Citation: Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221201. doi: 10.3866/PKU.WHXB202212010 shu

Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production

  • Corresponding author: Yunfeng Li, liyf377@nenu.edu.cn Luohong Zhang, zhanglh@xpu.edu.cn
  • Received Date: 5 December 2022
    Revised Date: 20 January 2023
    Accepted Date: 25 January 2023
    Available Online: 3 February 2023

    Fund Project: the National Natural Science Foundation of China 22008185the National Natural Science Foundation of China 22008187Shaanxi Provincial Key Research and Development Program, China 2022GY-166Shaanxi Provincial Key Research and Development Program, China 2022GY-161Scientific Research Program Funded by Shaanxi Provincial Education Department, China 22JK0406Training Program of Innovation and Entrepreneurship for Undergraduates, China S202210709063

  • Rapid industrialization throughout the 20th and 21st centuries has led to the excessive consumption of fossil fuels to satisfy global energy demands. The dominant use of these fuel sources is the main cause of the ever-increasing environmental issues that greatly threaten humanity. Therefore, the development of renewable energy sources is fundamental to solving environmental issues. Solar energy has received widespread attention over the past decades as a green and sustainable energy source. Solar radiation-induced photocatalytic processes on the surface of semiconductor materials are able to convert solar energy into other energy sources for storage and further applications. However, the preparation of highly efficient and stable photocatalysts remains challenging. Recently, a new step-scheme (S-scheme) carrier migration mechanism was reported that solves the drawbacks of carrier migration in conventional heterojunction photocatalysts. The S-scheme heterojunction not only effectively solves the carrier migration problem and achieves fast separation but also preserves the powerful redox abilities and improves the catalytic performance of the photocatalytic system. To date, various S-scheme heterojunctions have been developed and employed to convert solar energy into useful chemical fuels to decrease the reliance on fossil fuels. Furthermore, these systems can also be used to degrade pollutants and reduce the harmful impact on the environment associated with the consumption of fossil fuels, including H2 evolution, pollutant degradation, and the reduction of CO2. H2O2 has been used as an effective, multipurpose, and green oxidizing agent in many applications including pollutant purification, medical disinfection, and chemical synthesis. It has also been used as a high-density energy carrier for fuel cells, with only water and oxygen produced as by-products. Photocatalytic technology provides a low-cost, environmentally friendly, and safe way to produce H2O2, requiring only solar energy, H2O, and O2 gas as raw materials. This paper reviews new S-scheme heterojunction designs for photocatalytic H2O2 production, including g-C3N4-, sulfide-, TiO2-, and ZnO-based S-scheme heterojunctions. The main principles of photocatalytic H2O2 production and the formation mechanism of the S-scheme heterojunction are also discussed. In addition, effective advanced characterization methods for S-scheme heterojunctions have been analyzed. Finally, the challenges that need to be addressed and the direction of future research are identified to provide new methods for the development of high-performance photocatalysts for H2O2 production.
  • 加载中
    1. [1]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473  doi: 10.1021/acs.chemrev.1c00473

    2. [2]

      Hasija, V.; Kumar, A.; Sudhaik, A.; Raizada, P.; Singh, P.; Le, Q.; Le, T.; Nguyen, V. Chem. Lett. 2021, 19, 2941. doi: 10.1007/s10311-021-01231-w  doi: 10.1007/s10311-021-01231-w

    3. [3]

      Kumar, A.; Khosla, A.; Sharma, S.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F. Fuel 2023, 333, 126267. doi: 10.1016/j.fuel.2022.126267  doi: 10.1016/j.fuel.2022.126267

    4. [4]

      Cheng, L.; Yue, X.; Wang, L.; Zhang, D.; Zhang, P.; Fan, J.; Xiang, Q. Adv. Mater. 2021, 33, 2105135. doi: 10.1002/adma.202105135  doi: 10.1002/adma.202105135

    5. [5]

      Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J.; Yu, J. Green Chem. 2022, 24, 5739. doi: 10.1039/D2GC01684B  doi: 10.1039/D2GC01684B

    6. [6]

      Yu, W.; Zhang, S.; Richter, M.; Chen, L.; Xu, W.; Jin, J.; Chen, S.; Peng, T. J. Mater. Chem. A 2018, 6, 15668. doi: 10.1039/c8ta02922a  doi: 10.1039/c8ta02922a

    7. [7]

