Citation: Yongjiu Lei, Xu Wang, Zhiye Wang, Jianghao Zhou, Haijian Chen, Lei Liang, Yunchuan Li, Bohuai Xiao, Shuai Chang. Effect of Modified Thiophene Anchor on Molecule-Electrode Bonding[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 221202. doi: 10.3866/PKU.WHXB202212023 shu

Effect of Modified Thiophene Anchor on Molecule-Electrode Bonding

  • Corresponding author: Yunchuan Li, yc.l@wust.edu.cn Bohuai Xiao, xiaobhuai@foxmail.com Shuai Chang, schang23@wust.edu.cn
  • Received Date: 14 December 2022
    Revised Date: 27 February 2023
    Accepted Date: 28 February 2023
    Available Online: 9 March 2023

    Fund Project: the Outstanding Young and Middle-aged Technical Innovation Team Project in Hubei Universities T2021002the South China University of Technology State Key Laboratory of Luminescent Materials and Devices Open Fund 2022-skllmd-19

  • The anchor group of a molecule determines its binding characteristics with electrodes. It impacts the molecular conductance of the formed single molecule junctions and is of great importance to the field of molecular electronics. Thiophene unit is an emerging anchor ligand and shows the ability to bind with Au electrodes. As a building block in designing organic photoelectric materials, thiophene has a potential in expanding the variety of target molecules in single-molecule electronics. In this work, we designed and synthesized three analogous π-conjugated molecules, 1, 4-di(thiophen-2-yl)benzene (BT-H), 1, 4-bis(5 hexylthiophen-2-yl)benzene (BT-Hex) and 1, 4-bis(5-chlorothiophen-2-yl)benzene (BT-Cl). These molecules have the same backbone, but different substituents (H, C6 and Cl atoms, respectively) at position 4 of both end-capped thiophenes. Enabled by thiophene anchors, these molecules can be readily incorporated into the nano gaps between electrodes to form molecular junctions. Charge transport properties of three types of single molecule junctions are explored using scanning tunneling microscopy based break junction (STM-BJ) technique and the influence of different substituents at thiophene on the molecule-electrode binding modes are comparatively studied. Two separate binding modes with a conductance discrepancy of more than an order of magnitude are observed for all three molecules, with a high conductance state (GH) corresponding to a Au—π linked junction (Au electrode coupled with the thiophene π orbital) and a low conductance state (GL) originating from a Au—S binding scheme. Interestingly, the values of the GL state for three molecules are greatly affected by the different substituents at thiophenes, yielding a conductance trend of GBT-Hex > GBT-H > GBT-Cl. This can be explained by the electron affinity of different substituents, which shifts their highest occupied molecular orbital (HOMO) with respect to Au Fermi level and thus changes the energy barrier. In contrast, the GH state values of three molecules are not affected obviously by different substituents. We also statistically analyzed the formation rate of two binding modes for three molecules and found that the ratio between two binding modes can be changed with different addition of substituents. This work provides a useful method in modifying the binding properties of thiophene as an anchor group to gold and sheds light on a simple strategy in the design of anchor ligands.
  • 加载中
    1. [1]

      Buchanan, M. Nat. Phys. 2016, 12 (3), 200. doi: 10.1038/nphys3685  doi: 10.1038/nphys3685

    2. [2]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36 (1), 9.  doi: 10.7503/cjcu20140941

    3. [3]

      Yu, P. K.; Feng, A. N.; Zhao, S. Q.; Wei, J. Y.; Yang, Y.; Shi, J.; Hong, W. J. Acta Phys. -Chim. Sin. 2019, 35 (8), 829.  doi: 10.3866/PKU.WHXB201811027

    4. [4]

      Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L. P.; Adamska, L.; Kozhushner, M. A.; Oleynik, II; Tao, N. J. Nat. Chem. 2009, 1 (8), 635. doi: 10.1038/nchem.392  doi: 10.1038/nchem.392

    5. [5]

      Daaoub, A.; Sangtarash, S.; Sadeghi, H. Nanomaterials 2020, 10 (8), 7. doi: 10.3390/nano10081544  doi: 10.3390/nano10081544

