Citation: Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221202. doi: 10.3866/PKU.WHXB202212020 shu

Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts

  • Corresponding author: Dingsheng Wang, wangdingsheng@mail.tsinghua.edu.cn
  • Received Date: 12 December 2022
    Revised Date: 16 January 2023
    Accepted Date: 17 January 2023
    Available Online: 31 January 2023

    Fund Project: the National Natural Science Foundation of China 22171157

  • Past decades have witnessed the flourish of single atom catalysts (SACs) owing to their high atom-utilization efficiency and completely exposed active sites, which endows SACs with remarkably enhanced catalytic activities for various reactions. In the early development stage of SACs, researchers focus on the improvement of the catalytic performance of the catalysts, whereas the intrinsic catalytic reaction mechanism and the relationship between the electronic states of the metal sites and catalytic performance are usually ignored. Moreover, some sophisticated and complex structures, such as dual-atom SACs, heteroatomic doped SACs, SACs with precise second coordination shell, and other synergetic catalysts containing SACs, were fabricated recently. The insight into electronic metal-support interaction (EMSI) aids the understanding of the catalytic mechanism and thus serves as a guide for the fabrication of heterogeneous catalysts. Notably, the uniform active sites and characteristic local coordination configuration of SACs provide excellent platforms to study EMSI and bridge the gap between homogeneous and heterogeneous catalysts, which will contribute to the understanding of structure-performance relationships and enhance the development of SACs and rational design of heterogeneous catalysts. EMSI is especially important in heterogeneous catalysis. Through the rational design of the local coordination environment of SACs, the electronic structure of active sites can be accurately regulated, which will shift their d-band centers. This significantly alters the adsorption capability of intermediates and influences the final catalytic performance of the catalysts. With the development of advanced operando characterization techniques, the evolution of configuration, electronic properties, and local coordination environment could be revealed, thus providing researchers with a clear picture of the intrinsic mechanism of the catalytic system. In addition, with the aid of theoretical calculations, catalyst screening will be considerably more convenient, which will significantly reduce the number of aimless trials. After the optimal structure is determined, researchers should devise precise fabrication methods to realize the configuration. Herein, we initially introduce the basic principles and effects of EMSI. The stabilization, electronic property regulation, and electron transfer tunneling effects of EMSI are the foundation of SACs synthesis and catalytic mechanism elucidation, of which the former requires strong coordination stabilization energies while the latter focuses on the electronic state evolution of the active sites. Subsequently, EMSI applications in several important heterogeneous catalysis processes, such as selective hydrogenation, alcohol oxidation, water-gas shift reaction, and hydroformylation, are reviewed. Finally, the review discusses the challenges and future prospects for the future development of EMSI on SACs.
  • 加载中
    1. [1]

      Fechete, I.; Wang, Y.; Védrine, J. C. Catal. Today 2012, 189, 2. doi: 10.1016/j.cattod.2012.04.003  doi: 10.1016/j.cattod.2012.04.003

    2. [2]

      Kumar, A.; Daw, P.; Milstein, D. Chem. Rev. 2022, 122, 385. doi: 10.1021/acs.chemrev.1c00412  doi: 10.1021/acs.chemrev.1c00412

    3. [3]

      Bai, S. T.; De Smet, G.; Liao, Y.; Sun, R.; Zhou, C.; Beller, M.; Maes, B. U. W.; Sels, B. F. Chem. Soc. Rev. 2021, 50, 4259. doi: 10.1039/d0cs01331e  doi: 10.1039/d0cs01331e

    4. [4]

      Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m  doi: 10.1021/ar300361m

    5. [5]

      Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623. doi: 10.1021/acs.chemrev.9b00311  doi: 10.1021/acs.chemrev.9b00311

    6. [6]

      Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385. doi: 10.1038/s41929-018-0090-9  doi: 10.1038/s41929-018-0090-9

    7. [7]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    8. [8]

      Cui, T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202115219. doi: 10.1002/anie.202115219  doi: 10.1002/anie.202115219

    9. [9]

      Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 13388. doi: 10.1002/anie.202101559  doi: 10.1002/anie.202101559

    10. [10]

      Wang, B.; Cheng, C.; Jin, M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202207268. doi: 10.1002/anie.202207268  doi: 10.1002/anie.202207268

    11. [11]

      Li, W. H.; Yang, J.; Wang, D. Angew. Chem. Int. Ed. 2022, e202213318. doi: 10.1002/anie.202213318  doi: 10.1002/anie.202213318

    12. [12]

      Zheng, X.; Li, B.; Wang, Q.; Wang, D.; Li, Y. Nano Res. 2022, 15, 7806. doi: 10.1007/s12274-022-4429-9  doi: 10.1007/s12274-022-4429-9

    13. [13]

