Citation: Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221200. doi: 10.3866/PKU.WHXB202212003 shu

Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3

  • Corresponding author: Xiaolong Tang, txiaolong@126.com
  • Received Date: 2 December 2022
    Revised Date: 19 February 2023
    Accepted Date: 21 February 2023
    Available Online: 2 March 2023

    Fund Project: the Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry CP2021YB02the National Natural Science Foundation of China U20A20130the National Natural Science Foundation of China 21806009the Fundamental Research Funds for the Central Universities 06500152

  • Currently, there is an urgent need to develop an efficient, non-toxic, and stable catalyst for the removal of NOx via selective catalytic reduction using NH3 (NH3-SCR) that is effective at low temperatures. Mn-based catalysts are particularly representative and have been widely studied. An investigation of the collaborative participation of Mn and Co can be of great importance for improving the catalytic activity and SO2 resistance of Mn-Co oxides with a spinel structure. Therefore, in this study, we prepared MnxCo3−xO4 spherical particles with high surface area using a co-precipitation method and investigated their ability to remove NOx via NH3-SCR. Mn-Co bimetal oxides mainly possess a spinel structure and undergo a tetragonal-to-cubic phase transformation with increasing Co-content. A high concentration of surface oxygen and strong effective electron transfer between the variable valence elements (Co3+ + Mn3+ ↔ Co2+ + Mn4+) improves the redox ability of typical MnxCo3−xO4 (x = 1.0, 1.5, 2.0) spinel catalysts. In addition, Mn-enrichment leads to more oxygen vacancies and abundant surface-active sites, which further promotes the SCR catalytic performance. The investigated MnxCo3−xO4 catalysts exhibit > 91% NOx conversion at 75 ℃, almost reaching 100% conversion with increasing reaction temperature. Notably, the NOx conversion rate remained above 80% during the test time of 15 h under 150 × 10−6 SO2 at 175 ℃. It was found that the coordination structure likely formed into a Cotet(CoMn)octO4 spinel structure in which Mn ions (Mn3+ and Mn4+, mainly in trivalent manganese) and partial Co ions are configured into octahedral sites. These species were identified as the activity descriptor for probably owing to their strong electronic transfer interactions that were directly correlated with SCR activity. Furthermore, the Cotet(CoMn)octO4 configuration was important for promoting low-temperature de-NOx activity and highly conducive to protecting Mn active sites from poisoning by SO2. The active sites in this particular spinel structure with the micro-coordination structure were effectively built and maintained to ensure the smooth circulation of electronic interactions in the core octahedron. The reaction of adsorbed NH3 and gaseous NO (or NO2) mainly occurred on the surface of Mn-Co spinel following the Eley-Rideal mechanism. Additionally, the NH4NO3 intermediate was likely first transformed into NH4NO2 and then to N2 with increasing reaction temperature. Herein, we successfully synthesized a spinel-structured Mn-Co oxide catalyst comprising a Mn-enriched surface of (MnCo)3O4−ƞ spinel oxides that exhibited high NH3-SCR catalytic activity and good resistance to SO2 poisoning.
  • 加载中
    1. [1]

      Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. Catalysts 2017, 7 (199), 1. doi: 10.3390/catal7070199  doi: 10.3390/catal7070199

    2. [2]

      Yu, Y.; Geng, M.; Wei, D.; He, C. Acta Phys. -Chim. Sin. 2022, 39, 2206034.  doi: 10.3866/PKU.WHXB202206034

    3. [3]

      Xu, H.; Yan, N.; Qu, Z.; Liu, W.; Mei, J.; Huang, W.; Zhao, S. Environ. Sci. Technol. 2017, 51 (16), 8879. doi: 10.1021/acs.est.6b06079  doi: 10.1021/acs.est.6b06079

    4. [4]

      Hao, Z.; Shen, Z.; Li, Y.; Wang, H.; Zheng, L.; Wang, R.; Liu, G.; Zhan, S. Angew. Chem. Int. Ed. 2019, 58 (19), 6351. doi: 10.1002/anie.201901771  doi: 10.1002/anie.201901771