    6. [6]

      Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4 (4), 230. doi: 10.1038/nnano.2009.10  doi: 10.1038/nnano.2009.10

    7. [7]

      Komoto, Y.; Fujii, S.; Iwane, M.; Kiguchi, M. J. Mater. Chem. C 2016, 4 (38), 8842. doi: 10.1039/c6tc03268k  doi: 10.1039/c6tc03268k

    8. [8]

      Mathew, P. T.; Fang, F. Engineering 2018, 4 (6), 760. doi: 10.1016/j.eng.2018.11.001  doi: 10.1016/j.eng.2018.11.001

    9. [9]

      Chen, Y. R.; Huang, L. F.; Chen, H.; Chen, Z. X.; Zhang, H. W.; Xiao, Z. Y.; Hong, W. J. Chin. J. Chem. 2021, 39 (2), 421. doi: 10.1002/cjoc.202000420  doi: 10.1002/cjoc.202000420

    10. [10]

      Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. J. Am. Chem. Soc. 2006, 128 (49), 15874. doi: 10.1021/ja065864k  doi: 10.1021/ja065864k

    11. [11]

      Ie, Y.; Tanaka, K.; Tashiro, A.; Lee, S. K.; Testai, H. R.; Yamada, R.; Tada, H.; Aso, Y. J. Phys. Chem. Lett. 2015, 6 (18), 3754. doi: 10.1021/acs.jpclett.5b01662  doi: 10.1021/acs.jpclett.5b01662

    12. [12]

      Kaliginedi, V.; Rudnev, A. V.; Moreno-Garcia, P.; Baghernejad, M.; Huang, C. C.; Hong, W. J.; Wandlowski, T. Phys. Chem. Chem. Phys. 2014, 16 (43), 23529. doi: 10.1039/c4cp03605k  doi: 10.1039/c4cp03605k

    13. [13]

      Sebera, J.; Lindner, M.; Gasior, J.; Meszaros, G.; Fuhr, O.; Mayor, M.; Valasek, M.; Kolivoska, V.; Hromadova, M. Nanoscale 2019, 11 (27), 12959. doi: 10.1039/c9nr04071d  doi: 10.1039/c9nr04071d

    14. [14]

      Huang, Z.; Chen, F.; Bennett, P. A.; Tao, N. J. J. Am. Chem. Soc. 2007, 129 (43), 13225. doi: 10.1021/ja074456t  doi: 10.1021/ja074456t

    15. [15]

      Xie, Z. T.; Baldea, I.; Haugstad, G.; Frisbie, C. D. J. Am. Chem. Soc. 2019, 141 (1), 497. doi: 10.1021/jacs.8b11248  doi: 10.1021/jacs.8b11248

    16. [16]

      Ohto, T.; Inoue, T.; Stewart, H.; Numai, Y.; Aso, Y.; Ie, Y.; Yamada, R.; Tada, H. J. Phys. Chem. Lett. 2019, 10 (18), 5292. doi: 10.1021/acs.jpclett.9b02059  doi: 10.1021/acs.jpclett.9b02059

    17. [17]

      Xu, Y. X.; Sun, L. Y.; Wu, J. F.; Ye, W. Y.; Chen, Y. S.; Zhang, S. M.; Miao, C. Y.; Huang, H. Dyes Pigment. 2019, 168, 36. doi: 10.1016/j.dyepig.2019.04.050  doi: 10.1016/j.dyepig.2019.04.050

    18. [18]

      Byeon, S. Y.; Han, S. H.; Lee, J. Y. Dyes Pigment. 2018, 155, 114. doi: 10.1016/j.dyepig.2018.03.033  doi: 10.1016/j.dyepig.2018.03.033

    19. [19]

      Oniwa, K.; Kikuchi, H.; Shimotani, H.; Ikeda, S.; Asao, N.; Yamamoto, Y.; Tanigaki, K.; Jin, T. N. Chem. Commun. 2016, 52 (26), 4800. doi: 10.1039/c6cc00948d  doi: 10.1039/c6cc00948d