      Zhang, Z.; Zhang, L.; Wang, X.; Feng, Y.; Liu, X.; Sun, W. Nano Res. 2022, 16, 343. doi: 10.1007/s12274-022-4823-3  doi: 10.1007/s12274-022-4823-3

    14. [14]

      Shen, Q.; Jin, H.; Li, P.; Yu, X.; Zheng, L.; Song, W.; Cao, C. Nano Res. 2022, 15, 5024. doi: 10.1007/s12274-022-4235-4  doi: 10.1007/s12274-022-4235-4

    15. [15]

      Liu, Z.; Du, Y.; Yu, R.; Zheng, M.; Hu, R.; Wu, J.; Xia, Y.; Zhuang, Z.; Wang, D. Angew. Chem. Int. Ed. 2022, 62, e202212653. doi: 10.1002/anie.202212653  doi: 10.1002/anie.202212653

    16. [16]

      Zhuang, Z.; Xia, L.; Huang, J.; Zhu, P.; Li, Y.; Ye, C.; Xia, M.; Yu, R.; Lang, Z.; Zhu, J.; et al. Angew. Chem. Int. Ed. 2022, e202212335. doi: 10.1002/anie.202212335  doi: 10.1002/anie.202212335

    17. [17]

      Zhu, P.; Xiong, X.; Wang, D. Nano Res. 2022, 15, 5792. doi: 10.1007/s12274-022-4265-y  doi: 10.1007/s12274-022-4265-y

    18. [18]

      Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2021, 15, 1730. doi: 10.1007/s12274-021-3794-0  doi: 10.1007/s12274-021-3794-0

    19. [19]

      Hu, P.; Huang, Z.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y.; Gu, X.; Tang, X. Angew. Chem. Int. Ed. 2014, 53, 3418. doi: 10.1002/anie.201309248  doi: 10.1002/anie.201309248

    20. [20]

      Li, R.; Wang, D. Nano Res. 2022, 15, 6888. doi: 10.1007/s12274-022-4371-x  doi: 10.1007/s12274-022-4371-x

    21. [21]

      Li, Z.; Liu, F.; Jiang, Y.; Ni, P.; Zhang, C.; Wang, B.; Chen, C.; Lu, Y. Nano Res. 2022, 15, 4411. doi: 10.1007/s12274-021-4029-0  doi: 10.1007/s12274-021-4029-0

    22. [22]

      Jiang, B.; Guo, Z.; Liang, M. Nano Res. 2022, doi: 10.1007/s12274-022-4856-7  doi: 10.1007/s12274-022-4856-7

    23. [23]

      S. J. Tauster; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. doi: 10.1021/ja00469a029  doi: 10.1021/ja00469a029

    24. [24]

      Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. J. Am. Chem. Soc. 2012, 134, 8968. doi: 10.1021/ja302070k  doi: 10.1021/ja302070k

    25. [25]

      Campbell, C. T. Nat. Chem. 2012, 4, 597. doi: 10.1038/nchem.1412  doi: 10.1038/nchem.1412

    26. [26]

      Uzun, A.; Ortalan, V.; Browning, N. D.; Gates, B. C. J. Catal. 2010, 269, 318. doi: 10.1016/j.jcat.2009.11.017  doi: 10.1016/j.jcat.2009.11.017

    27. [27]

      Chen, Y.; Wang, L.; Yao, Z.; Hao, L.; Tan, X.; Masa, J.; Robertson, A. W.; Sun, Z. Acta Phys. -Chim. Sin. 2022, 38, 2207024  doi: 10.3866/PKU.WHXB202207024

    28. [28]

      Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chem. Rev. 2020, 120, 11900. doi: 10.1021/acs.chemrev.9b00818  doi: 10.1021/acs.chemrev.9b00818

    29. [29]

      Liu, J. ACS Catal. 2016, 7, 34. doi: 10.1021/acscatal.6b01534  doi: 10.1021/acscatal.6b01534

    30. [30]

      Chen, Y.; Ji, S.; Zhao, S.; Chen, W.; Dong, J.; Cheong, W. C.; Shen, R.; Wen, X.; Zheng, L.; Rykov, A. I.; et al. Nat. Commun. 2018, 9, 5422. doi: 10.1038/s41467-018-07850-2  doi: 10.1038/s41467-018-07850-2

    31. [31]

      Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen, R.; Zheng, L.; Zhuang, Z.; Wang, D.; et al. Angew. Chem. Int. Ed. 2017, 56, 6937. doi: 10.1002/anie.201702473  doi: 10.1002/anie.201702473

    32. [32]

      Wei, S.; Wang, Y.; Chen, W.; Li, Z.; Cheong, W. C.; Zhang, Q.; Gong, Y.; Gu, L.; Chen, C.; Wang, D.; et al. Chem. Sci. 2019, 11, 786. doi: 10.1039/c9sc05005  doi: 10.1039/c9sc05005

