Citation: Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 221201. doi: 10.3866/PKU.WHXB202212011 shu

Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction

  • Corresponding author: Jiexiang Xia, xjx@ujs.edu.cn
  • Received Date: 6 December 2022
    Revised Date: 16 February 2023
    Accepted Date: 17 February 2023
    Available Online: 28 February 2023

    Fund Project: the Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX22_3692the National Natural Science Foundation of China 21878134the National Natural Science Foundation of China 22108106the National Natural Science Foundation of China 22108108the China Postdoctoral Science Foundation 2020M680065the Hong Kong Scholar Program XJ2021021

  • Rapid increase in energy shortage and ecological environmental pollution has become a major issue that has been continuously drawing global attention, because it severely affects human health and limits sustainable social development. Various technologies have been developed and used to rationalize the utilization of new energy sources and pollution control. Among these technologies, photocatalysis has become a research priority in the field of environmental governance and energy development. Advantages such as low energy consumption, no secondary pollution, simple operation methods, and mild reaction conditions make photocatalysis an attractive choice. Notably, although photocatalysis is a promising approach for enhancing antibiotic removal and CO2 reduction efficiency, the industrialization and large-scale application of photocatalysts is limited because of issues such as low photo-absorption efficiency, redox capacity, and photogenerated electron separation or migration efficiency. The progress of current research on the regulation of composition/structure and performance of photocatalysts has promoted the exploration of efficient and practical modification strategies to construct photocatalyst composites with improved performance by facilitating light absorption/utilization and enhancing photocatalytic surface/interface reaction performance. Among the many common modification strategies, the construction of a Z-scheme heterojunction can enhance the light absorption ability and significantly reduce the recombination rate of photogenerated electron-hole pairs. Additionally, this strategy maintains the strong reduction/oxidation ability of photogenerated electrons/holes to facilitate the oxidation of environmental pollutants and conversion to clean energy. In this study, Z-scheme MnO2/BiOBr (MO/BiOBr) composites were effectively constructed using a mechanically assisted ball-milling process. In situ X-ray photoelectron spectroscopy under dark and light conditions confirmed that photoexcited electrons in MnO2 can migrate directionally to BiOBr through Mn3+/Mn4+ redox couple to create a Z-scheme transfer path. A similar conclusion can also be deduced from the results of electron spin-resonance spectroscopy and band structure analysis. The formation of a Z-scheme heterojunction between MnO2 and BiOBr, attributed to the Mn3+/Mn4+ redox couple from MnO2 and staggered energy band, enabled the space separation of oxidation and reduction centers. Furthermore, compared with BiOBr, MO/BiOBr composites exhibited enhanced light absorption and a markedly reduced photoinduced electron-hole pair recombination rate, as confirmed by ultraviolet-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. Thus, the MO/BiOBr composites exhibited exceptional photocatalytic performance toward ciprofloxacin (CIP) oxidation and CO evolution. The CIP removal efficiency of the MO/BiOBr composites reached 77.3% in just 60 min, which is 1.28 times higher than that of BiOBr (60.2%). Simultaneously, the photocatalytic CO2-to-CO performance of the MO/BiOBr composites (20.02 µmol·g−1·h−1) was found to be 2.20-fold higher than that of BiOBr (9.08 µmol·g−1·h−1). Photocurrent measurement and electrochemical impedance spectroscopy indicated that the MnO2/BiOBr Z-scheme heterojunction has higher interfacial electron transfer efficiency than pure MnO2 and BiOBr. Additionally, liquid chromatograph mass spectrometry and in situ Fourier transform infrared spectroscopy is conducted to study the generation of intermediates during the photocatalytic CIP removal and CO2 reduction process. The toxicity of CIP and corresponding intermediates after the photocatalytic degradation of the MO/BiOBr composites was evaluated using toxicity estimation software (T.E.S.T.) to analyze the actual physiological toxicity, based on indexes such as Daphnia Magna lethal concentration 50% (LC50, 48 h), Fathead Minnow lethal dose 50% (LD50, 96 h), mutagenicity, and bioaccumulation factor. Thus, this study proposed a novel and simplified approach for constructing a Z-scheme heterojunction to facilitate solar-derived antibiotic removal and fuel synthesis.
  • 加载中
    1. [1]