      Wang, Y.; Zhu, B.; Cheng, B.; Macyk, W.; Kuang, P.; Yu, J. Appl. Catal. B 2022, 314, 121503. doi: 10.1016/j.apcatb.2022.121503  doi: 10.1016/j.apcatb.2022.121503

    8. [8]

      Sun, B.; Dong, X.; Li, H.; Shang, Y.; Zhang, Y.; Hu, F.; Gu, S.; Wu, Y.; Gao, T.; Zhou, G. Sep. Purif. Technol. 2021, 272, 118964. doi: 10.1016/j.seppur.2021.118964  doi: 10.1016/j.seppur.2021.118964

    9. [9]

      Huo, W.; Cao, T.; Xu, W.; Guo, Z.; Liu, X.; Yao, H.; Zhang, Y.; Dong, F. Chin. J. Catal. 2020, 41, 268. doi: 10.1016/S1872-2067(19)63460-1  doi: 10.1016/S1872-2067(19)63460-1

    10. [10]

      Wang, J.; Li, H.; Gao, P.; Peng, Y.; Cao, S.; Antonietti, M. Chem. Eng. J. 2022, 443, 136447. doi: 10.1016/j.cej.2022.136447  doi: 10.1016/j.cej.2022.136447

    11. [11]

      Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    12. [12]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    13. [13]

      Yu, W.; Xu, D.; Peng, T. J. Mater. Chem. A 2015, 3, 19936. doi: 10.1039/c5ta05503b  doi: 10.1039/c5ta05503b

    14. [14]

      Tang, R.; Dong, X.; Sheng, J.; Xi, S.; Zhang, L.; Dong, F. Appl. Catal. B 2022, 316, 121661. doi: 10.1016/j.apcatb.2022.121661  doi: 10.1016/j.apcatb.2022.121661

    15. [15]

      Zhao, W.; Luo, C.; Lin, Y.; Wang, G.; Chen, H.; Kuang, P.; Yu, J. ACS Catal. 2022, 12, 5540. doi: 10.1021/acscatal.2c00851  doi: 10.1021/acscatal.2c00851

    16. [16]

      Meng, X.; Wang, S.; Zhang, C.; Dong, C.; Li, R.; Li, B.; Wang, Q.; Ding, Y. ACS Catal. 2022, 12, 10115. doi: 10.1021/acscatal.2c01877  doi: 10.1021/acscatal.2c01877

    17. [17]

      Collado, L.; Naranjo, T.; Gomez-Mendoza, M.; Lopez-Calixto, C.; Oropeza, F.; Liras, M.; Marugan, J.; O'Shea, V. Adv. Funct. Mater. 2021, 31, 2105384. doi: 10.1002/adfm.202105384  doi: 10.1002/adfm.202105384

    18. [18]

      Lin, J.; Tian, W.; Guan, Z.; Zhang, H.; Duan, X.; Wang, H.; Sun, H.; Fang, Y.; Huang, Y.; Wang, S. Adv. Funct. Mater. 2022, 32, 2201743. doi: 10.1002/adfm.202201743  doi: 10.1002/adfm.202201743

    19. [19]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8  doi: 10.1016/S1872-2067(22)64106-8

    20. [20]

      Li, S.; Wang, C.; Cai, M.; Liu, Y.; Dong, K.; Zhang, J. J. Colloid Interface Sci. 2022, 624, 219. doi: 10.1016/j.jcis.2022.05.151  doi: 10.1016/j.jcis.2022.05.151

    21. [21]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    22. [22]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    23. [23]

      Lu, M.; Li, Q.; Zhang, C.; Fan, X.; Li, L.; Dong, Y.; Chen, G.; Shi, H. Carbon 2020, 160, 342. doi: 10.1016/j.carbon.2020.01.038  doi: 10.1016/j.carbon.2020.01.038

    24. [24]

      Wang, C.; Li, S.; Cai, M.; Yan, R.; Dong, K.; Zhang, J.; Liu, Y. J. Colloid Interface Sci. 2022, 619, 307. doi: 10.1016/j.jcis.2022.03.075  doi: 10.1016/j.jcis.2022.03.075

    25. [25]

      Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi: 10.1016/j.jmst.2022.02.012  doi: 10.1016/j.jmst.2022.02.012

    26. [26]

      Das, K.; Mansingh, S.; Sahoo, D.; Mohanty, R.; Parida, K. New J. Chem. 2022, 46, 5785. doi: 10.1039/d2nj00067a  doi: 10.1039/d2nj00067a