    33. [33]

      Chen, S.; Li, W. H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61, e202114450. doi: 10.1002/anie.202114450  doi: 10.1002/anie.202114450

    34. [34]

      Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202117347. doi: 10.1002/anie.202117347  doi: 10.1002/anie.202117347

    35. [35]

      Zhang, Z.; Zhu, J.; Chen, S.; Sun, W.; Wang, D. Angew. Chem. Int. Ed. 2022, 62, e202215136. doi: 10.1002/anie.202215136  doi: 10.1002/anie.202215136

    36. [36]

      Chen, Y.; Ji, S.; Sun, W.; Lei, Y.; Wang, Q.; Li, A.; Chen, W.; Zhou, G.; Zhang, Z.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 1295. doi: 10.1002/anie.201912439  doi: 10.1002/anie.201912439

    37. [37]

      Fan, Q.; Gao, P.; Ren, S.; Qu, Y.; Kong, C.; Yang, J.; Wu, Y. Nano Res. 2022, doi: 10.1007/s12274-022-4472-6  doi: 10.1007/s12274-022-4472-6

    38. [38]

      Zhang, N.; Zhang, X.; Tao, L.; Jiang, P.; Ye, C.; Lin, R.; Huang, Z.; Li, A.; Pang, D.; Yan, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 6170. doi: 10.1002/anie.202014718  doi: 10.1002/anie.202014718

    39. [39]

      Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. Nat. Catal. 2018, 1, 781. doi: 10.1038/s41929-018-0146-x  doi: 10.1038/s41929-018-0146-x

    40. [40]

      Moliner, M.; Gabay, J. E.; Kliewer, C. E.; Carr, R. T.; Guzman, J.; Casty, G. L.; Serna, P.; Corma, A. J. Am. Chem. Soc. 2016, 138, 15743. doi: 10.1021/jacs.6b10169  doi: 10.1021/jacs.6b10169

    41. [41]

      Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Chem. Rev. 2020, 120, 12175. doi: 10.1021/acs.chemrev.9b00840  doi: 10.1021/acs.chemrev.9b00840

    42. [42]

      Cui, X.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Am. Chem. Soc. 2018, 140, 16514. doi: 10.1021/jacs.8b06723  doi: 10.1021/jacs.8b06723

    43. [43]

      Frenkel, A. I. Chem. Soc. Rev. 2012, 41, 8163. doi: 10.1039/c2cs35174a  doi: 10.1039/c2cs35174a

    44. [44]

      Hall, E. R.; Pollock, C. J.; Bendix, J.; Collins, T. J.; Glatzel, P.; DeBeer, S. J. Am. Chem. Soc. 2014, 136, 10076. doi: 10.1021/ja504206y  doi: 10.1021/ja504206y

    45. [45]

      Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Science 2015, 350, 189. doi: 10.1126/science.aac6368  doi: 10.1126/science.aac6368

    46. [46]

      Gu, Y.; Xi, B. J.; Zhang, H.; Ma, Y. C.; Xiong, S. L. Angew. Chem. Int. Ed. 2022, 61, e202202200. doi: 10.1002/anie.202202200  doi: 10.1002/anie.202202200

    47. [47]

      Yang, J.; Li, W.; Wang, D.; Li, Y. Adv. Mater. 2020, 32, e2003300. doi: 10.1002/adma.202003300  doi: 10.1002/adma.202003300

    48. [48]

      Zhang, J.; Zheng, C.; Zhang, M.; Qiu, Y.; Xu, Q.; Cheong, W. -C.; Chen, W.; Zheng, L.; Gu, L.; Hu, Z.; et al. Nano Res. 2020, 13, 3082. doi: 10.1007/s12274-020-2977-4  doi: 10.1007/s12274-020-2977-4

    49. [49]

      Huang, K.; Fu, H.; Shi, W.; Wang, H.; Cao, Y.; Yang, G.; Peng, F.; Wang, Q.; Liu, Z.; Zhang, B.; et al. J. Catal. 2019, 377, 283. doi: 10.1016/j.jcat.2019.06.047  doi: 10.1016/j.jcat.2019.06.047

    50. [50]

      Li, Z.; Fan, T.; Li, H.; Lu, X.; Ji, S.; Zhang, J.; Horton, J. H.; Xu, Q.; Zhu, J. Small 2022, 18, 2106614. doi: 10.1002/smll.202106614  doi: 10.1002/smll.202106614

    51. [51]

      Zhao, J.; Ji, S.; Guo, C.; Li, H.; Dong, J.; Guo, P.; Wang, D.; Li, Y.; Toste, F. D. Nat. Catal. 2021, 4, 523. doi: 10.1038/s41929-021-00637-7  doi: 10.1038/s41929-021-00637-7