      Wang, L.; Bahnemann, D. W.; Bian, L.; Dong, G. H.; Zhao, J.; Wang, C. Y. Angew. Chem. Int. Ed. 2019, 58, 8103. doi: 10.1002/anie.201903027  doi: 10.1002/anie.201903027

    2. [2]

      Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H.; Jing, L. Q. Appl. Catal. B 2017, 201, 486. doi: 10.1016/j.apcatb.2016.08.057  doi: 10.1016/j.apcatb.2016.08.057

    3. [3]

      Chen, R. Y.; Xia, J. Z.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2023, 39, 2209012.  doi: 10.3866/PKU.WHXB202209012

    4. [4]

      Chen, G. Y.; Yu, Y.; Liang, L.; Duan, X. G.; Li, R.; Lu, X. K.; Yan, B. B.; Li, N.; Wang, S. B. J. Hazard. Mater. 2021, 408, 124461. doi: 10.1016/j.jhazmat.2020.124461  doi: 10.1016/j.jhazmat.2020.124461

    5. [5]

      Dautzenberg, F. M.; Lu, Y.; Xu, B. Acta Phys. -Chim. Sin. 2021, 37, 2008066.  doi: 10.3866/PKU.WHXB202008066

    6. [6]

      Wang, J. C.; Qiao, X.; Shi, W. N.; He, J.; Chen, J.; Zhang, W. Q. Acta Phys. -Chim. Sin. 2023, 39, 2210003.  doi: 10.3866/PKU.WHXB202210003

    7. [7]

      Li, S. J.; Dong, X.; Zhao, Y. H.; Mao, J. N.; Chen, W.; Chen, A. H.; Song, Y. F.; Li, G. H.; Jiang, Z.; Wei, W.; et al. Angew. Chem. Int. Ed. 2022, 61, 2210432. doi: 10.1002/anie.202210432  doi: 10.1002/anie.202210432

    8. [8]

      Ru, R.; Zhang, F.; Sun, K. H.; Liu, Z. Y.; Xu, W. Q.; Stavitski, E.; Senanayake, D. S.; Rodriguez, J. A.; Liu, C. J. ACS Catal. 2020, 10, 11307. doi: 10.1021/acscatal.0c02120  doi: 10.1021/acscatal.0c02120

    9. [9]

      Liu, S.; Jin, M. M.; Sun, J. Q.; Qin, Y. J.; Gao, S. S.; Chen, Y.; Zhang, S. S.; Luo, J.; Liu, X. J. Chem. Eng. J. 2022, 437, 135294. doi: 10.1016/j.cej.2022.135294  doi: 10.1016/j.cej.2022.135294

    10. [10]

      Wang, B.; Zhu, X. W.; Huang, F. C.; Quan, Y.; Liu, G. P.; Zhang, X. L.; Xiong, F. Y.; Huang, C.; Ji, M. X.; Li, H. M.; et al. Appl. Catal. B 2022, 325, 122304. doi: 10.1016/j.apcatb.2022.122304  doi: 10.1016/j.apcatb.2022.122304

    11. [11]

      Zhang, Y.; Zhan, G. P.; Di, J.; Xia, J. X. Curr. Opin. Green Sustain. Chem. 2023, 39, 100718. doi: 10.1016/j.cogsc.2022.100718  doi: 10.1016/j.cogsc.2022.100718

    12. [12]

      Zhu, Q. H.; Xu, Q.; Du, M. M.; Zeng, X. F.; Zhong, G. F.; Qiu, B. C.; Zhang, J. L. Adv. Mater. 2022, 34, 2202929. doi: 10.1002/adma.202202929  doi: 10.1002/adma.202202929

    13. [13]

      Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Mater. Today 2020, 32, 222. doi: 10.1016/j.mattod.2019.06.009  doi: 10.1016/j.mattod.2019.06.009

    14. [14]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    15. [15]

      Liao, G. F.; Li, C. X.; Liu, S. Y.; Fang, B. Z.; Yang, H. M. Trends Chem. 2022, 4, 111. doi: 10.1016/j.trechm.2021.11.005  doi: 10.1016/j.trechm.2021.11.005