    27. [27]

      Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008.  doi: 10.3866/PKU.WHXB202201008

    28. [28]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    29. [29]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    30. [30]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016  doi: 10.1016/j.jmst.2021.10.016

    31. [31]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 28, 2108028.  doi: 10.3866/PKU.WHXB202108028

    32. [32]

      Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2020, 41, 41. doi: 10.1016/S1872-2067(19)63389-9  doi: 10.1016/S1872-2067(19)63389-9

    33. [33]

      Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Appl. Catal. B 2021, 280, 119452. doi: 10.1016/j.apcatb.2020.119452  doi: 10.1016/j.apcatb.2020.119452

    34. [34]

      He, R.; Ou, S.; Liu, Y.; Liu, Y.; Xu, D. Chin. J. Catal. 2022, 43, 370. doi: 10.1016/S1872-2067(21)63911-6  doi: 10.1016/S1872-2067(21)63911-6

    35. [35]

      Shi, L.; Yin, J.; Liu, Y.; Liu, H.; Zhang, H.; Tang, H. Chemosphere 2022, 309, 136607. doi: 10.1016/j.chemosphere.2022.136607  doi: 10.1016/j.chemosphere.2022.136607

    36. [36]

      Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. Chin. J. Catal. 2021, 42, 69. doi: 10.1016/S1872-2067(20)63631-2  doi: 10.1016/S1872-2067(20)63631-2

    37. [37]

      Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. Appl. Catal. B 2022, 304, 120979. doi: 10.1016/j.apcatb.2021.120979  doi: 10.1016/j.apcatb.2021.120979

    38. [38]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al‐Ghamdi, A. Chin. J. Catal. 2022, 43, 1657. doi: 10.1016/S1872-2067(21)64010-X  doi: 10.1016/S1872-2067(21)64010-X

    39. [39]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    40. [40]

      Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.; Bai, X.; Low, J. Appl. Mater. Today 2022, 29, 101609. doi: 10.1016/j.apmt.2022.101609  doi: 10.1016/j.apmt.2022.101609

    41. [41]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    42. [42]

      Zhang, Y.; Xia, Y.; Wang, L.; Cheng, B.; Yu, J. Nanotechnology 2021, 32, 415402. doi: 10.1088/1361-6528/ac1221  doi: 10.1088/1361-6528/ac1221

    43. [43]

      Khamesan, A.; Esfahani, M.; Ghasemi, J.; Farzin, F.; Parsaei-Khomami, A.; Mousavi, M. Adv. Powder. Technol. 2022, 33, 103777. doi: 10.1016/j.apt.2022.103777  doi: 10.1016/j.apt.2022.103777

    44. [44]

      Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671  doi: 10.1016/j.nanoen.2020.105671

    45. [45]

      Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi: 10.1016/S1872‐2067(21)63832‐9  doi: 10.1016/S1872‐2067(21)63832‐9

    46. [46]

      Liu, B.; Du, J.; Ke, G.; Jia, B.; Huang, Y.; He, H.; Zhou, Y.; Zou, Z. Adv. Funct. Mater. 2022, 32, 2111125. doi: 10.1002/adfm.202111125  doi: 10.1002/adfm.202111125

    47. [47]

      Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788  doi: 10.1016/j.apcatb.2022.121788

    48. [48]

      He, R.; Lou, Z.; Gui, J.; Tang, B.; Xu, D. Appl. Surf. Sci. 2020, 504, 144370. doi: 10.1016/j.apsusc.2019.144370  doi: 10.1016/j.apsusc.2019.144370

    49. [49]

      Sun, B.; Tao, F.; Huang, Z.; Yan, W.; Zhang, Y.; Dong, X.; Wu, Y.; Zhou, G. Appl. Surf. Sci. 2021, 535, 147354. doi: 10.1016/j.apsusc.2020.147354  doi: 10.1016/j.apsusc.2020.147354

    50. [50]

      Thi, L.; Phan, T.; Ngoc, T.; Viswanath, N.; Le, H.; Thi, L.; Tien-Trung, N.; Nguyen, L.; Nhiem, D.; Huu, H.; et al. J. Alloy. Compd. 2022, 916, 165331. doi: 10.1016/j.jallcom.2022.165331  doi: 10.1016/j.jallcom.2022.165331

    51. [51]

      Hou, H.; Zeng, X.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 17356. doi: 10.1002/anie.201911609  doi: 10.1002/anie.201911609