    52. [52]

      Cao, T.; Lin, R.; Liu, S.; Cheong, W. -C. M.; Li, Z.; Wu, K.; Zhu, Y.; Wang, X.; Zhang, J.; Li, Q.; et al. Nano Res. 2022, 15, 3959. doi: 10.1007/s12274-022-4076-1  doi: 10.1007/s12274-022-4076-1

    53. [53]

      Li, W. H.; Ye, B. C.; Yang, J.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202209749. doi: 10.1002/anie.202209749  doi: 10.1002/anie.202209749

    54. [54]

      Xiong, Y.; Sun, W.; Han, Y.; Xin, P.; Zheng, X.; Yan, W.; Dong, J.; Zhang, J.; Wang, D.; Li, Y. Nano Res. 2021, 14, 2418. doi: 10.1007/s12274-020-3244-4  doi: 10.1007/s12274-020-3244-4

    55. [55]

      Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. J. Am. Chem. Soc. 2015, 137, 10484. doi: 10.1021/jacs.5b06485  doi: 10.1021/jacs.5b06485

    56. [56]

      Wang, G.; Chen, Z.; Wang, T.; Wang, D.; Mao, J. Angew. Chem. Int. Ed. 2022, e202210789. doi: 10.1002/anie.202210789  doi: 10.1002/anie.202210789

    57. [57]

      Sun, X.; Sun, L.; Li, G.; Tuo, Y.; Ye, C.; Yang, J.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y.; et al. Angew. Chem. Int. Ed. 2022, e202207677. doi: 10.1002/anie.202207677  doi: 10.1002/anie.202207677

    58. [58]

      Hu, B.; Huang, A.; Zhang, X.; Chen, Z.; Tu, R.; Zhu, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Li, Y. Nano Res. 2021, 14, 3482. doi: 10.1007/s12274-021-3535-4  doi: 10.1007/s12274-021-3535-4

    59. [59]

      Peng, J. -X.; Yang, W.; Jia, Z.; Jiao, L.; Jiang, H. -L. Nano Res. 2022, 15, 10063. doi: 10.1007/s12274-022-4467-3  doi: 10.1007/s12274-022-4467-3

    60. [60]

      Chen, Y.; Gao, R.; Ji, S.; Li, H.; Tang, K.; Jiang, P.; Hu, H.; Zhang, Z.; Hao, H.; Qu, Q.; et al. Angew. Chem. Int. Ed. 2021, 60, 3212. doi: 10.1002/anie.202012798  doi: 10.1002/anie.202012798

    61. [61]

      Sun, X.; Tuo, Y.; Ye, C.; Chen, C.; Lu, Q.; Li, G.; Jiang, P.; Chen, S.; Zhu, P.; Ma, M.; et al. Angew. Chem. Int. Ed. 2021, 60, 23614. doi: 10.1002/anie.202110433  doi: 10.1002/anie.202110433

    62. [62]

      Liang, J. -X.; Lin, J.; Liu, J.; Wang, X.; Zhang, T.; Li, J. Angew. Chem. Int. Ed. 2020, 59, 12868. doi: 10.1002/anie.201914867  doi: 10.1002/anie.201914867

    63. [63]

      Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Science 2016, 352, 797. doi: 10.1126/science.aaf5251  doi: 10.1126/science.aaf5251

    64. [64]

      Li, Z.; Zhang, M.; Zhang, L.; Dong, X.; Leng, L.; Horton, J. H.; Wang, J. Nano Res. 2022, 15, 1338. doi: 10.1007/s12274-021-3662-y  doi: 10.1007/s12274-021-3662-y

    65. [65]

      Hou, Z.; Dai, L.; Deng, J.; Zhao, G.; Jing, L.; Wang, Y.; Yu, X.; Gao, R.; Tian, X.; Dai, H.; et al. Angew. Chem. Int. Ed. 2022, 61, e202201655. doi: 10.1002/anie.202201655  doi: 10.1002/anie.202201655

    66. [66]

      Xiao, K.; Lin, R. -T.; Wei, J. -X.; Li, N.; Li, H.; Ma, T.; Liu, Z. -Q. Nano Res. 2022, 15, 4980. doi: 10.1007/s12274-022-4140-x  doi: 10.1007/s12274-022-4140-x

    67. [67]

      Zhou, X. Acta Phys. -Chim. Sin. 2020, 37, 2008064.  doi: 10.3866/PKU.WHXB202008064

    68. [68]

      Lin, L.; Wei, F.; Jiang, R.; Huang, Y.; Lin, S. Nano Res. 2022, 16, 309. doi: 10.1007/s12274-022-4800-x  doi: 10.1007/s12274-022-4800-x

    69. [69]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. W.; et al. Nature 2017, 544, 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    70. [70]

      Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021, 589, 396. doi: 10.1038/s41586-020-03130-6  doi: 10.1038/s41586-020-03130-6

    71. [71]

      Yang, J.; Li, W. H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 19085. doi: 10.1002/anie.202107123  doi: 10.1002/anie.202107123

    72. [72]

      Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058. doi: 10.1002/anie.201509241  doi: 10.1002/anie.201509241

    73. [73]

      Sun, X.; Chen, C.; Xiong, C.; Zhang, C.; Zheng, X.; Wang, J.; Gao, X.; Yu, Z. -Q.; Wu, Y. Nano Res. 2022, 16, 917. doi: 10.1007/s12274-022-4802-8  doi: 10.1007/s12274-022-4802-8

    74. [74]

      Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. J. Am. Chem. Soc. 2013, 135, 15314. doi: 10.1021/ja408574m  doi: 10.1021/ja408574m

    75. [75]

      Mao, J.; He, C. T.; Pei, J.; Chen, W.; He, D.; He, Y.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; et al. Nat. Commun. 2018, 9, 4958. doi: 10.1038/s41467-018-07288-6  doi: 10.1038/s41467-018-07288-6

    76. [76]

      Han, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 19262. doi: 10.1002/anie.202105186  doi: 10.1002/anie.202105186

    77. [77]

      Zheng, X.; Yang, J.; Xu, Z.; Wang, Q.; Wu, J.; Zhang, E.; Dou, S.; Sun, W.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202205946. doi: 10.1002/anie.202205946  doi: 10.1002/anie.202205946

    78. [78]

      Wang, Y.; Zheng, M.; Li, Y.; Ye, C.; Chen, J.; Ye, J.; Zhang, Q.; Li, J.; Zhou, Z.; Fu, X. Z.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115735. doi: 10.1002/anie.202115735  doi: 10.1002/anie.202115735

    79. [79]

      Yang, W.; Zhao, X.; Wang, Y.; Wang, R.; Yang, W.; Peng, Y.; Li, J. Nano Res. 2022, 16, 219. doi: 10.1007/s12274-022-4690-y  doi: 10.1007/s12274-022-4690-y

    80. [80]

      Wei, S.; Li, A.; Liu, J. C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W. C.; Wang, Y.; Zheng, L.; et al. Nat. Nanotechnol. 2018, 13, 856. doi: 10.1038/s41565-018-0197-9  doi: 10.1038/s41565-018-0197-9

    81. [81]

      Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. J. Mol. Catal. A: Chem. 1997, 115, 421. doi: 10.1016/S1381-1169(96)00348-2  doi: 10.1016/S1381-1169(96)00348-2

    82. [82]

      Liu, S.; Li, Z.; Wang, C.; Tao, W.; Huang, M.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L.; Chen, S.; et al. Nat. Commun. 2020, 11, 938. doi: 10.1038/s41467-020-14565-w  doi: 10.1038/s41467-020-14565-w

    83. [83]

      Sun, L.; Xu, J.; Liu, X.; Qiao, B.; Li, L.; Ren, Y.; Wan, Q.; Lin, J.; Lin, S.; Wang, X.; et al. ACS Catal. 2021, 11, 5942. doi: 10.1021/acscatal.1c00231  doi: 10.1021/acscatal.1c00231

    84. [84]

      Di, J.; Chen, C.; Yang, S. -Z.; Chen, S.; Duan, M.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z.; et al. Nat. Commun. 2019, 10, 2840 doi: 10.1038/s41467-019-10392-w  doi: 10.1038/s41467-019-10392-w

    85. [85]

      Meemken, F.; Baiker, A. Chem. Rev. 2017, 117, 11522. doi: 10.1021/acs.chemrev.7b00272  doi: 10.1021/acs.chemrev.7b00272

    86. [86]

      Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Chem. Rev. 2020, 120, 683. doi: 10.1021/acs.chemrev.9b00230  doi: 10.1021/acs.chemrev.9b00230

    87. [87]

      Li, Z.; Leng, L.; Lu, X.; Zhang, M.; Xu, Q.; Horton, J. H.; Zhu, J. Nano Res. 2022, 15, 3114. doi: 10.1007/s12274-021-4028-1  doi: 10.1007/s12274-021-4028-1

    88. [88]

      Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Science 2008, 320, 1320. doi: 10.1126/science.1156660  doi: 10.1126/science.1156660

    89. [89]

      Collins, B M. Selective Hydrogenation of Highly Unsaturated Hydrocarbons in The Presence of Less Unsaturated Hydrocarbons. US 4126645, 1978.

