Citation: Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221201. doi: 10.3866/PKU.WHXB202212016 shu

Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution

  • Corresponding author: Xinhe Wu, wuxinhe@hbnu.edu.cn Guohong Wang, wanggh2003@163.com
  • Received Date: 9 December 2022
    Revised Date: 1 January 2023
    Accepted Date: 2 January 2023
    Available Online: 6 January 2023

    Fund Project: the National Natural Science Foundation of China 22075072the National Natural Science Foundation of China 52003079Hubei Provincial Natural Science Foundation of China 2022CFC060Hubei Provincial Natural Science Foundation of China 2021CFB569the Research Project of Hubei Provincial Department of Education Q20212502

  • With the gradual depletion of conventional fossil fuels, serious energy shortage has become a major societal challenge. Among the numerous new energy generation technologies, photocatalytic water splitting for hydrogen production only requires abundant solar energy as the driving force and the process conditions are mild, green, and pollution-free. Thus, this technology has been proposed as an effective strategy to solve the current energy shortage crisis. The core of the photocatalytic hydrogen production technology is the photocatalyst. Therefore, it is necessary to develop efficient and stable photocatalysts. However, single-component photocatalysts usually exhibit insufficient photocatalytic H2 evolution efficiencies owing to its rapid hole-electron recombination, limited redox ability and low solar energy utilization efficiency. Therefore, various modification approaches have been designed to improve the photocatalytic H2 evolution efficiency of single-component photocatalysts, such as element doping, cocatalyst modification, heterojunction construction, etc. Generally, element doping and cocatalyst modification improve the photocatalytic hydrogen production activity but cannot effectively solve the drawbacks of single-component photocatalysts, which limits their ability to improve the photocatalytic performance. However, constructing heterojunctions between two or more semiconductors simultaneously resolves these drawbacks. Compared with currently used conventional type-Ⅱ all-solid-state Z-scheme, and liquid-phase Z-scheme heterojunctions, S-scheme heterojunctions present a more reasonable charge transfer mechanism, which is of great concern to and extensively used by several researchers. Therefore, this review firstly introduces the research background on S-scheme heterojunction photocatalytic systems, including the photocatalytic charge transfer mechanism of conventional type-Ⅱ, all-solid-state Z-scheme, and liquid-phase Z-scheme heterojunction systems. Subsequently, the photocatalytic mechanism of S-scheme heterojunctions is meticulously explained. Additionally, the corresponding characterization methods, including in situ irradiated X-ray photoelectron spectroscopy (ISIXPS), Kelvin probe force microscopy (KPFM), selective deposition, electron paramagnetic resonance (EPR), density functional theory (DFT) calculations, etc., are briefly summarized. Moreover, currently reported photocatalytic water splitting S-scheme heterojunctions and the corresponding significant enhancement in the hydrogen evolution mechanism are systematically summarized, including g-C3N4-, metal sulfide-, TiO2-, other oxide-, and other S-scheme heterojunction-based photocatalysts. Notably, S-scheme heterojunction photocatalysts typically exhibit highly improved photocatalytic H2 evolution performance owing to their effective carrier separation and enhanced photoredox capacities. Finally, the bottlenecks of developing S-scheme heterojunctions for photocatalytic H2 production are presented, which require further investigation to enhance the photocatalytic efficiency of S-scheme heterojunctions for achieving industrial application standards.
  • 加载中
    1. [1]

      Hasija, V.; Kumar, A.; Sudhaik, A.; Raizada, P.; Singh, P.; Van Le, Q.; Le, T. T.; Nguyen, V. H. Environ. Chem. Lett. 2021, 19, 2941. doi: 10.1007/s10311-021-01231-w  doi: 10.1007/s10311-021-01231-w

    2. [2]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473  doi: 10.1021/acs.chemrev.1c00473

    3. [3]

      Kumar, A.; Khosla, A.; Kumar Sharma, S.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F. J. Fuel 2023, 333, 126267. doi: 10.1016/j.fuel.2022.126267  doi: 10.1016/j.fuel.2022.126267

    4. [4]

      Abutaleb, A. Polymer 2021, 13, 2290. doi: 10.3390/polym13142290  doi: 10.3390/polym13142290

    5. [5]

      Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Angew. Chem. Int. Edit. 2016, 55, 5414. doi: 10.1002/anie.201505581  doi: 10.1002/anie.201505581

    6. [6]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.3866/PKU.WHXB202112037

    7. [7]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G  doi: 10.1039/B800489G

    8. [8]

      Wazir, M. B.; Daud, M.; Safeer, S.; Almarzooqi, F.; Qurashi, A. ACS Omega 2022, 7, 16856. doi: 10.1021/acsomega.2c00330  doi: 10.1021/acsomega.2c00330

    9. [9]

      Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. EnergyChem 2021, 3, 100051. doi: 10.1016/j.enchem.2021.100051  doi: 10.1016/j.enchem.2021.100051

    10. [10]

      Purohit, S.; Yadav, K. L.; Satapathi, S. Adv. Mater. Interfaces 2022, 9, 2200058. doi: 10.1002/admi.202200058  doi: 10.1002/admi.202200058

    11. [11]

      Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J. B.; Yu, J. Green Chem. 2022, 24, 5739. doi: 10.1039/D2GC01684B  doi: 10.1039/D2GC01684B

    12. [12]

      Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.; Bai, X.; Low, J. Appl. Mater. Today 2022, 29, 101609. doi: 10.1016/j.apmt.2022.101609  doi: 10.1016/j.apmt.2022.101609

    13. [13]

      Xiang, X.; Wang, L.; Zhang, J.; Cheng, B.; Yu, J.; Macyk, W. Adv. Photonics Res. 2022, 3, 2200065. doi: 10.1002/adpr.202200065  doi: 10.1002/adpr.202200065

    14. [14]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    15. [15]

      Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi: 10.1002/adma.202108475  doi: 10.1002/adma.202108475

    16. [16]

      Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, 202212045. doi: 10.1002/anie.202212045  doi: 10.1002/anie.202212045

    17. [17]

      Gao, D.; Xu, J.; Chen, F.; Wang, P.; Yu, H. Appl. Catal. B: Environ. 2022, 305, 121053. doi: 10.1016/j.apcatb.2021.121053  doi: 10.1016/j.apcatb.2021.121053

    18. [18]

      Wu, X.; Ma, H.; Zhong, W.; Fan, J.; Yu, H. Appl. Catal. B: Environ. 2020, 271, 118899. doi: 10.1016/j.apcatb.2020.118899  doi: 10.1016/j.apcatb.2020.118899

    19. [19]

      Yu, W.; Zhang, S.; Chen, J.; Xia, P.; Richter, M. H.; Chen, L.; Xu, W.; Jin, J.; Chen, S.; Peng, T. J. Mater. Chem. A 2018, 6, 15668. doi: 10.1039/C8TA02922A  doi: 10.1039/C8TA02922A

    20. [20]

      Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/D2TA05181H  doi: 10.1039/D2TA05181H

    21. [21]

      Wu, X.; Gao, D.; Wang, P.; Yu, H.; Yu, J. Carbon 2019, 153, 757. doi: 10.1016/j.carbon.2019.07.083  doi: 10.1016/j.carbon.2019.07.083

    22. [22]

      Wageh, S.; Al-Ghamdi, A. A.; Xu, Q. Acta Phys. -Chim. Sin. 2022, 38, 2202001.  doi: 10.3866/PKU.WHXB202202001

    23. [23]

      Wu, X.; Gao, D.; Yu, H.; Yu, J. Nanoscale 2019, 11, 9608. doi: 10.1039/C9NR00887J  doi: 10.1039/C9NR00887J

    24. [24]

      Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Chem. Eng. J. 2022, 439, 135758. doi: 10.1016/j.cej.2022.135758  doi: 10.1016/j.cej.2022.135758

    25. [25]

      Zhong, W.; Wu, X.; Liu, Y.; Wang, X.; Fan, J.; Yu, H. Appl. Catal. B: Environ. 2021, 280, 119455. doi: 10.1016/j.apcatb.2020.119455  doi: 10.1016/j.apcatb.2020.119455

    26. [26]

      Wu, X.; Chen, F.; Wang, X.; Yu, H. Appl. Surf. Sci. 2018, 427, 645. doi: 10.1016/j.apsusc.2017.08.050  doi: 10.1016/j.apsusc.2017.08.050

    27. [27]

      Yu, H.; Ma, H.; Wu, X.; Wang, X.; Fan, J.; Yu, J. Sol. RRL 2020, 5, 2000372. doi: 10.1002/solr.202000372  doi: 10.1002/solr.202000372

    28. [28]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    29. [29]

      Xia, Y.; Sayed, M.; Zhang, L.; Cheng, B.; Yu, J. Chem. Catal. 2021, 1, 1173. doi: 10.1016/j.checat.2021.08.009  doi: 10.1016/j.checat.2021.08.009

    30. [30]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    31. [31]

      Serpone, N.; Borgarello, E.; Grätzel, M. J. Chem. Soc., Chem. Commun. 1984, 6, 342. doi: 10.1039/C39840000342  doi: 10.1039/C39840000342

    32. [32]

      Bard, A. J. J. Photochem. 1979, 10, 59. doi: 10.1016/0047-2670(79)80037-4  doi: 10.1016/0047-2670(79)80037-4

    33. [33]

      Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. J. Photochem. Photobiol. A: Chem. 2002, 148, 71. doi: 10.1016/S1010-6030(02)00070-9  doi: 10.1016/S1010-6030(02)00070-9

    34. [34]

      Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. J. Am. Chem. Soc. 2013, 135, 16872. doi: 10.1021/ja4048637  doi: 10.1021/ja4048637

    35. [35]

      Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. Nat. Mater. 2006, 5, 782. doi: 10.1038/nmat1734  doi: 10.1038/nmat1734

    36. [36]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B: Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    37. [37]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    38. [38]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    39. [39]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J Catal. 2022, 43, 1657. doi: 10.1016/S1872-2067(21)64010-X  doi: 10.1016/S1872-2067(21)64010-X

    40. [40]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    41. [41]

      Wang, L.; Zhang, J.; Yu, H.; Patir, I. H.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 4695. doi: 10.1021/acs.jpclett.2c01332  doi: 10.1021/acs.jpclett.2c01332

    42. [42]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    43. [43]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125  doi: 10.1021/acs.jpclett.2c02125

    44. [44]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    45. [45]

