Citation: Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221200. doi: 10.3866/PKU.WHXB202212006 shu

Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends

  • Corresponding author: Jiangang Liu, jgliu@nwpu.edu.cn
  • Received Date: 3 December 2022
    Revised Date: 2 January 2023
    Accepted Date: 10 January 2023
    Available Online: 18 January 2023

    Fund Project: the National Natural Science Foundation of China 52073231the National Natural Science Foundation of China 51903211the National Natural Science Foundation of China 51773203the Shaanxi Outstanding Youth Project 2023-JC-JQ-33the Shaanxi Provincial High Level Talent Introduction Project 5113220044the Youth Talent Promotion of Suzhou Association for Science and Technology 5111220021the Youth Talent Promotion of Jiangsu Association for Science and Technology TJ-2022-088the Fundamental Research Funds for the Central Universities G2020KY0501the Fundamental Research Funds for the Central Universities G2021KY05101the Fundamental Research Funds for the Central Universities G2022KY05108the NWPU Research Fund for Young Scholars G2022WD01014the Natural Science Foundation of Chongqing, China cstc2021jcyj-msxmX0990the Basic Research Programs of Taicang TC2021JC08the NWPU Degree and Graduate Education Fund 2022AJ12the NWPU Degree and Graduate Education Fund 2022AJ22

  • Owing to the advantages of broad absorption, semitransparency, and large-area solution processing, organic solar cells based on a nonfullerene blend system have attracted wide attention and become an important aspect of clean energy. At present, the power conversion efficiency of organic solar cells based on nonfullerene blends is more than 19% because of the molecular design, device structure optimization, and morphology regulation. Organic solar cells consist of a cathode, an anode, the corresponding interface layers, and the active layer. Research shows that the morphology of the active layer has significant influence on the device performance. For example, the phase separation structure affects the charge transport, exciton diffusion efficiency is dependent on the domain sizes of the donor and acceptor, crystallinity has a considerable impact on photon absorption and carrier mobility, and molecular orientation affects the dissociation of the charge-transfer state and carrier mobility. Owing to the rigidity of conjugated molecules, the coupling of crystallization between the donor and acceptor always occurs during the film-forming and/or post-annealing processes. Moreover, crystallization and phase separation are inclined to occur simultaneously, leading to poor morphology control. Although many methods, such as post-annealing, solution-state, solvent or solid additive, and solvent engineering, have been exploited, forming the ideal structure morphology of the active layer is still difficult. This is particularly challenging in nonfullerene blends owing to the asymmetric phase separation behavior. This feature article summarizes the recently developed crystallization kinetics strategy in morphology control, which made precise morphology control possible. In this strategy, the interpenetrating network can be constructed by applying modified film-forming kinetics, which inhibits the liquid–liquid phase separation and induces liquid–solid phase separation. The domain size can be reduced by employing sequential crystallization, where the donor and acceptor crystallize in different stages through the combination of the solution-state and post-annealing treatments, surpassing the driving force of phase separation. In addition, the crystallinity of small nonfullerene molecules in the polymer/nonfullerene blends can be effectively enhanced by prioritizing their crystallization. This shift in crystallization priority can reduce the confinement of crystalline framework polymers and benefit the diffusion of the small nonfullerene molecules. Moreover, the ordered stacking of molecules in crystals can be improved by regulating the matching degree between the crystal nucleation rate and growth rate. Molecular orientation can be regulated by combining the motion scale and heterogeneous nucleation. The optimized morphology is beneficial to device performance as it suppresses exciton quenching, recombination of the charge-transfer state, and bimolecular recombination and improves charge mobility, thereby laying the foundation for high-performance organic solar cells.
  • 加载中
    1. [1]

      Cardone, A.; Capodilupo, A. L. Materials 2022, 15 (18), 6333. doi: 10.3390/ma15186333  doi: 10.3390/ma15186333

    2. [2]

      Luo, D.; Jang, W.; Babu, D. D.; Kim, M. S.; Wang, D. H.; Kyaw, A. K. K. J. Mater. Chem. A 2022, 10 (7), 3255. doi: 10.1039/d1ta10707k  doi: 10.1039/d1ta10707k

    3. [3]

      Meng, D.; Zheng, R.; Zhao, Y. P.; Zhang, E.; Dou, L. T.; Yang, Y. Adv. Mater. 2022, 34 (10), 2107330. doi: 10.1002/adma.202107330  doi: 10.1002/adma.202107330

    4. [4]

      Liu, B. Q.; Xu, Y. H.; Xia, D. D.; Xiao, C. Y.; Yang, Z. F.; Li, W. W. Acta Phys.-Chim. Sin. 2021, 37 (3), 2009056.  doi: 10.3866/PKU.WHXB202009056

    5. [5]

      Zhan, L. L.; Yin, S. C.; Li, Y. K.; Li, S. X.; Chen, T. Y.; Sun, R.; Min, J.; Zhou, G. Q.; Zhu, H. M.; Chen, Y. Y.; et al. Adv. Mater. 2022, 34 (45), 2206269. doi: 10.1002/adma.202206269  doi: 10.1002/adma.202206269

    6. [6]

      He, Z. C.; Zhong, C. M.; Huang, X.; Wong, W. Y.; Wu, H. B.; Chen, L. W.; Su, S. J.; Cao, Y. Adv. Mater. 2011, 23 (40), 4636. doi: 10.1002/adma.201103006  doi: 10.1002/adma.201103006