    16. [16]

      Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    17. [17]

      Hu, J. D.; Chen, D. Y.; Mo, Z.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Xu, H.; Lu, J. M. Angew. Chem. Int. Ed. 2019, 58, 2073. doi: 10.1002/anie.201813417  doi: 10.1002/anie.201813417

    18. [18]

      Zan, Z. Q.; Li, X. B.; Gao, X. M.; Huang, J. T.; Luo, Y. D.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016.  doi: 10.3866/PKU.WHXB202209016

    19. [19]

      Dong, J. T.; Chen, F.; Xu, L.; Yan, P. C.; Qian, J. C.; Chen, Y.; Yang, M. Y.; Li, H. N. Microchem. J. 2022, 178, 107317. doi: 10.1016/j.microc.2022.107317  doi: 10.1016/j.microc.2022.107317

    20. [20]

      Liu, G. P.; Wang, L.; Chen, X.; Zhu, X. W.; Wang, B.; Xu, X. Y.; Chen, Z. R.; Zhu, W. S.; Li, H. M.; Xia, J. X. Green Chem. Eng. 2022, 3, 157. doi: 10.1016/j.gce.2021.11.007  doi: 10.1016/j.gce.2021.11.007

    21. [21]

      Wang, F.; Ma, N.; Zheng, L.; Zhang, L.; Bian, Z. Y.; Wang, H. Chemosphere 2022, 307, 135666. doi: 10.1016/j.chemosphere.2022.135666  doi: 10.1016/j.chemosphere.2022.135666

    22. [22]

      Zhao, W. L.; Wang, W. L.; Han, T. Y.; Wang, H. T.; Zhang, H. C.; Shi, H. F. Sep. Purif. Technol. 2021, 269, 118693. doi: 10.1016/j.seppur.2021.118693  doi: 10.1016/j.seppur.2021.118693

    23. [23]

      Mo, Z.; Xu, H.; Chen, Z. G.; She, X. J.; Song, Y. H.; Lian, J. B.; Zhu, X. W.; Yan, P. C.; Lei, Y. C.; Yuan, S. Q.; et al. Appl. Catal. B 2019, 241, 452. doi: 10.1016/j.apcatb.2018.08.073  doi: 10.1016/j.apcatb.2018.08.073

    24. [24]

      Dhingra, S.; Chhabra, T.; Krishnan, V.; Nagaraja, C. M. ACS Appl. Energy Mater. 2020, 3, 7138. doi: 10.1021/acsaem.0c01189  doi: 10.1021/acsaem.0c01189

    25. [25]

      Jin, Y.; Zou, L. F.; Liu, L. L.; Engelhard, M. H.; Patel, R. L.; Nie, Z. M.; Han, K. S.; Shao, Y. Y.; Wang, C. M.; Zhu, J.; et al. Adv. Mater. 2019, 31, 1900567. doi: 10.1002/adma.201900567  doi: 10.1002/adma.201900567

    26. [26]

      Jiang, Q.; Ji, M. X.; Chen, R.; Zhang, Y.; Li, K.; Meng, C. X.; Chen, Z. G.; Li, H. M.; Xia, J. X. J. Colloid Interface Sci. 2020, 574, 131. doi: 10.1016/j.jcis.2020.04.018  doi: 10.1016/j.jcis.2020.04.018

    27. [27]

      Zhang, M. L.; Duo, F. F.; Lan, J. H.; Li, L. X.; Zhou, J. W.; Chu, L. L.; Wang, C. B. Appl. Surf. Sci. 2022, 583, 152544. doi: 10.1016/j.apsusc.2022.152544  doi: 10.1016/j.apsusc.2022.152544

    28. [28]

      Wang, X. J.; Yang, W. Y.; Li, F. T.; Zhao, J.; Liu, R. H.; Liu, S. J.; Li, B. J. Hazard. Mater. 2015, 292, 126. doi: 10.1016/j.jhazmat.2015.03.030  doi: 10.1016/j.jhazmat.2015.03.030

    29. [29]

      Zhang, G. Q.; Cai, L.; Zhang, Y. F.; Wei, Y. Chem. - Eur. J. 2018, 24, 7434. doi: 10.1002/chem.201706164  doi: 10.1002/chem.201706164