      Yu, W.; Fu, H. J.; Mueller, T.; Brunschwig, B. S.; Lewis, N. S. J. Chem. Phys. 2020, 153, 020902. doi: 10.1063/5.0009858  doi: 10.1063/5.0009858

    46. [46]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    47. [47]

      Yang, J.; Wu, X.; Mei, Z.; Zhou, S.; Su, Y.; Wang, G. Adv. Sustain. Syst. 2022, 8, 2200056. doi: 10.1002/adsu.202200056  doi: 10.1002/adsu.202200056

    48. [48]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    49. [49]

      Wu, X.; Ma, H.; Wang, K.; Wang, J.; Wang, G.; Yu, H. J. Colloid Interface Sci. 2023, 633, 817. doi: 10.1016/j.jcis.2022.11.143  doi: 10.1016/j.jcis.2022.11.143

    50. [50]

      Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15. doi: 10.1016/j.jmst.2021.12.018  doi: 10.1016/j.jmst.2021.12.018

    51. [51]

      Vignesh, S.; Chandrasekaran, S.; Srinivasan, M.; Anbarasan, R.; Perumalsamy, R.; Arumugam, E.; Shkir, M.; Algarni, H.; AlFaify, S. Chemosphere 2022, 288, 132611. doi: 10.1016/j.chemosphere.2021.132611  doi: 10.1016/j.chemosphere.2021.132611

    52. [52]

      Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2020.126498  doi: 10.1016/j.cej.2020.126498

    53. [53]

      Gogoi, D.; Shah, A. K.; Qureshi, M.; Golder, A. K.; Peela, N. R. Appl. Surf. Sci. 2021, 558, 149900. doi: 10.1016/j.apsusc.2021.149900  doi: 10.1016/j.apsusc.2021.149900

    54. [54]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.  doi: 10.3866/PKU.WHXB202108028

    55. [55]

      Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci. Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030  doi: 10.1016/j.jmst.2021.10.030

    56. [56]

      Chen, X.; Hu, T.; Zhang, J.; Yang, C.; Dai, K.; Pan, C. J. Alloy. Compd. 2021, 863, 158068. doi: 10.1016/j.jallcom.2020.158068  doi: 10.1016/j.jallcom.2020.158068

    57. [57]

      Sun, H.; Shi, Y.; Shi, W.; Guo, F. Appl. Surf. Sci. 2022, 593, 153281. doi: 10.1016/j.apsusc.2022.153281  doi: 10.1016/j.apsusc.2022.153281

    58. [58]

      Feng, K.; Tian, J.; Hu, X.; Fan, J.; Liu, E. Int. J. Hydrog. Energ. 2022, 47, 4601. doi: 10.1016/j.ijhydene.2021.11.095  doi: 10.1016/j.ijhydene.2021.11.095

    59. [59]

      Zhang, B.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2021, 42, 1519. doi: 10.1016/S1872-2067(20)63765-2  doi: 10.1016/S1872-2067(20)63765-2

    60. [60]

      Chen, D.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Phys. D: Appl. Phys. 2022, 55, 244001. doi: 10.1088/1361-6463/ac58d0  doi: 10.1088/1361-6463/ac58d0

    61. [61]

      Li, C.; Zhao, Y.; Fan, J.; Hu, X.; Liu, E.; Yu, Q. J. Alloy. Compd. 2022, 919, 165752. doi: 10.1016/j.jallcom.2022.165752  doi: 10.1016/j.jallcom.2022.165752

    62. [62]

      Liu, J.; Wei, X.; Sun, W.; Guan, X.; Zheng, X.; Li, J. Environ. Res. 2021, 197, 111136. doi: 10.1016/j.envres.2021.111136  doi: 10.1016/j.envres.2021.111136

    63. [63]

      Liu, Q.; He, X.; Peng, J.; Yu, X.; Tang, H.; Zhang, J. Chin. J. Catal. 2021, 42, 1478. doi: 10.1016/S1872-2067(20)63753-6  doi: 10.1016/S1872-2067(20)63753-6

    64. [64]

      Zhou, H.; Ke, J.; Wu, H.; Liu, J.; Xu, D.; Zou, X. Mater. Today Energy 2022, 23, 100918. doi: 10.1016/j.mtener.2021.100918  doi: 10.1016/j.mtener.2021.100918

    65. [65]

      Dong, G.; Zhang, Y.; Wang, Y.; Deng, Q.; Qin, C.; Hu, Y.; Zhou, Y.; Tian, G. ACS Appl. Energy Mater. 2021, 4, 14342. doi: 10.1021/acsaem.1c03019  doi: 10.1021/acsaem.1c03019

    66. [66]

      Zhang, B.; Shi, H.; Yan, Y.; Liu, C.; Hu, X.; Liu, E.; Fan, J. Colloid. Surface. A 2021, 608, 125598. doi: 10.1016/j.colsurfa.2020.125598  doi: 10.1016/j.colsurfa.2020.125598

    67. [67]

      Li, B.; Zhang, B.; Zhang, Y.; Zhang, M.; Huang, W.; Yu, C.; Sun, J.; Feng, J.; Dong, S.; Sun, J. Int. J. Hydrog. Energy 2021, 46, 32413. doi: 10.1016/j.ijhydene.2021.07.090  doi: 10.1016/j.ijhydene.2021.07.090

    68. [68]