    7. [7]

      Liu, J.; Chen, L.; Gao, B.; Cao, X.; Han, Y.; Xie, Z.; Wang, L. J. Mater. Chem. A 2013, 1 (20), 6216. doi: 10.1039/c3ta10629b  doi: 10.1039/c3ta10629b

    8. [8]

      Liu, Y. H.; Liu, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q.; et al. Sci. China-Chem. 2022, 65 (8), 1457. doi: 10.1007/s11426-022-1256-8  doi: 10.1007/s11426-022-1256-8

    9. [9]

      Sariciftci, N.S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258 (5287), 1474. doi: 10.1126/science.258.5087.1474  doi: 10.1126/science.258.5087.1474

    10. [10]

      Zhang, G. Y.; Zhao, J. B.; Chow, P. C. Y.; Jiang, K.; Zhang, J. Q.; Zhu, Z. L.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018, 118 (7), 3447. doi: 10.1021/acs.chemrev.7b00535  doi: 10.1021/acs.chemrev.7b00535

    11. [11]

      Gao, W.; Qi, F.; Peng, Z. X.; Lin, F. R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z. Q.; Lee, C. S.; Marks, T. J.; et al. Adv. Mater. 2022, 34 (32), 2202089. doi: 10.1002/adma.202202089  doi: 10.1002/adma.202202089

    12. [12]

      Sun, R.; Wu, Y.; Yang, X. R.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J. W.; Wang, T.; Guo, J.; Liu, C.; et al. Adv. Mater. 2022, 34 (26), 2110147. doi: 10.1002/adma.202110147  doi: 10.1002/adma.202110147

    13. [13]

      Wei, Y. A.; Chen, Z. H.; Lu, G. Y.; Yu, N.; Li, C. Q.; Gao, J. H.; Gu, X. B.; Hao, X. T.; Lu, G. H.; Tang, Z.; et al. Adv. Mater. 2022, 34 (33), 2204718. doi: 10.1002/adma.202204718  doi: 10.1002/adma.202204718

    14. [14]

      He, C. L.; Pan, Y. W.; Ouyang, Y. N.; Shen, Q.; Gao, Y.; Yan, K. R.; Fang, J.; Chen, Y. Y.; Ma, C. Q.; Min, J.; et al. Energy Environ. Sci. 2022, 15 (6), 2537. doi: 10.1039/d2ee00595f  doi: 10.1039/d2ee00595f

    15. [15]

      Cui, Y.; Xu, Y.; Yao, H. F.; Bi, P. Q.; Hong, L.; Zhang, J. Q.; Zu, Y. F.; Zhang, T.; Qin, J. Z.; Ren, J. Z.; et al. Adv. Mater. 2021, 33 (41), 2102420. doi: 10.1002/adma.202102420  doi: 10.1002/adma.202102420

    16. [16]

      Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N.; et al. Nat. Mater. 2022, 21 (6), 656. doi: 10.1038/s41563-022-01244-y  doi: 10.1038/s41563-022-01244-y

    17. [17]

      Chong, K. E.; Xu, X. P.; Meng, H. F.; Xue, J. W.; Yu, L. Y.; Ma, W.; Peng, Q. Adv. Mater. 2022, 34 (13), 2109516. doi: 10.1002/adma.202109516  doi: 10.1002/adma.202109516

    18. [18]

      Kim, H. K.; Yu, H.; Pan, M. G.; Shi, X. Y.; Zhao, H.; Qi, Z. Y.; Liu, W.; Ma, W.; Yan, H.; Chen, S. S. Adv. Sci. 2022, 9 (25), 2202223. doi: 10.1002/advs.202202223  doi: 10.1002/advs.202202223

    19. [19]

      Zhan, L. L.; Li, S. X.; Li, Y. K.; Sun, R.; Min, J.; Bi, Z. Z.; Ma, W.; Chen, Z.; Zhou, G. Q.; Zhu, H. M.; et al. Joule 2022, 6 (3), 662. doi: 10.1016/j.joule.2022.02.001  doi: 10.1016/j.joule.2022.02.001

    20. [20]

      Bi, Z. Z.; Naveed, H. B.; Wu, H. B.; Zhang, C. K.; Zhou, X. B.; Wang, J.; Wang, M.; Wu, X. H.; Zhu, Q. L.; Zhou, K.; et al. Adv. Energy Mater. 2022, 12 (18), 2103735. doi: 10.1002/aenm.202103735  doi: 10.1002/aenm.202103735

    21. [21]

      Liang, Q. J.; Yao, J. H.; Hu, Z. B.; Wei, P. X.; Lu, H. D.; Yin, Y. K.; Wang, K.; Liu, J. G. Energies 2021, 14 (22), 7604. doi: 10.3390/en14227604  doi: 10.3390/en14227604

    22. [22]

      Liang, Q. J.; Hu, Z. B.; Yao, J. H.; Wu, Z. H.; Ding, Z. C.; Zhao, K.; Jiao, X. C.; Liu, J. G.; Huang, W. Small 2022, 18 (3), 2103804. doi: 10.1002/smll.202103804  doi: 10.1002/smll.202103804

    23. [23]