    90. [90]

      Vilé, G.; Albani, D.; Almora-Barrios, N.; López, N.; Pérez-Ramírez, J. ChemCatChem 2016, 8, 21. doi: 10.1002/cctc.201501269  doi: 10.1002/cctc.201501269

    91. [91]

      Bridier, B.; Lopez, N.; Perez-Ramirez, J. Dalton Trans. 2010, 39, 8412. doi: 10.1039/c0dt00010h  doi: 10.1039/c0dt00010h

    92. [92]

      McCue, A. J.; Guerrero-Ruiz, A.; Ramirez-Barria, C.; Rodríguez-Ramos, I.; Anderson, J. A. J. Catal. 2017, 355, 40. doi: 10.1016/j.jcat.2017.09.004  doi: 10.1016/j.jcat.2017.09.004

    93. [93]

      Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. ACS Catal. 2015, 5, 3717. doi: 10.1021/acscatal.5b00700  doi: 10.1021/acscatal.5b00700

    94. [94]

      Pei, G. X.; Liu, X. Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C. -Y. New J. Chem. 2014, 38, doi: 10.1039/c3nj01136d  doi: 10.1039/c3nj01136d

    95. [95]

      García-Mota, M.; Bridier, B.; Pérez-Ramírez, J.; López, N. J. Catal. 2010, 273, 92. doi: 10.1016/j.jcat.2010.04.018  doi: 10.1016/j.jcat.2010.04.018

    96. [96]

      Hamm, G.; Schmidt, T.; Breitbach, J.; Franke, D.; Becker, C.; Wandelt, K. Z. Phys. Chem. 2009, 223, 209. doi: 10.1524/zpch.2009.6033  doi: 10.1524/zpch.2009.6033

    97. [97]

      Hu, M.; Wu, Z.; Yao, Z.; Young, J.; Luo, L.; Du, Y.; Wang, C.; Iqbal, Z.; Wang, X. J. Catal. 2021, 395, 46. doi: 10.1016/j.jcat.2020.12.009  doi: 10.1016/j.jcat.2020.12.009

    98. [98]

      Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Ren, P.; Xiao, D.; Wen, X.; Wang, N.; et al. J. Am. Chem. Soc. 2018, 140, 13142. doi: 10.1021/jacs.8b07476  doi: 10.1021/jacs.8b07476

    99. [99]

      Huang, X.; Xia, Y.; Cao, Y.; Zheng, X.; Pan, H.; Zhu, J.; Ma, C.; Wang, H.; Li, J.; You, R.; et al. Nano Res. 2017, 10, 1302. doi: 10.1007/s12274-016-1416-z  doi: 10.1007/s12274-016-1416-z

    100. [100]

      Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 22522. doi: 10.1002/anie.202109538  doi: 10.1002/anie.202109538

    101. [101]

      Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Adv. Mater. 2019, 31, e1900509. doi: 10.1002/adma.201900509  doi: 10.1002/adma.201900509

    102. [102]

      Tew, M. W.; Janousch, M.; Huthwelker, T.; van Bokhoven, J. A. J. Catal. 2011, 283, 45. doi: 10.1016/j.jcat.2011.06.025  doi: 10.1016/j.jcat.2011.06.025

    103. [103]

      Lin, L.; Yao, S.; Gao, R.; Liang, X.; Yu, Q.; Deng, Y.; Liu, J.; Peng, M.; Jiang, Z.; Li, S.; et al. Nat. Nanotechnol. 2019, 14, 354. doi: 10.1038/s41565-019-0366-5  doi: 10.1038/s41565-019-0366-5

    104. [104]

      Blaser, H. -U.; Steiner, H.; Studer, M. ChemCatChem 2009, 1, 210. doi: 10.1002/cctc.200900129  doi: 10.1002/cctc.200900129

    105. [105]

      Ma, Y.; Ren, Y.; Zhou, Y.; Liu, W.; Baaziz, W.; Ersen, O.; Pham-Huu, C.; Greiner, M.; Chu, W.; Wang, A.; et al. Angew. Chem. Int. Ed. 2020, 59, 21613. doi: 10.1002/anie.202007707  doi: 10.1002/anie.202007707

    106. [106]

      Liu, Y.; Zhang, W.; Zheng, Y.; Wu, K.; Dong, P.; He, R.; Lu, N.; Mao, J. Dalton Trans. 2021, 50, 7995. doi: 10.1039/d1dt01227d  doi: 10.1039/d1dt01227d

    107. [107]

      Tian, S.; Hu, M.; Xu, Q.; Gong, W.; Chen, W.; Yang, J.; Zhu, Y.; Chen, C.; He, J.; Liu, Q.; et al. Sci. China Mater. 2021, 64, 642. doi: 10.1007/s40843-020-1443-8  doi: 10.1007/s40843-020-1443-8

    108. [108]

      Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D. Y. Appl. Catal. A-Gen. 2005, 292, 1. doi: 10.1016/j.apcata.2005.05.045  doi: 10.1016/j.apcata.2005.05.045