      Chen, X.; Ke, X.; Zhang, J.; Yang, C.; Dai, K.; Liang, C. Ceram. Int. 2021, 47, 13488. doi: 10.1016/j.ceramint.2021.01.207  doi: 10.1016/j.ceramint.2021.01.207

    69. [69]

      Zhang, Q.; Bai, X.; Hu, X.; Fan, J.; Liu, E. Appl. Surf. Sci. 2022, 579, 152224. doi: 10.1016/j.apsusc.2021.152224  doi: 10.1016/j.apsusc.2021.152224

    70. [70]

      Wang, H.; Zhao, Y.; Zhan, X.; Yu, J.; Chen, L.; Sun, Y.; Shi, H. J. Alloy. Compd. 2022, 899, 163250. doi: 10.1016/j.jallcom.2021.163250  doi: 10.1016/j.jallcom.2021.163250

    71. [71]

      Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671  doi: 10.1016/j.nanoen.2020.105671

    72. [72]

      Ran, Y.; Cui, Y.; Zhang, Y.; Fang, Y.; Zhang, W.; Yu, X.; Lan, H.; An, X. Chem. Eng. J. 2022, 431, 133348. doi: 10.1016/j.cej.2021.133348  doi: 10.1016/j.cej.2021.133348

    73. [73]

      Chen, L.; Xu, Y.; Chen, B. Appl. Catal. B: Environ. 2019, 256, 117848. doi: 10.1016/j.apcatb.2019.117848  doi: 10.1016/j.apcatb.2019.117848

    74. [74]

      Wang, Y.; Hao, X.; Zhang, L.; Jin, Z.; Zhao, T. Catal. Sci. Technol. 2021, 11, 943. doi: 10.1039/D0CY02009E  doi: 10.1039/D0CY02009E

    75. [75]

      Mu, F.; Miao, X.; Cao, J.; Zhao, W.; Yang, G.; Zeng, H.; Li, S.; Sun, C. J. Clean. Prod. 2022, 360, 131948. doi: 10.1016/j.jclepro.2022.131948  doi: 10.1016/j.jclepro.2022.131948

    76. [76]

      Zhang, G.; Guan, Z.; Yang, J.; Li, Q.; Zhou, Y.; Zou, Z. Sol. RRL 2022, 6, 2200587. doi: 10.1002/solr.202200587  doi: 10.1002/solr.202200587

    77. [77]

      Gao, L.; Liu, J.; Long, H.; Wang, P.; Yu, H. Catal. Sci. Technol. 2021, 11, 7307. doi: 10.1039/D1CY01581H  doi: 10.1039/D1CY01581H

    78. [78]

      Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Chem. Soc. Rev. 2019, 48, 4178. doi: 10.1039/C8CS00664D  doi: 10.1039/C8CS00664D

    79. [79]

      Kulkarni, P.; Nataraj, S. K.; Balakrishna, R. G.; Nagaraju, D. H.; Reddy, M. V. J. Mater. Chem. A 2017, 5, 22040. doi: 10.1039/C7TA07329A  doi: 10.1039/C7TA07329A

    80. [80]

      Gogoi, D.; Shah, A. K.; Rambabu, P.; Qureshi, M.; Golder, A. K.; Peela, N. R. ACS Appl. Mater. Interfaces 2021, 13, 45475. doi: 10.1021/acsami.1c11740  doi: 10.1021/acsami.1c11740

    81. [81]

      Güy, N.; Atacan, K.; Özacar, M. Renew. Energy 2022, 195, 107. doi: 10.1016/j.renene.2022.05.171  doi: 10.1016/j.renene.2022.05.171

    82. [82]

      Cao, Y.; Wang, G.; Liu, H.; Li, Y.; Jin, Z.; Ma, Q. Int. J. Hydrog. Energy 2021, 46, 7230. doi: 10.1016/j.ijhydene.2020.11.214  doi: 10.1016/j.ijhydene.2020.11.214

    83. [83]

      Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem. Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488  doi: 10.1016/j.cej.2022.137488

    84. [84]

      Wang, G.; Quan, Y.; Yang, K.; Jin, Z. J. Mater. Sci. Technol. 2022, 121, 28. doi: 10.1016/j.jmst.2021.11.073  doi: 10.1016/j.jmst.2021.11.073

    85. [85]

      Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003  doi: 10.1016/j.jmst.2021.11.003

    86. [86]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/S1872-2067(21)63883-4  doi: 10.1016/S1872-2067(21)63883-4

    87. [87]

      Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 303. doi: 10.1016/S1872-2067(21)63818-4  doi: 10.1016/S1872-2067(21)63818-4

    88. [88]

      Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X.; Liu, Q. Rare Met. 2021, 40, 2381. doi: 10.1007/s12598-020-01616-w  doi: 10.1007/s12598-020-01616-w

    89. [89]

      Sun, L.; Li, L.; Yang, J.; Fan, J.; Xu, Q. Chin. J. Catal. 2022, 43, 350. doi: 10.1016/S1872-2067(21)63869-X  doi: 10.1016/S1872-2067(21)63869-X

    90. [90]

      Xu, Z.; Shi, W.; Shi, Y.; Sun, H.; Li, L.; Guo, F.; Wen, H. Appl. Surf. Sci. 2022, 595, 153482. doi: 10.1016/j.apsusc.2022.153482  doi: 10.1016/j.apsusc.2022.153482

    91. [91]