      Liu, J. G.; Lu, H. D; Yin, Y. K; Wang, K.; Wei, P. X; Song, C. P; Miao, Z. C; Liang, Q. J. Battery Energy 2022, 1 (3), 220013. doi: 10.1002/bte2.20220013  doi: 10.1002/bte2.20220013

    24. [24]

      Zhao, H.; Naveed, H. B.; Lin, B. J.; Zhou, X. B.; Yuan, J.; Zhou, K.; Wu, H. B.; Guo, R. J.; Scheel, M. A.; Chumakov, A.; et al. Adv. Mater. 2020, 32 (39), 2002302. doi: 10.1002/adma.202002302  doi: 10.1002/adma.202002302

    25. [25]

      Chen, H. Y.; Zhang, R.; Chen, X. B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W. J.; Xu, G. Y.; Oh, J.; et al. Nat. Energy 2021, 6 (11), 1045. doi: 10.1038/s41560-021-00923-5  doi: 10.1038/s41560-021-00923-5

    26. [26]

      Fan, H. Y.; Yang, H.; Wu, Y.; Yildiz, O.; Zhu, X. M.; Marszalek, T.; Blom, P. W. M.; Cui, C. H.; Li, Y. F. Adv. Funct. Mater. 2021, 31 (37), 2103944. doi: 10.1002/adfm.202103944  doi: 10.1002/adfm.202103944

    27. [27]

      Zhou, K.; Zhao, Q. Q.; Zhang, R.; Cao, X. X.; Yu, X. H.; Liu, J. G.; Han, Y. C. Phys. Chem. Chem. Phys. 2017, 19 (48), 32373. doi: 10.1039/c7cp07084e  doi: 10.1039/c7cp07084e

    28. [28]

      Manigrasso, J.; Chillon, I.; Genna, V.; Vidossich, P.; Somarowthu, S.; Pyle, A. M.; De Vivo, M.; Marcia, M. Nat. Commun. 2022, 13 (1), 2837. doi: 10.1038/s41467-021-27699-2  doi: 10.1038/s41467-021-27699-2

    29. [29]

      Yu, Q. Q.; Xu, J. J.; Fu, J. H.; Xu, T. L.; Yan, X. H.; Chen, S. S.; Chen, H. Y.; Sun, K.; Kan, Z. P.; Lu, S. R.; et al. Dyes Pigment 2021, 187, 109085. doi: 10.1016/j.dyepig.2020.109085  doi: 10.1016/j.dyepig.2020.109085

    30. [30]

      Zhang, Q.; Liu, J. G.; Yu, X. H.; Han, Y. C. Chin. Chem. Lett. 2019, 30 (7), 1405. doi: 10.1016/j.cclet.2019.04.004  doi: 10.1016/j.cclet.2019.04.004

    31. [31]

      Cao, X. X.; Zhang, Q.; Zhou, K.; Yu, X. H.; Liu, J. G.; Han, Y. C.; Xie, Z. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2016, 506, 723. doi: 10.1016/j.colsurfa.2016.07.048  doi: 10.1016/j.colsurfa.2016.07.048

    32. [32]

      Xu, Y.; Yao, H. F.; Ma, L. J.; Hong, L.; Li, J. Y.; Liao, Q.; Zu, Y. F.; Wang, J. W.; Gao, M. Y.; Ye, L.; et al. Angew. Chem. Int. Ed. 2020, 59 (23), 9004. doi: 10.1002/anie.201915030  doi: 10.1002/anie.201915030

    33. [33]

      Zhu, L.; Zhang, M.; Zhou, G. Q.; Hao, T. Y.; Xu, J. Q.; Wang, J.; Qiu, C. Q.; Prine, N.; Ali, J.; Feng, W.; et al. Adv. Energy Mater. 2020, 10 (18), 1904234. doi: 10.1002/aenm.201904234  doi: 10.1002/aenm.201904234

    34. [34]

      Yao, H. F.; Qian, D. P.; Zhang, H.; Qin, Y. P.; Xu, B. W.; Cui, Y.; Yu, R. N.; Gao, F.; Hou, J. H. Chin. J. Chem. 2018, 36 (6), 491. doi: 10.1002/cjoc.201800015  doi: 10.1002/cjoc.201800015

    35. [35]

      Peng, X.; Xie, S.; Wang, X.; Pi, C. R.; Liu, Z. T.; Gao, B.; Hu, L. S.; Xiao, W.; Chu, P. K. J. Mater. Chem. A 2022, 10 (39), 20761. doi: 10.1039/d2ta02955c  doi: 10.1039/d2ta02955c

    36. [36]

      Wan, J.; Zhang, L. F.; He, Q. N.; Liu, S. Q.; Huang, B.; Hu, L.; Zhou, W. H.; Chen, Y. W. Adv. Funct. Mater. 2020, 30 (14), 1909760. doi: 10.1002/adfm.201909760  doi: 10.1002/adfm.201909760

    37. [37]

      Liu, S. Q.; Chen, D.; Hu, X. T.; Xing, Z.; Wan, J.; Zhang, L.; Tan, L. C.; Zhou, W. H.; Chen, Y. W. Adv. Funct. Mater. 2020, 30 (36), 2003223. doi: 10.1002/adfm.202003223  doi: 10.1002/adfm.202003223

    38. [38]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270 (5243), 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    39. [39]

      Oh, J. Y.; Shin, M.; Lee, T. I.; Jang, W. S.; Min, Y.; Myoung, J. M.; Baik, H. K.; Jeong, U. Macromolecules 2012, 45 (18), 7504. doi: 10.1021/ma300958n  doi: 10.1021/ma300958n