    30. [30]

      Wang, B.; Zhao, J. Z.; Chen, H. L.; Weng, Y. X.; Tang, H.; Chen, Z. R.; Zhu, W. S.; She, Y. B.; Xia, J. X.; Li, H. M. Appl. Catal. B 2021, 293, 120182. doi: 10.1016/j.apcatb.2021.120182  doi: 10.1016/j.apcatb.2021.120182

    31. [31]

      Huang, S. H.; Wang, Y.; Wan, J. Q.; Yan, Z. C.; Ma, Y. W.; Zhang, G. H.; Wang, S. L. Appl. Catal. B 2022, 319, 121913. doi: 10.1016/j.apcatb.2022.121913  doi: 10.1016/j.apcatb.2022.121913

    32. [32]

      Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Small 2020, 16, 2002140. doi: 10.1002/smll.202002140  doi: 10.1002/smll.202002140

    33. [33]

      Mu, Y. F.; Zhang, C.; Zhang, M. R.; Zhang, W.; Zhang, M.; Lu, T. B. ACS Appl. Mater. Interfaces 2021, 13, 22314. doi: 10.1021/acsami.1c01718  doi: 10.1021/acsami.1c01718

    34. [34]

      Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Adv. Energy Mater. 2017, 7, 1700005. doi: 10.1002/aenm.201700005  doi: 10.1002/aenm.201700005

    35. [35]

      Mo, Z.; Wu, G. Y.; Yan, P. C.; Zhu, X. W.; Qian, J. C.; Lei, Y. C.; Xu, L.; Xu, H.; Li, H. M. Mater. Today Chem. 2022, 25, 100956. doi: 10.1016/j.mtchem.2022.100956  doi: 10.1016/j.mtchem.2022.100956

    36. [36]

      Chen, M. X.; Dai, Y. Z.; Guo, J.; Yang, H. T.; Liu, D. N.; Zhai, Y. L. Appl. Surf. Sci. 2019, 493, 1361. doi: 10.1016/j.apsusc.2019.04.160  doi: 10.1016/j.apsusc.2019.04.160

    37. [37]

      Liu, H. J.; Wang, B. J.; Chen, M.; Zhang, H.; Peng, J. B.; Ding, L.; Wang, W. F. Sep. Purif. Technol. 2021, 261, 118286. doi: 10.1016/j.seppur.2020.118286  doi: 10.1016/j.seppur.2020.118286

    38. [38]

      Zhang, D.; Wu, M. Q.; Hao, J. Y.; Zheng, S. L.; Yang, Y.; Yao, T. J.; Wang, Y. J. Colloid Interface Sci. 2022, 612, 550. doi: 10.1016/j.jcis.2021.12.152  doi: 10.1016/j.jcis.2021.12.152

    39. [39]

      Liu, W. J.; Wang, S.; Zhao, Y.; Sun, C. X.; Xu, H. T.; Zhao, J. Z. J. Alloys Compd. 2021, 861, 157995. doi: 10.1016/j.jallcom.2020.157995  doi: 10.1016/j.jallcom.2020.157995

    40. [40]

      Ma, Y. C.; Chen, Z. W.; Qu, D.; Shi, J. S. Appl. Surf. Sci. 2016, 361, 63. doi: 10.1016/j.apsusc.2015.11.130  doi: 10.1016/j.apsusc.2015.11.130

    41. [41]

      Yan, M.; Hua, Y. Q.; Zhu, F. F.; Gu, W.; Jiang, J. H.; Shen, H. Q.; Shi W. D. Appl. Catal. B 2017, 202, 518. doi: 10.1016/j.apcatb.2016.09.039  doi: 10.1016/j.apcatb.2016.09.039

    42. [42]

      Kandi, D.; Behera, A.; Sahoo, S.; Parida, K. Sep. Purif. Technol. 2020, 253, 117523. doi: 10.1016/j.seppur.2020.117523  doi: 10.1016/j.seppur.2020.117523

    43. [43]

      Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Small 2021, 18, 2105228. doi: 10.1002/smll.202105228  doi: 10.1002/smll.202105228