      Peng, J.; Shen, J.; Yu, X.; Tang, H.; Zulfiqar; Liu, Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/S1872-2067(20)63595-1  doi: 10.1016/S1872-2067(20)63595-1

    92. [92]

      Xiong, Y.; Liu, T.; Wang, X.; Liu, W.; Xue, Y.; Zhang, X.; Xiong, C.; Tian, J. J. Alloy. Compd. 2022, 918, 165652. doi: 10.1016/j.jallcom.2022.165652  doi: 10.1016/j.jallcom.2022.165652

    93. [93]

      Liu, Y.; Sun, J.; Zhou, X.; Lv, C.; Zhou, Y.; Cong, B.; Chen, G. Chem. Eng. J. 2022, 437, 135280. doi: 10.1016/j.cej.2022.135280  doi: 10.1016/j.cej.2022.135280

    94. [94]

      Yang, H.; Meng, A. L.; Yang, L. -N.; Li, Z. -J. Chem. Eng. J. 2022, 432, 134371. doi: 10.1016/j.cej.2021.134371  doi: 10.1016/j.cej.2021.134371

    95. [95]

      Wang, L.; Zhang, Z.; Xu, X.; Yu, L.; Yang, T.; Zhang, X.; Zhang, Y.; Zhu, H.; Li, J.; Zhang, J. J. Alloy. Compd. 2022, 926, 166981. doi: 10.1016/j.jallcom.2022.166981  doi: 10.1016/j.jallcom.2022.166981

    96. [96]

      Zhang, B.; Shi, H.; Hu, X.; Wang, Y.; Liu, E.; Fan, J. J. Phys. D: Appl. Phys. 2020, 53, 205101. doi: 10.1088/1361-6463/ab7563  doi: 10.1088/1361-6463/ab7563

    97. [97]

      Li, C.; Liu, X.; Huo, P.; Yan, Y.; Liao, G.; Ding, G.; Liu, C. Small 2021, 17, 2102539. doi: 10.1002/smll.202102539  doi: 10.1002/smll.202102539

    98. [98]

      Tayyab, M.; Liu, Y.; Liu, Z.; Pan, L.; Xu, Z.; Yue, W.; Zhou, L.; Lei, J.; Zhang, J. J. Colloid Interface Sci. 2022, 628, 500. doi: 10.1016/j.jcis.2022.08.071  doi: 10.1016/j.jcis.2022.08.071

    99. [99]

      Wang, K.; Xie, H.; Li, Y.; Wang, G.; Jin, Z. J. Colloid Interface Sci. 2022, 628, 64. doi: 10.1016/j.jcis.2022.08.001  doi: 10.1016/j.jcis.2022.08.001

    100. [100]

      Shao, X.; Wang, K.; Peng, L.; Li, K.; Wen, H.; Le, X.; Wu, X.; Wang, G. Colloid. Surfaces A 2022, 652, 129846. doi: 10.1016/j.colsurfa.2022.129846  doi: 10.1016/j.colsurfa.2022.129846

    101. [101]

      Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. Chin. J. Catal. 2020, 41, 122. doi: 10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    102. [102]

      Zhang, J.; Gu, H.; Wang, X.; Zhang, H.; Chang, S.; Li, Q.; Dai, W. L. J. Colloid Interface Sci. 2022, 625, 785. doi: 10.1016/j.jcis.2022.06.074  doi: 10.1016/j.jcis.2022.06.074

    103. [103]

      Liu, L.; Wu, Y.; Song, R.; Zhang, Y.; Ma, Y.; Wan, J.; Zhang, M.; Cui, H.; Yang, H.; Chen, X.; et al. J. Colloid Interface Sci. 2022, 628, 701. doi: 10.1016/j.jcis.2022.08.109  doi: 10.1016/j.jcis.2022.08.109

    104. [104]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    105. [105]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016  doi: 10.1016/j.jmst.2021.10.016

    106. [106]

      Peiris, S.; de Silva, H. B.; Ranasinghe, K. N.; Bandara, S. V.; Perera, I. R. J. Chin. Chem. Soc. 2021, 68, 738. doi: 10.1002/jccs.202000465  doi: 10.1002/jccs.202000465

    107. [107]

      Zhang, Y. -P.; Han, W.; Yang, Y.; Zhang, H. -Y.; Wang, Y.; Wang, L.; Sun, X. J.; Zhang, F. M. Chem. Eng. J. 2022, 446, 137213. doi: 10.1016/j.cej.2022.137213  doi: 10.1016/j.cej.2022.137213

    108. [108]

      Alnaggar, G.; Alkanad, K.; Chandrashekar, S. S. G.; Bajiri, M. A.; Drmosh, Q. A.; Krishnappagowda, L. N.; Ananda, S. New J. Chem. 2022, 46, 9629. doi: 10.1039/D2NJ00173J  doi: 10.1039/D2NJ00173J

    109. [109]

      Shaheer, A. R. M.; Vinesh, V.; Lakhera, S. K.; Neppolian, B. Sol. Energy 2021, 213, 260. doi: 10.1016/j.solener.2020.11.030  doi: 10.1016/j.solener.2020.11.030

    110. [110]

      Chen, L.; Song, X.; Ren, J.; Yuan, Z. Appl. Catal. B: Environ. 2022, 315, 121546. doi: 10.1016/j.apcatb.2022.121546  doi: 10.1016/j.apcatb.2022.121546

