. Mater. Interfaces 2020, 12, 41259. doi: 10.1021/acsami.0c10045  doi: 10.1021/acsami.0c10045

    64. [64]

      Guo, Q.; Li, X.; Wei, H.; Liu, Y.; Li, L.; Yang, X.; Zhang, X.; Liu, H.; Lu, Z. Front. Chem. 2019, 7, 224. doi: 10.3389/fchem.2019.00224  doi: 10.3389/fchem.2019.00224

    65. [65]

      Tong, Y.; Guo, Y.; Chen, P.; Liu, H.; Zhang, M.; Zhang, L.; Yan, W.; Chu, W.; Wu, C.; Xie, Y. Chem 2017, 3, 812. doi: 10.1016/j.chempr.2017.09.003  doi: 10.1016/j.chempr.2017.09.003

    66. [66]

      Selvadurai A, P. B.; Xiong, T.; Huang, P.; Tan, Q.; Huang, Y.; Yang, H.; Balogun, M. S. J. Mater. Chem. A 2021, 9, 16906. doi: 10.1039/D1TA03604A  doi: 10.1039/D1TA03604A

    67. [67]

      Jo, H.; Yang, Y.; Seong, A.; Jeong, D.; Kim, J.; Joo, S. H.; Kim, Y. J.; Zhang, L.; Liu, Z.; Wang, J. Q.; et al. J. Mater. Chem. A 2022, 10, 2271. doi: 10.1039/D1TA08445C  doi: 10.1039/D1TA08445C

    68. [68]

      Qian, J.; Li, J.; Xia, B.; Zhang, J.; Zhang, Z.; Guan, C.; Gao, D.; Huang, W. Energy Storage Mater. 2021, 42, 470. doi: 10.1016/j.ensm.2021.08.007  doi: 10.1016/j.ensm.2021.08.007

    69. [69]

      Dai, J.; Zhu, Y.; Yin, Y.; Tahini, H. A.; Guan, D.; Dong, F.; Lu, Q.; Smith, S. C.; Zhang, X.; Wang, H.; et al. Small 2019, 15, 1903120. doi: 10.1002/smll.201903120  doi: 10.1002/smll.201903120

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    3. [3]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    4. [4]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    5. [5]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    6. [6]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    7. [7]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    10. [10]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    11. [11]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    12. [12]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    13. [13]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    14. [14]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    15. [15]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    16. [16]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    19. [19]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    20. [20]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

Metrics
  • PDF Downloads(21)
  • Abstract views(796)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return