    40. [40]

      Ye, L. L.; Xie, Y. P.; Weng, K. K.; Ryu, H. S.; Li, C.; Cai, Y. H.; Fu, H. T.; Wei, D. H.; Woo, H. Y.; Tan, S. T.; et al. Nano Energy 2019, 58, 220. doi: 10.1016/j.nanoen.2019.01.039  doi: 10.1016/j.nanoen.2019.01.039

    41. [41]

      Weng, K. K.; Ye, L. L.; Zhu, L.; Xu, J. Q.; Zhou, J. J.; Feng, X.; Lu, G. H.; Tan, S. T.; Liu, F.; Sun, Y. M. Nat. Commun. 2020, 11 (1), 2855. doi: 10.1038/s41467-020-16621-x  doi: 10.1038/s41467-020-16621-x

    42. [42]

      Wang, N.; Yu, Y. J.; Zhao, R. Y.; Ding, Z. C.; Liu, J.; Wang, L. X. Macromolecules 2020, 53 (9), 3325. doi: 10.1021/acs.macromol.0c00633  doi: 10.1021/acs.macromol.0c00633

    43. [43]

      Liu, J. G.; Liang, Q. J.; Wang, H. Y.; Li, M. G.; Han, Y. C.; Xie, Z. Y.; Wang, L. X. J. Phys. Chem. C, 2014, 118 (9), 4585. doi: 10.1021/jp409517q  doi: 10.1021/jp409517q

    44. [44]

      Yu, L. Y.; Qian, D. P.; Marina, S.; Nugroho, F. A. A.; Sharma, A.; Hultmark, S.; Hofmann, A. I.; Kroon, R.; Benduhn, J.; Smilgies, D. M.; et al. ACS Appl. Mater. Interfaces 2019, 11 (24), 21766. doi: 10.1021/acsami.9b04554  doi: 10.1021/acsami.9b04554

    45. [45]

      Gholamkhass, B.; Servati, P. Org. Electron. 2013, 14 (9), 2278. doi: 10.1016/j.orgel.2013.05.014  doi: 10.1016/j.orgel.2013.05.014

    46. [46]

      Qiao, X. L.; Yang, J.; Han, L. H.; Zhang, J. D.; Zhu, M. F. Chin. J. Polym. Sci. 2021, 39 (7), 849. doi: 10.1007/s10118-021-2577-0  doi: 10.1007/s10118-021-2577-0

    47. [47]

      Xia, Y. X.; Musumeci, C.; Bergqvist, J.; Ma, W.; Gao, F.; Tang, Z.; Bai, S.; Jin, Y. Z.; Zhu, C. H.; Kroon, R.; et al. J. Mater. Chem. A 2016, 4 (10), 3835. doi: 10.1039/c6ta00531d  doi: 10.1039/c6ta00531d

    48. [48]

      Song, X.; Gasparini, N.; Ye, L.; Yao, H. F.; Hou, J. H.; Ade. H.; Baran. D. ACS Energy Lett. 2018, 3 (3), 669. doi: 10.1021/acsenergylett.7b01266  doi: 10.1021/acsenergylett.7b01266

    49. [49]

      Li, Y. X.; Ding, J. W.; Liang, C.; Zhang, X. N.; Zhang, J. Q.; Jakob, D. S.; Wang, B. X.; Li, X.; Zhang, H.; Li, L. N.; et al. Joule 2021, 5 (12), 3154. doi: 10.1016/j.joule.2021.09.001  doi: 10.1016/j.joule.2021.09.001

    50. [50]

      Zhao, Q. Q.; Yu, X. H.; Xie, Z. Y.; Liu, J. G.; Han, Y. C. Org. Electron. 2020, 77, 105512. doi: 10.1016/j.orgel.2019.105512  doi: 10.1016/j.orgel.2019.105512

    51. [51]

      Zhong, W. K.; Hu, Q.; Jiang, Y. F.; Li, Y.; Chen, T. L.; Ying, L.; Liu, F.; Wang, C.; Liu, Y.; Huang, F.; et al. Sol. RRL 2019, 3 (7), 1900032. doi: 10.1002/solr.201900032  doi: 10.1002/solr.201900032

    52. [52]

      Shin, N.; Richter, L. J.; Herzing, A. A.; Kline, R. J.; DeLongchamp, D. M. Adv. Energy Mater. 2013, 3 (7), 938. doi: 10.1002/aenm.201201027  doi: 10.1002/aenm.201201027

    53. [53]

      Zhu, L.; Zhong, W. K.; Qiu, C. Q.; Lyu, B. S.; Zhou, Z. C.; Zhang, M.; Song, J. N.; Xu, J. Q.; Wang, J.; Ali, J.; et al. Adv. Mater. 2019, 31 (41), 1902899. doi: 10.1002/adma.201902899  doi: 10.1002/adma.201902899

    54. [54]

      McDowell, C.; Abdelsamie, M.; Zhao, K.; Smilgies, D. M.; Bazan, G. C.; Amassian, A. Adv. Energy Mater. 2015, 5 (18), 1501121. doi: 10.1002/aenm.201501121  doi: 10.1002/aenm.201501121

    55. [55]