    111. [111]

      Yang, W.; Ma, G.; Fu, Y.; Peng, K.; Yang, H.; Zhan, X.; Yang, W.; Wang, L.; Hou, H. Chem. Eng. J. 2022, 429, 132381. doi: 10.1016/j.cej.2021.132381  doi: 10.1016/j.cej.2021.132381

    112. [112]

      Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. ChemCatChem 2019, 11, 6301. doi: 10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    113. [113]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    114. [114]

      Li, J.; Wu, C.; Li, J.; Dong, B.; Zhao, L.; Wang, S. Chin. J. Catal. 2022, 43, 339. doi: 10.1016/S1872-2067(21)63875-5  doi: 10.1016/S1872-2067(21)63875-5

    115. [115]

      Alsalme, A.; Galal, A. H.; El-Sherbeny, E. F.; Soltan, A.; Abdel-Messih, M. F.; Ahmed, M. A. Diam. Relat. Mater. 2022, 122, 108819. doi: 10.1016/j.diamond.2022.108819  doi: 10.1016/j.diamond.2022.108819

    116. [116]

      Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Liu, E. Appl. Surf. Sci. 2022, 599, 153900. doi: 10.1016/j.apsusc.2022.153900  doi: 10.1016/j.apsusc.2022.153900

    117. [117]

      Ai, Z.; Zhang, K.; Xu, L.; Huang, M.; Shi, D.; Shao, Y.; Shen, J.; Wu, Y.; Hao, X. J. Colloid Interface Sci. 2022, 610, 13. doi: 10.1016/j.jcis.2021.12.053  doi: 10.1016/j.jcis.2021.12.053

    118. [118]

      Mao, J. X.; Wang, J. C.; Gao, H.; Shi, W.; Jiang, H. P.; Hou, Y.; Li, R.; Zhang, W.; Liu, L. Int. J. Hydrog. Energy 2022, 47, 8214. doi: 10.1016/j.ijhydene.2021.12.133  doi: 10.1016/j.ijhydene.2021.12.133

    119. [119]

      Zhang, B.; Wang, D.; Jiao, S.; Xu, Z.; Liu, Y.; Zhao, C.; Pan, J.; Liu, D.; Liu, G.; Jiang, B.; et al. Chem. Eng. J. 2022, 446, 137138. doi: 10.1016/j.cej.2022.137138.  doi: 10.1016/j.cej.2022.137138

    120. [120]

      Gao, J.; Rao, S.; Yu, X.; Wang, L.; Xu, J.; Yang, J.; Liu, Q. J. Colloid Interface Sci. 2022, 628, 166. doi: 10.1016/j.jcis.2022.07.112  doi: 10.1016/j.jcis.2022.07.112

    121. [121]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    122. [122]

      Dai, X.; Feng, S.; Wu, W.; Zhou, Y.; Ye, Z.; Cao, X.; Wang, Y.; Yang, C. Int. J. Hydrog. Energy 2022, 47, 25104. doi: 10.1016/j.ijhydene.2022.05.269  doi: 10.1016/j.ijhydene.2022.05.269

    123. [123]

      Liu, L.; Liu, J.; Zong, S.; Huang, Z.; Feng, X.; Zheng, J.; Fang, Y. Int. J. Hydrog. Energy 2022, 47, 39486. doi: 10.1016/j.ijhydene.2022.09.122  doi: 10.1016/j.ijhydene.2022.09.122

    124. [124]

      Park, B. H.; Park, H.; Kim, T.; Yoon, S. J.; Kim, Y.; Son, N.; Kang, M. Int. J. Hydrog. Energy 2021, 46, 38319. doi: 10.1016/j.ijhydene.2021.09.087  doi: 10.1016/j.ijhydene.2021.09.087

    125. [125]

      Bariki, R.; Das, K.; Pradhan, S. K.; Prusti, B.; Mishra, B. G. ACS Appl. Energ. Mater. 2022, 5, 11002. doi: 10.1021/acsaem.2c01670  doi: 10.1021/acsaem.2c01670

    126. [126]

      Abutalib, M. M.; Alghamdi, H. M.; Rajeh, A.; Nur, O.; Hezma, A. M.; Mannaa, M. A. J. Mater. Res. Technol. 2022, 20, 1043. doi: 10.1016/j.jmrt.2022.07.078  doi: 10.1016/j.jmrt.2022.07.078

    127. [127]

      Mohamed, R. M.; Shawky, A. Opt. Mater. 2022, 124, 112012. doi: 10.1016/j.optmat.2022.112012.  doi: 10.1016/j.optmat.2022.112012

    128. [128]

      Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065  doi: 10.1016/j.jmst.2021.12.065

    129. [129]

      Jiang, J.; Wang, G.; Shao, Y.; Wang, J.; Zhou, S.; Su, Y. Chin. J. Catal. 2022, 43, 329. doi: 10.1016/S1872-2067(21)63889-5  doi: 10.1016/S1872-2067(21)63889-5

    130. [130]

      Xue, W.; Sun, H.; Hu, X.; Bai, X.; Fan, J.; Liu, E. Chin. J. Catal. 2022, 43, 234. doi: 10.1016/S1872-2067(20)63783-4  doi: 10.1016/S1872-2067(20)63783-4

    131. [131]