    44. [44]

      Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008.  doi: 10.3866/PKU.WHXB202111008

    45. [45]

      Wang B.; Zhang W.; Liu G. P.; Chen, H. L.; Weng, Y. X.; Li, H. M.; Chu, P. K.; Xia, J. X. Adv. Funct. Mater. 2022, 32, 2202885. doi: 10.1002/adfm.202202885  doi: 10.1002/adfm.202202885

    46. [46]

      Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin H. X.; Fang Y.; Wang X. X. Appl. Catal. B 2019, 234, 734. doi: 10.1016/j.apcatb.2018.11.020  doi: 10.1016/j.apcatb.2018.11.020

    47. [47]

      Sun, N. C.; Zhou, M.; Ma, X. X.; Cheng, Z. H.; Wu, J.; Qi, Y. F.; Sun, Y. J.; Zhou, F. H.; Shen, Y. X.; Lu, S. Y. J. CO2 Util. 2022, 65, 102220. doi: 10.1016/j.jcou.2022.102220  doi: 10.1016/j.jcou.2022.102220

    48. [48]

      Zhao, X. Z.; Xia, Y. G.; Li, H. P.; Wang, X.; Wei, J.; Jiao, X. L.; Chen, D. R. Appl. Catal. B 2021, 297, 120426. doi: 10.1016/j.apcatb.2021.120426  doi: 10.1016/j.apcatb.2021.120426

    49. [49]

      Li, D. S.; Zhu, B. C.; Sun, Z. T.; Liu, Q. Q.; Wang, L. L.; Tang, H. Front. Chem. 2021, 9, 804204. doi: 10.3389/fchem.2021.804204  doi: 10.3389/fchem.2021.804204

    50. [50]

      Bai, Y.; Chen, T.; Wang, P. Q.; Wang, L.; Ye, L. Q.; Shi, X.; Bai, W. Sol. Energy Mater. Sol. Cells 2016, 157, 406. doi: 10.1016/j.solmat.2016.07.001  doi: 10.1016/j.solmat.2016.07.001

    51. [51]

      Jin, X. L.; Cao, J.; Wang, H. Q.; Lv, C. D.; Xie, H. Q.; Su, F. Y.; Li, X.; Sun, R. X.; Shi, S. K.; Dang, M. F.; et al. Appl. Surf. Sci. 2022, 598, 153758. doi: 10.1016/j.apsusc.2022.153758  doi: 10.1016/j.apsusc.2022.153758

    52. [52]

      Wu, D.; Ye, L. Q.; Yip, H. Y.; Wong, P. Y. Catal. Sci. Technol. 2017, 7, 265. doi: 10.1039/c6cy02040b  doi: 10.1039/c6cy02040b

    53. [53]

      Jin, X. L.; Lv, C. D.; Zhou, X.; Xie, H. Q.; Sun, S. F.; Liu, Y.; Meng, Q. Q.; Chen, G. Nano Energy 2019, 4, 103955. doi: 10.1016/j.nanoen.2019.103955  doi: 10.1016/j.nanoen.2019.103955

    54. [54]

      Yan, X. W.; Wang, B.; Zhao, J. Z.; Liu, G. P.; Ji, M. X.; Zhang, X. L.; Chu, P. K.; Li, H. M.; Xia, J. X. Chem. Eng. J. 2023, 452, 139271. doi: 10.1016/j.cej.2022.139271  doi: 10.1016/j.cej.2022.139271

    55. [55]

      Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Angew. Chem. Int. Ed. 2020, 59, 4519. doi: 10.1002/anie.201914949  doi: 10.1002/anie.201914949

    56. [56]

      Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J.; et al. J. Am. Chem. Soc. 2017, 139, 3438. doi: 10.1021/jacs.6b11263  doi: 10.1021/jacs.6b11263

    57. [57]

      Zhao, J.; Nan, J.; Zhao, Z.; Li, N.; Liu, J.; Cui, F. Appl. Catal. B 2017, 202, 509. doi: 10.1016/j.apcatb.2016.09.065  doi: 10.1016/j.apcatb.2016.09.065

    58. [58]