      Yao, Y.; Hou, J. H.; Xu, Z.; Li, G.; Yang, Y. Adv. Funct. Mater. 2008, 18 (12), 1783. doi: 10.1002/adfm.200701459  doi: 10.1002/adfm.200701459

    56. [56]

      Gu, X. D.; Yan, H. P.; Kurosawa, T.; Schroeder, B. C.; Gu, K. L.; Zhou, Y.; To, J. W. F.; Oosterhout, S. D.; Savikhin, V.; Molina-Lopez, F.; et al. Adv. Energy Mater. 2016, 6 (22), 1601225. doi: 10.1002/aenm.201601225  doi: 10.1002/aenm.201601225

    57. [57]

      Zhu, Q. L.; Xue, J. W.; Lu, G. Y.; Lin, B. J.; Naveed, H. B.; Bi, Z. Z.; Lu, G. H.; Ma, W. Nano Energy 2022, 97, 107194. doi: 10.1016/j.nanoen.2022.107194  doi: 10.1016/j.nanoen.2022.107194

    58. [58]

      Zhang, J. Y.; Zhang, L. F.; Wang, X. K.; Xie, Z. J.; Hu, L.; Mao, H. D.; Xu, G. D.; Tan, L. C.; Chen, Y. W. Adv. Energy Mater. 2022, 12 (14), 2200165. doi: 10.1002/aenm.202200165  doi: 10.1002/aenm.202200165

    59. [59]

      Jiang, X. Y.; Chotard, P.; Luo, K. X.; Eckmann, F.; Tu, S.; Reus, M. A.; Yin, S. S.; Reitenbach, J.; Weindl, C. L.; Schwartzkopf, M.; et al. Adv. Energy Mater. 2022, 12 (14), 2103977. doi: 10.1002/aenm.202103977  doi: 10.1002/aenm.202103977

    60. [60]

      Chiu, M. Y.; Jeng, U. S.; Su, M. S.; Wei, K. H. Macromolecules 2010, 43 (1), 428. doi: 10.1021/ma901895d  doi: 10.1021/ma901895d

    61. [61]

      Wolfer, P.; Schwenn, P. E.; Pandey, A. K.; Fang, Y.; Stingelin, N.; Burn, P. L.; Meredith, P. J. Mater. Chem. A 2013, 1 (19), 5989. doi: 10.1039/c3ta10554g  doi: 10.1039/c3ta10554g

    62. [62]

      Fanta, G. M.; Jarka, P.; Szeluga, U.; Tanski, T.; Kim, J. Y. Polymers 2020, 12 (8), 1726. doi: 10.3390/polym12081726  doi: 10.3390/polym12081726

    63. [63]

      Ye, L.; Li, S. S.; Liu, X. Y.; Zhang, S. Q.; Ghasemi, M.; Xiong, Y.; Hou, J. H.; Ade, H. Joule 2019, 3 (2), 443. doi: 10.1016/j.joule.2018.11.006  doi: 10.1016/j.joule.2018.11.006

    64. [64]

      Bates, F. S. Science 1991, 251 (4996), 898. doi: 10.1126/science.251.4996.898  doi: 10.1126/science.251.4996.898

    65. [65]

      Liang, Z. Q.; Li, M. M.; Wang, Q.; Qin, Y. P.; Stuard, S. J.; Peng, Z. X.; Deng, Y. F.; Ade, H.; Ye, L.; Geng, Y. H. Joule 2020, 4 (6), 1278. doi: 10.1016/j.joule.2020.04.014  doi: 10.1016/j.joule.2020.04.014

    66. [66]

      Tanaka, H. J. Phys.-Condes. Matter 2000, 12 (15), R207. doi: 10.1088/0953-8984/12/15/201  doi: 10.1088/0953-8984/12/15/201

    67. [67]

      McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C. Adv. Mater. 2018, 30 (33), 1707114. doi: 10.1002/adma.201707114  doi: 10.1002/adma.201707114

    68. [68]

      Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim, J. H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K.; et al. Nat. Mater. 2018, 17 (3), 253. doi: 10.1038/s41563-017-0005-1  doi: 10.1038/s41563-017-0005-1

    69. [69]

      Lin, B. J.; Zhou, X. B.; Zhao, H.; Yuan, J.; Zhou, K.; Chen, K.; Wu, H. B.; Guo, R. J.; Scheel, M. A.; Chumakov, A.; et al. Energy Environ. Sci. 2020, 13 (8), 2467. doi: 10.1039/d0ee00774a  doi: 10.1039/d0ee00774a

    70. [70]

      Zhan, J. Z.; Wang, L.; Zhang, M.; Zhu, L.; Hao, T. Y.; Zhou, G. Q.; Zhou, Z. C.; Chen, J. J.; Zhong, W. K.; Qiu, C. Q.; et al. Macromolecules 2021, 54 (9), 4030. doi: 10.1021/acs.macromol.0c02872  doi: 10.1021/acs.macromol.0c02872

    71. [71]

      Wang, Y. L.; Wang, X. H.; Lin, B. J.; Bi, Z. Z.; Zhou, X. B.; Naveed, H. B.; Zhou, K.; Yan, H. P.; Tang, Z.; Ma, W. Adv. Energy Mater. 2020, 10 (28), 2000826. doi: 10.1002/aenm.202000826  doi: 10.1002/aenm.202000826

    72. [72]