    109. [109]

      Lou, Y.; Zheng, Y.; Li, X.; Ta, N.; Xu, J.; Nie, Y.; Cho, K.; Liu, J. J. Am. Chem. Soc. 2019, 141, 19289. doi: 10.1021/jacs.9b06628  doi: 10.1021/jacs.9b06628

    110. [110]

      Feng, Y.; Long, S.; Chen, B.; Jia, W.; Xie, S.; Sun, Y.; Tang, X.; Yang, S.; Zeng, X.; Lin, L. ACS Catal. 2021, 11, 6398. doi: 10.1021/acscatal.1c01386  doi: 10.1021/acscatal.1c01386

    111. [111]

      Gilkey, M. J.; Xu, B. ACS Catal. 2016, 6, 1420. doi: 10.1021/acscatal.5b02171  doi: 10.1021/acscatal.5b02171

    112. [112]

      Ji, S.; Chen, Y.; Zhang, Z.; Cheong, W. -C.; Liu, Z.; Wang, D.; Li, Y. Nanoscale Horiz. 2019, 4, 902. doi: 10.1039/c9nh00036d  doi: 10.1039/c9nh00036d

    113. [113]

      Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981. doi: 10.1021/acs.chemrev.7b00776  doi: 10.1021/acs.chemrev.7b00776

    114. [114]

      Jin, J.; Han, X.; Fang, Y.; Zhang, Z.; Li, Y.; Zhang, T.; Han, A.; Liu, J. Adv. Funct. Mater. 2022, 32, 2109218. doi: 10.1002/adfm.202109218  doi: 10.1002/adfm.202109218

    115. [115]

      Li, T.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J.; Huang, J.; Sun, H.; Haruta, M.; et al. Angew. Chem. Int. Ed. 2018, 57, 7795. doi: 10.1002/anie.201803272  doi: 10.1002/anie.201803272

    116. [116]

      Lei, L.; Liu, H.; Wu, Z.; Qin, Z.; Wang, G.; Ma, J.; Luo, L.; Fan, W.; Wang, J. ACS Appl. Nano Mater. 2019, 2, 5214. doi: 10.1021/acsanm.9b01091  doi: 10.1021/acsanm.9b01091

    117. [117]

      Xin, P.; Li, J.; Xiong, Y.; Wu, X.; Dong, J.; Chen, W.; Wang, Y.; Gu, L.; Luo, J.; Rong, H.; et al. Angew. Chem. Int. Ed. 2018, 57, 4642. doi: 10.1002/anie.201801103  doi: 10.1002/anie.201801103

    118. [118]

      Shang, Q.; Tang, N.; Qi, H.; Chen, S.; Xu, G.; Wu, C.; Pan, X.; Wang, X.; Cong, Y. Chin. J. Catal. 2020, 41, 1812. doi: 10.1016/s1872-2067(20)63651-8  doi: 10.1016/s1872-2067(20)63651-8

    119. [119]

      Otake, K. -i.; Cui, Y.; Buru, C. T.; Li, Z.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2018, 140, 8652. doi: 10.1021/jacs.8b05107  doi: 10.1021/jacs.8b05107

    120. [120]

      Li, M.; Wu, S.; Yang, X.; Hu, J.; Peng, L.; Bai, L.; Huo, Q.; Guan, J. Appl. Catal. A-Gen. 2017, 543, 61. doi: 10.1016/j.apcata.2017.06.018  doi: 10.1016/j.apcata.2017.06.018

    121. [121]

      Xie, J.; Yin, K.; Serov, A.; Artyushkova, K.; Pham, H. N.; Sang, X.; Unocic, R. R.; Atanassov, P.; Datye, A. K.; Davis, R. J. ChemSusChem 2017, 10, 359. doi: 10.1002/cssc.201601364  doi: 10.1002/cssc.201601364

    122. [122]

      Chen, Y.; Lin, J.; Wang, X. Chem. Commun. 2021, 58, 208. doi: 10.1039/d1cc04051k  doi: 10.1039/d1cc04051k

    123. [123]

      Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935. doi: 10.1126/science.1085721  doi: 10.1126/science.1085721

    124. [124]

      Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Science 2014, 346, 1498. doi: 10.1126/science.1260526  doi: 10.1126/science.1260526

    125. [125]

      Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; et al. Science 2010, 329, 1633. doi: 10.1126/science.1192449  doi: 10.1126/science.1192449

    126. [126]

      Chen, Y.; Lin, J.; Li, L.; Qjao, B.; Liu, J.; Su, Y.; Wang, X. ACS Catal. 2018, 8, 859. doi: 10.1021/acscatal.7b02751  doi: 10.1021/acscatal.7b02751

    127. [127]