    5. [5]

      Wang, H.; Huang, B.; Yu, C.; Lu, M.; Huang, H.; Zhou, Y. Appl. Catal. A 2019, 588, 117207. doi: 10.1016/j.apcata.2019.117207  doi: 10.1016/j.apcata.2019.117207

    6. [6]

      Han, L.; Cai, S.; Gao, M.; Hasegawa, J.-Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Chem. Rev. 2019, 119 (19), 10916. doi: 10.1021/acs.chemrev.9b00202  doi: 10.1021/acs.chemrev.9b00202

    7. [7]

      Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Shi, Y.; Meng, X. Appl. Surf. Sci. 2018, 443, 103. doi: 10.1016/j.apsusc.2018.02.151  doi: 10.1016/j.apsusc.2018.02.151

    8. [8]

      Gao, F.; Tang, X.; Yi, H.; Li, J.; Zhao, S.; Wang, J.; Chu, C.; Li, C. Chem. Eng. J. 2017, 317, 20. doi: 10.1016/j.cej.2017.02.042  doi: 10.1016/j.cej.2017.02.042

    9. [9]

      Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Zhu, W.; Shi, Y. J. Environ. Sci. 2020, 89, 145. doi: 10.1016/j.jes.2019.10.010  doi: 10.1016/j.jes.2019.10.010

    10. [10]

      Gao, F.; Tang, X.; Sani, Z.; Yi, H.; Zhao, S.; Yu, Q.; Zhou, Y.; Shi, Y.; Ni, S. Catal. Sci. Technol. 2020, 10 (22), 7486, doi: 10.1039/D0CY01337D  doi: 10.1039/D0CY01337D

    11. [11]

      Gao, F.; Chu, C.; Zhu, W.; Tang, X.; Yi, H.; Zhang, R. Appl. Surf. Sci. 2019, 479, 548. doi: 10.1016/j.apsusc.2019.02.116  doi: 10.1016/j.apsusc.2019.02.116

    12. [12]

      Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Gu, T. Appl. Surf. Sci. 2019, 466, 411. doi: 10.1016/j.apsusc.2018.09.227  doi: 10.1016/j.apsusc.2018.09.227

    13. [13]

      Li, K.; Zhang, R.; Gao, R.; Shen, G.-Q.; Pan, L.; Yao, Y.; Yu, K.; Zhang, X.; Zou, J.-J. Appl. Catal. B 2019, 244, 536. doi: 10.1016/j.apcatb.2018.11.072  doi: 10.1016/j.apcatb.2018.11.072

    14. [14]

      Li, C.; Han, X.; Cheng, F.; Hu, Y.; Chen, C.; Chen, J. Nat. Commun. 2015, 6, 7345. doi: 10.1038/ncomms8345  doi: 10.1038/ncomms8345

    15. [15]

      Meng, D.; Xu, Q.; Jiao, Y.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G.; Zhan, W. Appl. Catal. B 2018, 221, 652. doi: 10.1016/j.apcatb.2017.09.034  doi: 10.1016/j.apcatb.2017.09.034

    16. [16]

      Lü, Y.; Zhan, W.; He, Y.; Wang, Y.; Kong, X.; Kuang, Q.; Xie, Z.; Zheng, L. ACS Appl. Mater. Interfaces 2014, 6 (6), 4186. doi: 10.1021/am405858v  doi: 10.1021/am405858v

    17. [17]

      Chen, L.; Yao, X.; Cao, J.; Yang, F.; Tang, C.; Dong, L. Appl. Surf. Sci. 2019, 476, 283. doi: 10.1016/j.apsusc.2019.01.095  doi: 10.1016/j.apsusc.2019.01.095

    18. [18]

      Han, J.; Meeprasert, J.; Maitarad, P.; Nammuangruk, S.; Shi, L.; Zhang, D. J. Phys. Chem. C 2016, 120 (3), 1523. doi: 10.1021/acs.jpcc.5b09834  doi: 10.1021/acs.jpcc.5b09834

    19. [19]