      Yu, L. M.; Mo, Z.; Zhu, X. L.; Deng, J. J.; Xu, F.; Song, Y. H.; She, Y. B.; Li, H. M.; Xu, H. Green Energy Environ. 2021, 6, 538. doi: 10.1016/j.gee.2020.05.011  doi: 10.1016/j.gee.2020.05.011

    59. [59]

      Guo, J. R.; Wang, L. P.; Wei, X.; Alothman, Z. A.; Albaqami, M. D.; Malgras, V.; Yamauchi, Y.; Kang, Y. Q.; Wang, M. Q.; Guan, W. S.; et al. J. Hazard. Mater. 2020, 415, 125591. doi: 10.1016/j.jhazmat.2021.125591  doi: 10.1016/j.jhazmat.2021.125591

    60. [60]

      Wen, X. J.; Lu, Q.; Lv, X. X.; Sun, J.; Guo, J.; Fei, Z. H.; Niu, Z. G. J. Hazard. Mater. 2020, 385, 121508. doi: 10.1016/j.jhazmat.2019.121508  doi: 10.1016/j.jhazmat.2019.121508

    61. [61]

      Chen, Y.; Xu, L.; Yang, M. Y.; Jia, Y. F.; Yan, Y. T.; Qian, J. C.; Chen, F.; Li, H. N. Sens. Actuators B 2022, 353, 131187. doi: 10.1016/j.snb.2021.131187  doi: 10.1016/j.snb.2021.131187

    62. [62]

      Li, L. L.; Zheng, X. Y.; Chi, Y. H.; Wang, Y.; Sun, X.; Yue, Q. Y.; Gao, B. Y.; Xu, S. P. J. Hazard. Mater. 2020, 383, 121211. doi: 10.1016/j.jhazmat.2019.121211  doi: 10.1016/j.jhazmat.2019.121211

    63. [63]

      Sarkhosh, M.; Sadani, M.; Abtahi, M.; Mohseni, S. M.; Sheikhmohammadi, A.; Azarpira, H.; Najafpoor, A. A.; Atafar, Z.; Rezaei, S.; Alli, R.; et al. J. Hazard. Mater. 2019, 377, 418. doi: 10.1016/j.jhazmat.2019.05.090  doi: 10.1016/j.jhazmat.2019.05.090

    64. [64]

      Liu, C.; Mao, S.; Shi, M. X.; Wang, F.Y.; Xia, M. Z.; Chen, Q.; Ju, X. H. J. Hazard. Mater. 2021, 420, 126613. doi: 10.1016/j.jhazmat.2021.126613  doi: 10.1016/j.jhazmat.2021.126613

    65. [65]

      Yi, X. H.; Ji, H. D.; Wang, C. C.; Li, Y.; Li, Y. H.; Zhao, C.; Wang, A.; Fu, H. F.; Wang, P.; Zhao, X.; et al. Appl. Catal. B 2021, 293, 120229. doi: 10.1016/j.apcatb.2021.120229  doi: 10.1016/j.apcatb.2021.120229

    66. [66]

      Wang, F.; Liu, S. S.; Feng, Z. Y.; Fu, H. F.; Wang, M. Y.; Wang, P.; Liu, W.; Wang, C. C. J. Hazard. Mater. 2022, 440, 129723. doi: 10.1016/j.jhazmat.2022.129723  doi: 10.1016/j.jhazmat.2022.129723

    67. [67]

      Li, J.; Ye, Y. H.; Ye, L. Q.; Su, S. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D.; et al. J. Mater. Chem. A 2019, 7, 2821. doi: 10.1039/C8TA10922B  doi: 10.1039/C8TA10922B

    68. [68]

      Liang, J. L.; Zhang, W.; Liu, Z. Y.; Song, Q. Q.; Zhu, Z. H.; Guan, Z. Q.; Wang, H. Y.; Zhang, P. J.; Li, J.; Zhou, M.; et al. ACS Catal. 2022, 12, 12217. doi: 10.1021/acscatal.2c03970  doi: 10.1021/acscatal.2c03970

    69. [69]

      Li, H.; Li, F.; Yu, J. G.; Cao S. W. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    8. [8]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    11. [11]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    19. [19]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(36)
  • Abstract views(1466)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return