      Sun, X.; Lin, J.; Zhou, Y.; Li, L.; Su, Y.; Wang, X.; Zhang, T. AIChE J. 2017, 63, 4022. doi: 10.1002/aic.15759  doi: 10.1002/aic.15759

    128. [128]

      Li, T.; Chen, F.; Lang, R.; Wang, H.; Su, Y.; Qiao, B.; Wang, A.; Zhang, T. Angew. Chem. Int. Ed. 2020, 59, 7430. doi: 10.1002/anie.202000998  doi: 10.1002/anie.202000998

    129. [129]

      Guan, H.; Lin, J.; Qiao, B.; Miao, S.; Wang, A. -Q.; Wang, X.; Zhang, T. AIChE J. 2017, 63, 2081. doi: 10.1002/aic.15585  doi: 10.1002/aic.15585

    130. [130]

      Li, J.; Sun, L.; Wan, Q.; Lin, J.; Lin, S.; Wang, X. J. Phys. Chem. Lett. 2021, 12, 11415. doi: 10.1021/acs.jpclett.1c02762  doi: 10.1021/acs.jpclett.1c02762

    131. [131]

      Siyu Yao; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357, 389. doi: 10.1126/science.aah4321  doi: 10.1126/science.aah4321

    132. [132]

      Dong, J.; Fu, Q.; Jiang, Z.; Mei, B.; Bao, X. J. Am. Chem. Soc. 2018, 140, 13808. doi: 10.1021/jacs.8b08246  doi: 10.1021/jacs.8b08246

    133. [133]

      Franke, R.; Selent, D.; Borner, A. Chem. Rev. 2012, 112, 5675. doi: 10.1021/cr3001803  doi: 10.1021/cr3001803

    134. [134]

      Hanf, S.; Alvarado Rupflin, L.; Glaeser, R.; Schunk, S. A. Catalysts 2020, 10, 510. doi: 10.3390/catal10050510  doi: 10.3390/catal10050510

    135. [135]

      Li, C.; Yan, L.; Lu, L.; Xiong, K.; Wang, W.; Jiang, M.; Liu, J.; Song, X.; Zhan, Z.; Jiang, Z.; et al. Green Chem. 2016, 18, 2995. doi: 10.1039/c6gc00728g  doi: 10.1039/c6gc00728g

    136. [136]

      Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F. S. J. Am. Chem. Soc. 2015, 137, 5204. doi: 10.1021/jacs.5b02122  doi: 10.1021/jacs.5b02122

    137. [137]

      Zhao, K.; Wang, H.; Wang, X.; Li, T.; Dai, X.; Zhang, L.; Cui, X.; Shi, F. J. Catal. 2021, 401, 321. doi: 10.1016/j.jcat.2021.08.004  doi: 10.1016/j.jcat.2021.08.004

    138. [138]

      Li, C.; Sun, K.; Wang, W.; Yan, L.; Sun, X.; Wang, Y.; Xiong, K.; Zhan, Z.; Jiang, Z.; Ding, Y. J. Catal. 2017, 353, 123. doi: 10.1016/j.jcat.2017.07.022  doi: 10.1016/j.jcat.2017.07.022

    139. [139]

      Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y. -T.; Tan, Y.; Qiao, B.; Li, L.; Wang, A.; et al. Angew. Chem. Int. Ed. 2016, 55, 16054. doi: 10.1002/anie.201607885  doi: 10.1002/anie.201607885

    140. [140]

      Gao, P.; Liang, G.; Ru, T.; Liu, X.; Qi, H.; Wang, A.; Chen, F. -E. Nat. Commun. 2021, 12, 4698. doi: 10.1038/s41467-021-25061-0  doi: 10.1038/s41467-021-25061-0

    141. [141]

      Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; et al. Nat. Commun. 2016, 7, 14036. doi: 10.1038/ncomms14036  doi: 10.1038/ncomms14036

    142. [142]

      Wei, B.; Liu, X.; Hua, K.; Deng, Y.; Wang, H.; Sun, Y. ACS Appl. Mater. Interfaces 2021, 13, 15113. doi: 10.1021/acsami.0c21749  doi: 10.1021/acsami.0c21749

    143. [143]

      Tang, P.; Paganelli, S.; Carraro, F.; Blanco, M.; Ricco, R.; Marega, C.; Badocco, D.; Pastore, P.; Doonan, C. J.; Agnoli, S. ACS Appl. Mater. Interfaces 2020, 12, 54798. doi: 10.1021/acsami.0c17073  doi: 10.1021/acsami.0c17073

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    3. [3]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    6. [6]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    7. [7]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    8. [8]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    11. [11]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    12. [12]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    13. [13]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    14. [14]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    15. [15]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    16. [16]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    18. [18]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    19. [19]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    20. [20]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

Metrics
  • PDF Downloads(14)
  • Abstract views(866)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return