      Spano, F. C. Accounts Chem. Res. 2010, 43 (3), 429. doi: 10.1021/ar900233v  doi: 10.1021/ar900233v

    73. [73]

      Gao, M. Y; Liu, Y.; Xian, K. H; Peng, Z. X; Zhou, K. K; Liu, J. W; Li, S. M; Xie, F.; Zhao, W. C; Zhang, J. D; et al. Aggregate 2022, 3 (5), e190. doi: 10.1002/agt2.190  doi: 10.1002/agt2.190

    74. [74]

      Liu, J. G.; Shao, S. Y.; Wang, H. F.; Zhao, K.; Xue, L. J.; Gao, X.; Xie, Z. Y.; Han, Y. C. Org. Electron. 2010, 11 (5), 775. doi: 10.1016/j.orgel.2010.01.017  doi: 10.1016/j.orgel.2010.01.017

    75. [75]

      Liu, J. G.; Sun, Y.; Gao, X. A.; Xing, R. B.; Zheng, L. D.; Wu, S. P.; Geng, Y. H.; Han, Y. C. Langmuir 2011, 27 (7), 4212. doi: 10.1021/la105109t  doi: 10.1021/la105109t

    76. [76]

      Liu, J. G.; Zeng, S. Y.; Jing, P.; Zhao, K.; Liang, Q. J. J. Energy Chem. 2020, 51, 333. doi: 10.1016/j.jechem.2020.04.048  doi: 10.1016/j.jechem.2020.04.048

    77. [77]

      Liang, Q. J.; Jiao, X. C.; Yan, Y.; Xie, Z. Y.; Lu, G. H.; Liu, J. G.; Han, Y. C. Adv. Funct. Mater. 2019, 29 (47), 1807591. doi: 10.1002/adfm.201807591  doi: 10.1002/adfm.201807591

    78. [78]

      Fan, J. Y.; Liu, Z. X.; Rao, J.; Yan, K. R.; Chen, Z.; Ran, Y. X.; Yan, B. Y.; Yao, J. Z.; Lu, G. H.; Zhu, H. M.; et al. Adv. Mater. 2022, 34 (28), 2110569. doi: 10.1002/adma.202110569  doi: 10.1002/adma.202110569

    79. [79]

      Zhang, B.; Yang, F.; Chen, S. S.; Chen, H. Y.; Zeng, G.; Shen, Y. X.; Li, Y. W.; Li, Y. F. Adv. Funct. Mater. 2022, 32 (29), 2202011. doi: 10.1002/adfm.202202011  doi: 10.1002/adfm.202202011

    80. [80]

      Liu, J. G.; Han, J.; Liang, Q. J.; Xin, J. M.; Tang, Y. B.; Ma, W.; Yu, X. H.; Han, Y. C. ACS Omega 2018, 3 (7), 7603. doi: 10.1021/acsomega.8b01162  doi: 10.1021/acsomega.8b01162

    81. [81]

      Li, D. H; Guo, C. H; Zhang, X.; Du, B. C; Wang, P.; Cheng, S. L; Cai, J. L; Wang, H.; Liu, D.; Yao, H. F; et al. Aggregate 2021, 3 (3), e104. doi: 10.1002/agt2.104  doi: 10.1002/agt2.104

    82. [82]

      Cui, C. H; Li, Y. F. Aggregate 2021, 2 (2), e31. doi: 10.1002/agt2.31  doi: 10.1002/agt2.31

    83. [83]

      Liang, Q. J.; Han, J.; Song, C. P.; Wang, Z. Y.; Xin, J. M.; Yu, X. H.; Xie, Z. Y.; Ma, W.; Liu, J. G.; Han, Y. C. J. Mater. Chem. C 2017, 5 (27), 6842. doi: 10.1039/c7tc01763d  doi: 10.1039/c7tc01763d

    84. [84]

      Guldal, N. S.; Kassar, T.; Berlinghof, M.; Ameri, T.; Osvet, A.; Pacios, R.; Li Destri, G.; Unruh, T.; Brabec, C. J. J. Mater. Chem. C 2016, 4 (11), 2178. doi: 10.1039/c5tc03448e  doi: 10.1039/c5tc03448e

    85. [85]

      Liu, Y. F.; Yangui, A.; Zhang, R.; Kiligaridis, A.; Moons, E.; Gao, F.; Inganas, O.; Scheblykin, I. G.; Zhang, F. L. Small Methods 2021, 5 (10), 2100585. doi: 10.1002/smtd.202100585  doi: 10.1002/smtd.202100585

    86. [86]

      Xie, R. X.; Weisen, A. R.; Lee, Y.; Aplan, M. A.; Fenton, A. M.; Masucci, A. E.; Kempe, F.; Sommer, M.; Pester, C. W.; Colby, R. H.; et al. Nat. Commun. 2020, 11 (1), 893. doi: 10.1038/s41467-020-14656-8  doi: 10.1038/s41467-020-14656-8

    87. [87]

      Kurosawa, T.; Gu, X. D.; Gu, K. L.; Zhou, Y.; Yan, H. P.; Wang, C.; Wang, G. J. N.; Toney, M. F.; Bao, Z. A. Adv. Energy Mater. 2018, 8 (2), 1701552. doi: 10.1002/aenm.201701552  doi: 10.1002/aenm.201701552

    88. [88]