      Bahadoran, A.; Ramakrishna, S.; Masudy-Panah, S.; De Lile, J. R.; Gu, J.; Liu, Q.; Mishra, Y. K. Ind. Eng. Chem. Res. 2022, 61, 10931. doi: 10.1021/acs.iecr.2c01224  doi: 10.1021/acs.iecr.2c01224

    132. [132]

      Bootluck, W.; Chittrakarn, T.; Techato, K.; Jutaporn, P.; Khongnakorn, W. Catal. Lett. 2022, 152, 2590. doi: 10.1007/s10562-021-03873-5  doi: 10.1007/s10562-021-03873-5

    133. [133]

      Wang, Y.; Yu, H.; Wang, D.; Xing, M.; Zhang, Y.; Song, C. Chem. Eng. J. 2022, 437, 135321. doi: 10.1016/j.cej.2022.135321  doi: 10.1016/j.cej.2022.135321

    134. [134]

      Bahadoran, A.; Masudy-Panah, S.; De Lile, J. R.; Li, J.; Gu, J.; Sadeghi, B.; Ramakrishna, S.; Liu, Q. Int. J. Hydrog. Energy 2021, 46, 24094. doi: 10.1016/j.ijhydene.2021.04.208  doi: 10.1016/j.ijhydene.2021.04.208

    135. [135]

      Jiang, S.; Cao, J.; Guo, M.; Cao, D.; Jia, X.; Lin, H.; Chen, S. Appl. Surf. Sci. 2021, 558, 149882. doi: 10.1016/j.apsusc.2021.149882  doi: 10.1016/j.apsusc.2021.149882

    136. [136]

      Li, T.; Guo, X.; Zhang, L.; Yan, T.; Jin, Z. Int. J. Hydrog. Energy 2021, 46, 20560. doi: 10.1016/j.ijhydene.2021.03.169  doi: 10.1016/j.ijhydene.2021.03.169

    137. [137]

      Zhang, L.; Jin, Z.; Tsubaki, N. Nanoscale 2021, 13, 18507. doi: 10.1039/D1NR05452J  doi: 10.1039/D1NR05452J

    138. [138]

      Chava, R. K.; Son, N.; Kang, M. J. Colloid Interface Sci. 2022, 627, 247. doi: 10.1016/j.jcis.2022.07.031  doi: 10.1016/j.jcis.2022.07.031

    139. [139]

      Liu, Y.; Gong, Z.; Lv, H.; Ren, H.; Xing, X. Appl. Surf. Sci. 2020, 526, 146734. doi: 10.1016/j.apsusc.2020.146734  doi: 10.1016/j.apsusc.2020.146734

    140. [140]

      Li, Z.; Jin, D.; Wang, Z. Int. J. Hydrog. Energy 2021, 46, 6358. doi: 10.1016/j.ijhydene.2020.11.122  doi: 10.1016/j.ijhydene.2020.11.122

    141. [141]

      Dai, B.; Li, Y.; Xu, J.; Sun, C.; Li, S.; Zhao, W. Appl. Surf. Sci. 2022, 592, 153309. doi: 10.1016/j.apsusc.2022.153309  doi: 10.1016/j.apsusc.2022.153309

    142. [142]

      Zhao, Y.; Guo, Y.; Li, J.; Li, P. Int. J. Hydrog. Energy 2021, 46, 18922. doi: 10.1016/j.ijhydene.2021.03.051  doi: 10.1016/j.ijhydene.2021.03.051

    143. [143]

      Ravi, P.; Kumaravel, D. K.; Subramanian, D.; Thoondyaiah, D.; Rao, V. N.; Venkatakrishnan, S. M.; Sathish, M. ACS Appl. Energ. Mater. 2021, 4, 13983. doi: 10.1021/acsaem.1c02790  doi: 10.1021/acsaem.1c02790

    144. [144]

      Xi, Y.; Chen, W.; Dong, W.; Fan, Z.; Wang, K.; Shen, Y.; Tu, G.; Zhong, S.; Bai, S. ACS Appl. Mater. Interfaces 2021, 13, 39491. doi: 10.1021/acsami.1c11233  doi: 10.1021/acsami.1c11233

    145. [145]

      Kumar Das, K.; Sahoo, D. P.; Mansingh, S.; Parida, K. ACS Omega 2021, 6, 30401. doi: 10.1021/acsomega.1c03705  doi: 10.1021/acsomega.1c03705

    146. [146]

      AlFawaz, A.; Alsalme, A.; Alswieleh, A. M.; Abdel-Messih, M. F.; Galal, A. H.; H. Shaker, M.; Ahmed, M. A.; Soltan, A. Opt. Mater. 2022, 128, 112331. doi: 10.1016/j.optmat.2022.112331  doi: 10.1016/j.optmat.2022.112331

    147. [147]

      Abd-Rabboh, H. S. M.; Galal, A. H.; Aziz, R. A.; Ahmed, M. A. RSC Adv. 2021, 11, 29507. doi: 10.1039/D1RA04717E  doi: 10.1039/D1RA04717E

    148. [148]

      Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014  doi: 10.1016/j.jmst.2022.02.014

    149. [149]

      Guo, W.; Luo, H.; Jiang, Z.; Shangguan, W. Chin. J. Catal. 2022, 43, 316. doi: 10.1016/S1872-2067(21)63846-9  doi: 10.1016/S1872-2067(21)63846-9