    20. [20]

      Zhou, J.; Yang, Y. X.; Liu, P.; Camillone, N.; White, M. G. J. Phys. Chem. C 2010, 114 (32), 13670. doi: 10.1021/jp1025009  doi: 10.1021/jp1025009

    21. [21]

      Mao, J. -C.; Peng, L. -L.; Li, W. -Q.; Chen, F.; Wang, H. -G.; Shao, Y.; Zhou, X. -S.; Zhao, X. -Q.; Xie, H. -J.; Niu, Z. -J. J. Phys. Chem. C 2017, 121 (3), 1472. doi: 10.1021/acs.jpcc.6b10925  doi: 10.1021/acs.jpcc.6b10925

    22. [22]

      Huang, M.; Dong, J.; Wang, Z.; Li, Y.; Yu, L.; Liu, Y.; Qian, G.; Chang, S. Chem. Commun. 2020, 56 (94), 14789. doi: 10.1039/d0cc05602b  doi: 10.1039/d0cc05602b

    23. [23]

      Huang, M.; Zhou, Q.; Liang, F.; Yu, L.; Xiao, B.; Li, Y.; Zhang, M.; Chen, Y.; He, J.; Xiao, S.; et al. Nano Lett. 2021, 21 (12), 5409. doi: 10.1021/acs.nanolett.1c01882  doi: 10.1021/acs.nanolett.1c01882

    24. [24]

      Chen, H.; Li, Y.; Chang, S. Anal. Chem. 2020, 92 (9), 6423. doi: 10.1021/acs.analchem.9b05549  doi: 10.1021/acs.analchem.9b05549

    25. [25]

      Wang, Z.; Huang, M.; Dong, J.; Wang, X.; Li, Y.; Sun, M.; Chang, S. J. Phys. Chem. C 2023, 127 (5), 2518. doi: 10.1021/acs.jpcc.2c06683  doi: 10.1021/acs.jpcc.2c06683

    26. [26]

      Li, Y.; Xiao, B.; Chen, R.; Chen, H.; Dong, J.; Liu, Y.; Chang, S. Chem. Commun. 2019, 55 (57), 8325. doi: 10.1039/c9cc02998b  doi: 10.1039/c9cc02998b

    27. [27]

      Hua, Y.; Zhang, H.; Xia, H. Chin. J. Org. Chem. 2018, 38 (1), 11.  doi: 10.6023/cjoc201709009

    28. [28]

      Moellmann, J.; Grimme, S. J. Phys. Chem. C 2014, 118 (14), 7615. doi: 10.1021/jp501237c  doi: 10.1021/jp501237c

    29. [29]

      Smith, D. G.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. J. Phys. Chem. Lett. 2016, 7 (12), 2197. doi: 10.1021/acs.jpclett.6b00780  doi: 10.1021/acs.jpclett.6b00780

    30. [30]

      Li, S. S.; Jira, E. R.; Angello, N. H.; Li, J. L.; Yu, H.; Moore, J. S.; Diao, Y.; Burke, M. D.; Schroeder, C. M. Nat. Commun. 2022, 13 (1), 8. doi: 10.1038/s41467-022-29796-2  doi: 10.1038/s41467-022-29796-2

    31. [31]

      Makk, P.; Tomaszewski, D.; Martinek, J.; Balogh, Z.; Csonka, S.; Wawrzyniak, M.; Frei, M.; Venkataraman, L.; Halbritter, A. ACS Nano 2012, 6 (4), 3411. doi: 10.1021/nn300440f  doi: 10.1021/nn300440f

    32. [32]

      Balogh, Z.; Makk, P.; Halbritter, A. Beilstein J. Nanotechnology 2015, 6, 1369. doi: 10.3762/bjnano.6.141  doi: 10.3762/bjnano.6.141

    33. [33]

      Huang, C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; et al. Nat. Commun. 2017, 8, 15436. doi: 10.1038/ncomms15436  doi: 10.1038/ncomms15436

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    13. [13]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    14. [14]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    15. [15]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

Metrics
  • PDF Downloads(11)
  • Abstract views(1342)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return