      Li, Y. Z.; Liu, H.; Wu, J.; Tang, H.; Wang, H. L.; Yang, Q. Q.; Fu, Y. Y.; Xie, Z. Y. ACS Appl. Mater. Interfaces 2021, 13 (8), 10239. doi: 10.1021/acsami.0c23035  doi: 10.1021/acsami.0c23035

    89. [89]

      Yang, C. Y.; Yu, R. N.; Liu, C. Y.; Li, H.; Zhang, S. Q.; Hou, J. H. ChemSusChem 2021, 14 (17), 3607. doi: 10.1002/cssc.202100627  doi: 10.1002/cssc.202100627

    90. [90]

      Yi, Y.; Liang, Q.; Li, L.; Liu, J. g.; Han, Y. Chin. J. Anal. Chem. 2019, 36 (4), 423. doi: 10.11944/j.issn.1000-0518.2019.04.180404  doi: 10.11944/j.issn.1000-0518.2019.04.180404

    91. [91]

      Liu, J. G.; Yin, Y. K.; Wang, K.; Wei, P. X.; Lu, H. D.; Song, C. P.; Liang, Q. J.; Huang, W. iScience 2022, 25 (4), 104090. doi: 10.1016/j.isci.2022.104090  doi: 10.1016/j.isci.2022.104090

    92. [92]

      Liu, J. G.; Zeng, S. Y.; Zhang, Z. G.; Peng, J.; Liang, Q. J. J. Phys. Chem. Lett. 2020, 11 (6), 2314. doi: 10.1021/acs.jpclett.0c00249  doi: 10.1021/acs.jpclett.0c00249

    93. [93]

      Torsi, L.; Dodabalapur, A.; Rothberg, L. J.; Fung, A. W. P.; Katz, H. E. Science 1996, 272 (5267), 1462. doi: 10.1126/science.272.5267.1462  doi: 10.1126/science.272.5267.1462

    94. [94]

      Marcus, R. A. J. Chem. Phys. 1957, 26 (4), 867. doi: 10.1063/1.1743423  doi: 10.1063/1.1743423

    95. [95]

      Lan, Y. K.; Huang, C. I. J. Phys. Chem. B 2009, 113 (44), 14555. doi: 10.1021/jp904841j  doi: 10.1021/jp904841j

    96. [96]

      Yao, Z. F.; Zheng, Y. Q.; Dou, J. H.; Lu, Y.; Ding, Y. F.; Ding, L.; Wang, J. Y.; Pei, J. Adv. Mater. 2021, 33 (10), 2006794. doi: 10.1002/adma.202006794  doi: 10.1002/adma.202006794

    97. [97]

      Xin, H.; Kim, F. S.; Jenekhe, S. A. J. Am. Chem. Soc. 2008, 130 (16), 5424. doi: 10.1021/ja800411b  doi: 10.1021/ja800411b

    98. [98]

      Liang, Q. J.; Han, J.; Song, C. P.; Yu, X. H.; Smilgies, D. M.; Zhao, K.; Liu, J. G.; Han, Y. C. J. Mater. Chem. A 2018, 6 (32), 15610. doi: 10.1039/c8ta05892j  doi: 10.1039/c8ta05892j

    99. [99]

      Liu, Q.; Fang, J.; Wu, J. N.; Zhu, L.; Guo, X.; Liu, F.; Zhang, M. J. Chin. J. Chem. 2021, 39 (7), 1941. doi: 10.1002/cjoc.202100112  doi: 10.1002/cjoc.202100112

    100. [100]

      Persson, N. E.; Chu, P. H.; McBride, M.; Grover, M.; Reichmanis, E. Accounts Chem. Res. 2017, 50 (4), 932. doi: 10.1021/acs.accounts.6b00639  doi: 10.1021/acs.accounts.6b00639

    101. [101]

      Yan, Y.; Zhang, R.; Liang, Q. J.; Liu, J. G.; Han, Y. C. Polymer 2019, 182, 121827. doi: 10.1016/j.polymer.2019.121827  doi: 10.1016/j.polymer.2019.121827

    102. [102]

      Liu, Y. D.; Zhang, Q.; Yu, X. H.; Liu, J. G.; Han, Y. C. Chin. J. Polym. Sci. 2019, 37 (7), 664. doi: 10.1007/s10118-019-2259-3  doi: 10.1007/s10118-019-2259-3

    103. [103]

      Yamagata, H.; Spano, F. C. Chin. J. Chem. Phys. 2012, 136 (18), 184901. doi: 10.1063/1.4705272  doi: 10.1063/1.4705272

    104. [104]

      Spano, F. C. Chin. J. Chem. Phys. 2005, 122 (23), 234701. doi: 10.1063/1.1914768  doi: 10.1063/1.1914768

    105. [105]

      Jain, N.; Bothra, U.; Moghe, D.; Sadhanala, A.; Friend, R. H.; McNeill, C. R.; Kabra, D. ACS Appl. Mater. Interfaces 2018, 10 (51), 44576. doi: 10.1021/acsami.8b14628  doi: 10.1021/acsami.8b14628

    106. [106]

      Nikolka, M.; Broch, K.; Armitage, J.; Hanifi, D.; Nowack, P. J.; Venkateshvaran, D.; Sadhanala, A.; Saska, J.; Mascal, M.; Jung, S. H.; et al. Nat. Commun. 2019, 10, 2122. doi: 10.1038/s41467-019-10188-y  doi: 10.1038/s41467-019-10188-y