    150. [150]

      AlFawaz, A.; Alsalme, A.; Soltan, A.; Elmahgary, M. G.; Ahmed, M. A. J. Phys. Chem. Solids 2022, 168, 110773. doi: 10.1016/j.jpcs.2022.110773  doi: 10.1016/j.jpcs.2022.110773

    151. [151]

      Quan, Y.; Wang, G.; Wang, X.; Guo, X.; Hao, X.; Wang, K.; Jin, Z. Langmuir 2022, 38, 12617. doi: 10.1021/acs.langmuir.2c02091  doi: 10.1021/acs.langmuir.2c02091

    152. [152]

      Chen, Z.; Li, X.; Wu, Y.; Zheng, J.; Peng, P.; Zhang, X.; Duan, A.; Wang, D.; Yang, Q. Sep. Purif. Technol. 2022, 295, 121250. doi: 10.1016/j.seppur.2022.121250  doi: 10.1016/j.seppur.2022.121250

    153. [153]

      Wang, K.; Li, S.; Li, Y.; Li, Y.; Wang, G.; Jin, Z. Int. J. Hydrog. Energy 2022, 47, 23618. doi: 10.1016/j.ijhydene.2022.05.200  doi: 10.1016/j.ijhydene.2022.05.200

    154. [154]

      Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B: Environ. 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844  doi: 10.1016/j.apcatb.2020.118844

    155. [155]

      Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Chem. Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587  doi: 10.1016/j.cej.2021.132587

    156. [156]

      Li, H.; Gong, H.; Jin, Z. Appl. Catal. B: Environ. 2022, 307, 121166. doi: 10.1016/j.apcatb.2022.121166  doi: 10.1016/j.apcatb.2022.121166

    157. [157]

      Li, C.; Liu, X.; Ding, G.; Huo, P.; Yan, Y.; Yan, Y.; Liao, G. Inorg. Chem. 2022, 61, 4681. doi: 10.1021/acs.inorgchem.1c03936  doi: 10.1021/acs.inorgchem.1c03936

    158. [158]

      Chen, C.; Hu, J.; Yang, X.; Yang, T.; Qu, J.; Guo, C.; Li, C. M. ACS Appl. Mater. Interfaces 2021, 13, 20162. doi: 10.1021/acsami.1c03482  doi: 10.1021/acsami.1c03482

    159. [159]

      Wang, Z.; Bai, Y.; Li, Y.; Tao, K.; Simayi, M.; Li, Y.; Chen, Z.; Sun, Y.; Chen, X.; Pang, X.; et al. J. Colloid Interface Sci. 2022, 609, 320. doi: 10.1016/j.jcis.2021.11.136  doi: 10.1016/j.jcis.2021.11.136

    160. [160]

      Gong, H.; Li, Y.; Li, H.; Jin, Z. Langmuir 2022, 38, 2117. doi: 10.1021/acs.langmuir.1c03198  doi: 10.1021/acs.langmuir.1c03198

    161. [161]

      Xia, Z.; Chen, C.; Qi, X.; Xu, Q.; Tang, H.; Liu, G. Adv. Sustain. Syst. 2022, 2200134. doi: 10.1002/adsu.202200134  doi: 10.1002/adsu.202200134

    162. [162]

      Lei, W.; Pang, X.; Ge, G.; Liu, G. Nano Today 2021, 39, 101183. doi: 10.1016/j.nantod.2021.101183  doi: 10.1016/j.nantod.2021.101183

    163. [163]

      Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. J. Mater. Sci. Technol. 2022, 114, 143. doi: 10.1016/j.jmst.2021.10.029  doi: 10.1016/j.jmst.2021.10.029

    164. [164]

      Chen, Y.; Li, L.; Xu, Q.; Chen, W.; Dong, Y.; Fan, J.; Ma, D. Sol. RRL 2021, 5, 2000541. doi: 10.1002/solr.202000541  doi: 10.1002/solr.202000541

    165. [165]

      Pang, X.; Xue, S.; Zhou, T.; Qiao, M.; Li, H.; Liu, X.; Xu, Q.; Liu, G.; Lei, W. Adv. Sustain. Syst. 2022, 2100507. doi: 10.1002/adsu.202100507  doi: 10.1002/adsu.202100507

    166. [166]

      Xu, Q.; Ma, D.; Yang, S.; Tian, Z.; Cheng, B.; Fan, J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    167. [167]

      Deng, J.; Lei, W.; Fu, J.; Jin, H.; Xu, Q.; Wang, S. Sol. RRL 2022, 6, 2200279. doi: 10.1002/solr.202200279  doi: 10.1002/solr.202200279

    168. [168]

      Xu, Q.; Xia, Z.; Zhang, J.; Wei, Z.; Guo, Q.; Jin, H.; Tang, H.; Li, S.; Pan, X.; Su, Z.; et al. Carbon Energy 2022, 1. doi:10.1002/cey2.205  doi: 10.1002/cey2.205

  • 加载中
    1. [1]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    2. [2]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    3. [3]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    4. [4]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    7. [7]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    10. [10]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    11. [11]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    12. [12]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    13. [13]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    14. [14]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    15. [15]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    19. [19]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    20. [20]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

Metrics
  • PDF Downloads(27)
  • Abstract views(970)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return