    52. [52]

      Cheng, H.; Lv, H.; Cheng, J.; Wang, L.; Wu, X.; Xu, H. Adv. Mater. 2022, 34, 2107480. doi: 10.1002/adma.202107480  doi: 10.1002/adma.202107480

    53. [53]

      Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2022, 61, e202208438. doi: 10.1002/anie.202208438  doi: 10.1002/anie.202208438

    54. [54]

      Wang, D.; Yin, F.; Cheng, B.; Xia, Y.; Yu, J.; Ho, W. Rare Met. 2021, 40, 2369. doi: 10.1007/s12598-021-01731-2  doi: 10.1007/s12598-021-01731-2

    55. [55]

      Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1002/smll.202104561  doi: 10.1002/smll.202104561

    56. [56]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    57. [57]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    58. [58]

      Ye, J.; Zhang, Y.; Wang, J.; Liu, S.; Chang, Y.; Xu, X.; Feng, C.; Xu, J.; Guo, L.; Xu, J.; et al. Catal. Sci. Technol. 2022, 12, 4228. doi: 10.1039/d2cy00610c  doi: 10.1039/d2cy00610c

    59. [59]

      Li, Y.; Xia, Z.; Yang, Q.; Wang, L.; Xing, Y. J. Mater. Sci. Technol. 2022, 125, 128. doi: 10.1016/j.jmst.2022.02.035  doi: 10.1016/j.jmst.2022.02.035

    60. [60]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125  doi: 10.1021/acs.jpclett.2c02125

    61. [61]

      He, X.; Liu, Q.; Xu, D.; Wang, L.; Tang, H. J. Mater. Sci. Technol. 2022, 116, 1. doi: 10.1016/j.jmst.2021.10.033  doi: 10.1016/j.jmst.2021.10.033

    62. [62]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    63. [63]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    64. [64]

      Yu, W.; Fu, H.; Mueller, T.; Brunschwig, B.; Lewis, N. J. Chem. Phys. 2020, 153, 020902. doi: 10.1063/5.0009858  doi: 10.1063/5.0009858

    65. [65]

      Wageh, S.; Al-Ghamdi, A.; Al-Hartomy, O.; Alotaibi, M.; Wang, L. Chin. J. Catal. 2022, 43, 586. doi: 10.1016/S1872-2067(21)63925-6  doi: 10.1016/S1872-2067(21)63925-6

    66. [66]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/s1872-2067(21)63883-4  doi: 10.1016/s1872-2067(21)63883-4

    67. [67]

      Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15. doi: 10.1016/j.jmst.2021.12.018  doi: 10.1016/j.jmst.2021.12.018

    68. [68]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.  doi: 10.3866/PKU.WHXB202010059

    69. [69]

      Zhou, L.; Li, Y.; Zhang, Y.; Qiu, L.; Xing, Y. Acta Phys. -Chim. Sin. 2022, 38, 2112027.  doi: 10.3866/PKU.WHXB202112027

    70. [70]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    71. [71]

      Xia, Z.; Li, Y.; Yang, Q.; Zhu, W.; Jin, R.; Zhang, L.; Xing, Y. Catal. Sci. Technol. 2022, 12, 6599. doi: 10.1039/d2cy01435a  doi: 10.1039/d2cy01435a

    72. [72]

      Zhao, X.; Li, J.; Kong, X.; Li, C.; Lin, B.; Dong, F.; Yang, G.; Shao, G.; Xue, C. Small 2022, 18, 2204154. doi: 10.1002/smll.202204154  doi: 10.1002/smll.202204154

    73. [73]

      Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X  doi: 10.1016/S1872-2067(21)63872-X

    74. [74]

      Wang, K.; Jiang, L.; Xin, T.; Li, Y.; Wu, X.; Zhang G. Chem. Eng. J. 2021, 429, 132229. doi: 10.1016/j.cej.2021.132229  doi: 10.1016/j.cej.2021.132229

    75. [75]

      Zhang, X.; Yu, J.; Macyk, W.; Wageh, S.; Al-Ghamdi, A.; Wang, L. Adv. Sustain. Syst. 2022, 2200113. doi: 10.1002/adsu.202200113  doi: 10.1002/adsu.202200113

    76. [76]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.  doi: 10.3866/PKU.WHXB202010030

    77. [77]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    78. [78]

      Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510. doi: 10.1021/acscatal.1c02018  doi: 10.1021/acscatal.1c02018

    79. [79]

      Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028  doi: 10.1016/j.jmst.2021.12.028

    80. [80]

      Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2021, 34, 2108475. doi: 10.1002/adma.202108475  doi: 10.1002/adma.202108475

    81. [81]

      Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A.; Wageh, S.; Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124  doi: 10.14102/j.cnki.0254-5861.2022-0124

    82. [82]

      Ghoreishian, S.; Ranjith, K.; Park, B.; Hwang, S.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S.; Lee, H.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    83. [83]

      Bariki, R.; Das, K.; Pradhan, S.; Prusti, B.; Mishra, B. ACS Appl. Energy Mater. 2022, 5, 11002. doi: 10.1021/acsaem.2c01670  doi: 10.1021/acsaem.2c01670

    84. [84]

      Wageh, S.; Al-Ghamdi, A.; Xu, Q. Acta Phys. -Chim. Sin. 2022, 38, 2202001.  doi: 10.3866/PKU.WHXB202202001

    85. [85]

      Zhang, S.; Liu, N.; Wang, H.; Lu, Q.; Shi, W.; Wang, X. Adv. Mater. 2021, 33, 2100576. doi: 10.1002/adma.202100576  doi: 10.1002/adma.202100576

    86. [86]

      Xu, F.; Meng, K.; Cao, S.; Jiang, C.; Chen, T.; Xu, J.; Yu, J. ACS Catal. 2022, 12, 164. doi: 10.1021/acscatal.1c04903  doi: 10.1021/acscatal.1c04903

    87. [87]

      Zhang, X.; Zeng, Y.; Shi, W.; Tao, Z.; Liao, J.; Ai, C.; Si, H.; Wang, Z.; Fisher, A.; Lin, S. Chem. Eng. J. 2022, 429, 131312. doi: 10.1016/j.cej.2021.131312  doi: 10.1016/j.cej.2021.131312

    88. [88]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    89. [89]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2022, doi: 10.1007/s12274-021-3733-0

    90. [90]

      Chen, Z.; Fang, Y.; Wang, L.; Chen, X.; Lin, W.; Wang, X. Appl. Catal. B 2021, 296, 120369. doi: 10.1016/j.apcatb.2021.120369  doi: 10.1016/j.apcatb.2021.120369

    91. [91]

      Fu, Y.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Xing, L.; Ma, J.; Wang, H.; Xue, X. Appl. Catal. B 2021, 285, 119785. doi: 10.1016/j.apcatb.2020.119785  doi: 10.1016/j.apcatb.2020.119785

    92. [92]

      Kim, D.; Yong, K. Appl. Catal. B 2021, 282, 119538. doi: 10.1016/j.apcatb.2020.119538  doi: 10.1016/j.apcatb.2020.119538

    93. [93]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 434, 136584. doi: 10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    94. [94]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.3866/PKU.WHXB202112037

    95. [95]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    96. [96]

      Huang, Y.; Zhu, Y.; Chen, S.; Xie, X.; Wu, Z.; Zhang, N. Adv. Sci. 2021, 8, 2003626. doi; 10.1002/advs. 202003626  doi: 10.1002/advs.202003626

    97. [97]

      Niu, X.; Shi, A.; Sun, D.; Xiao, S.; Zhang, T.; Zhou, Z.; Li, X.; Wang, J. ACS Catal. 2021, 11, 14058. doi: 10.1021/acscatal.1c03407  doi: 10.1021/acscatal.1c03407

    98. [98]

      Wang, Q.; Miao, Z.; Zhang, Y.; Yan, T.; Meng, L.; Wang, X. ACS Catal. 2022, 12, 4016. doi: 10.1021/acscatal.1c05553  doi: 10.1021/acscatal.1c05553

    99. [99]

      Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33, 5200. doi: 10.1016/j.cclet.2022.01.058  doi: 10.1016/j.cclet.2022.01.058

    100. [100]

      Lai, C.; Xu, M.; Xu, F.; Li, B.; Ma, D.; Li, Y.; Li, L.; Zhang, M.; Huang, D.; Tang, L.; et al. Chem. Eng. J. 2023, 452, 139070. doi: 10.1016/j.cej.2022.1390  doi: 10.1016/j.cej.2022.1390

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    8. [8]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    17. [17]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

Metrics
  • PDF Downloads(33)
  • Abstract views(618)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return