    107. [107]

      Liang, Q. J.; Lu, H. D.; Chang, Y. X.; He, Z. M.; Zhao, Y. Z.; Liu, J. G. Energies 2022, 15 (15), 5344. doi: 10.3390/en15155344  doi: 10.3390/en15155344

    108. [108]

      Liang, Q. J.; Liu, J. G.; Han, Y. C. Org. Electron. 2018, 62, 26. doi: 10.1016/j.orgel.2018.07.009  doi: 10.1016/j.orgel.2018.07.009

    109. [109]

      Han, J.; Liang, Q. J.; Qu, Y.; Liu, J. G.; Han, Y. C. Acta Phys.-Chim. Sin. 2018, 34 (4), 391.  doi: 10.3866/PKU.WHXB201709131

    110. [110]

      Zhang, R.; Yang, H.; Zhou, K.; Zhang, J. D.; Yu, X. H.; Liu, J. G.; Han, Y. C. Macromolecules 2016, 49 (18), 6987. doi: 10.1021/acs.macromol.6b01526  doi: 10.1021/acs.macromol.6b01526

    111. [111]

      Gasparini, N.; Paleti, H. K.; Bertrandie, J.; Cai, G. L.; Zhang, G. C.; Wadsworth, A.; Lu, X. H.; Yip, H. L.; McCulloch, I.; Baran, D. ACS Energy Lett. 2020, 5 (5), 1371. doi: 10.1021/acsenergylett.0c00604  doi: 10.1021/acsenergylett.0c00604

    112. [112]

      Xu, X. P.; Feng, K.; Lee, Y. W.; Woo, H. Y.; Zhang, G. J.; Peng, Q. Adv. Funct. Mater. 2020, 30 (9), 1907570. doi: 10.1002/adfm.201907570  doi: 10.1002/adfm.201907570

    113. [113]

      Wang, D.; Qin, R.; Zhou, G. Q.; Li, X.; Xia, R. X.; Li, Y. H.; Zhan, L. L.; Zhu, H. M.; Lu, X. H.; Yip, L.; et al. Adv. Mater. 2020, 32 (32), 2001621. doi: 10.1002/adma.202001621  doi: 10.1002/adma.202001621

    114. [114]

      Nam, M.; Kang, J. H.; Shin, J.; Na, J.; Park, Y.; Cho, J.; Kim, B.; Lee, H. H.; Chang, R.; Ko, D. H. Adv. Energy Mater. 2019, 9 (38), 1901856. doi: 10.1002/aenm.201901856  doi: 10.1002/aenm.201901856

    115. [115]

      Zhang, H.; Du, X. Y.; Tang, Y. H.; Lu, X.; Zhou, L.; Zheng, C. J.; Lin, H.; Tao, S. L. Front. Chem. 2020, 8, 00190. doi: 10.3389/fchem.2020.00190  doi: 10.3389/fchem.2020.00190

    116. [116]

      Ma, X. L.; Mi, Y.; Zhang, F. J.; An, Q. S.; Zhang, M.; Hu, Z. H.; Liu, X. F.; Zhang, J.; Tang, W. H. Adv. Energy Mater. 2018, 8 (11), 1702854. doi: 10.1002/aenm.201702854  doi: 10.1002/aenm.201702854

    117. [117]

      Cho, Y.; Kumari, T.; Jeong, S.; Lee, S. M.; Jeong, M.; Lee, B.; Oh, J.; Zhang, Y. D.; Huang, B.; Chen, L.; et al. Nano Energy 2020, 75, 104896. doi: 10.1016/j.nanoen.2020.104896  doi: 10.1016/j.nanoen.2020.104896

    118. [118]

      Pan, M. A.; Lau, T. K.; Tang, Y. B.; Wu, Y. C.; Liu, T.; Li, K.; Chen, M. C.; Lu, X. H.; Ma, W.; Zhan, C. L. J. Mater. Chem. A 2019, 7 (36), 20713. doi: 10.1039/c9ta06929a  doi: 10.1039/c9ta06929a

    119. [119]

      Saito, M.; Tamai, Y.; Ichikawa, H.; Yoshida, H.; Yokoyama, D.; Ohkita, H.; Osaka, I. Macromolecules 2020, 53 (23), 10623. doi: 10.1021/acs.macromol.0c01787  doi: 10.1021/acs.macromol.0c01787

    120. [120]

      Tan, C. A. W.; Wong, B. T. Sol. RRL 2021, 5 (11), 2100503. doi: 10.1002/solr.202100503  doi: 10.1002/solr.202100503

    121. [121]

      Xu, X. P.; Li, Y.; Peng, Q. Adv. Mater. 2022, 34 (46), 2107476. doi: 10.1002/adma.202107476  doi: 10.1002/adma.202107476

    122. [122]

      Lu, H.; Xu, X. J.; Bo, Z. S. Sci. China-Mater. 2016, 59 (6), 444. doi: 10.1007/s40843-016-5069-6  doi: 10.1007/s40843-016-5069-6

    123. [123]

      Zhao, C. C.; Wang, J. X.; Zhao, X. Y.; Du, Z. L.; Yang, R. Q.; Tang, J. G. Nanoscale 2021, 13 (4), 2181. doi: 10.1039/d0nr07788g  doi: 10.1039/d0nr07788g

  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(21)
  • Abstract views(1193)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return