      Zhang, R.; Zhang, Y.-C.; Pan, L.; Shen, G.-Q.; Mahmood, N.; Ma, Y.-H.; Shi, Y.; Jia, W.; Wang, L.; Zhang, X.; et al. ACS Catal. 2018, 8 (5), 3803. doi: 10.1021/acscatal.8b01046  doi: 10.1021/acscatal.8b01046

    20. [20]

      Zhou, Y.; Sun, S.; Xi, S.; Duan, Y.; Sritharan, T.; Du, Y.; Xu, Z. J. Adv. Mater. 2018, 30 (11), 1705407. doi: 10.1002/adma.201705407  doi: 10.1002/adma.201705407

    21. [21]

      Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Adv. Mater. 2017, 29 (23), 1606800. doi: 10.1002/adma.201606800  doi: 10.1002/adma.201606800

    22. [22]

      Liu, Z.; Zhou, Z.; Qi, G.; Zhu, T. Appl. Surf. Sci. 2019, 466, 459. doi: 10.1016/j.apsusc.2018.10.081  doi: 10.1016/j.apsusc.2018.10.081

    23. [23]

      Gao, F.; Tang, X.; Yi, H.; Chu, C.; Li, N.; Li, J.; Zhao, S. Chem. Eng. J. 2017, 322, 525. doi: 10.1016/j.cej.2017.04.006  doi: 10.1016/j.cej.2017.04.006

    24. [24]

      Jin, Y.; Wang, L.; Jiang, Q.; Du, X.; Ji, C.; He, X. Mater. Lett. 2016, 168, 166. doi: 10.1016/j.matlet.2016.01.077  doi: 10.1016/j.matlet.2016.01.077

    25. [25]

      Pan, K.; Yu, F.; Yao, Y.; Wang, H.; Liu, Z.; Li, W.; Gao, F.; Zhou, M.; Guo, X.; Dai, B. Ind. Eng. Chem. Res. 2022, 61 (35), 12966. doi: 10.1021/acs.iecr.2c01840  doi: 10.1021/acs.iecr.2c01840

    26. [26]

      Tian, J.; Zhang, K.; Wang, W.; Wang, F.; Dan, J.; Yang, S.; Zhang, J.; Dai, B.; Yu, F. Green Energy Environ. 2019, 4 (3), 311. doi: 10.1016/j.gee.2019.05.001  doi: 10.1016/j.gee.2019.05.001

    27. [27]

      Zheng, S.; Song, L.; Tang, S.; Liu, C.; Yue, H.; Liang, B. RSC Adv. 2018, 8 (4), 1979. doi: 10.1039/c7ra11868f  doi: 10.1039/c7ra11868f

    28. [28]

      Liu, J.; Li, X.; Li, R.; Zhao, Q.; Ke, J.; Xiao, H.; Wang, L.; Liu, S.; Tadé, M.; Wang, S. Appl. Catal. A 2018, 549, 289. doi: 10.1016/j.apcata.2017.10.010  doi: 10.1016/j.apcata.2017.10.010

    29. [29]

      Xiao, W.; Xia, H.; Fuh, J. Y. H.; Li, L. Phys. Scrip. 2010, T139, 014008. doi: 10.1088/0031-8949/2010/t139/014008  doi: 10.1088/0031-8949/2010/t139/014008

    30. [30]

      Yang, G.; Zhao, H.; Luo, X.; Shi, K.; Zhao, H.; Wang, W.; Chen, Q.; Fan, H.; Tao, W. Appl. Catal. B 2019, 245, 743. doi: 10.1016/j.apcatb.2018.12.080  doi: 10.1016/j.apcatb.2018.12.080

    31. [31]

      Hu, H.; Cai, S.; Li, H.; Huang, L.; Shi, L.; Zhang, D. ACS Catal. 2015, 5 (10), 6069. doi: 10.1021/acscatal.5b01039  doi: 10.1021/acscatal.5b01039

    32. [32]

      Li, Y.; Li, Y.; Shi, Q.; Qiu, M.; Zhan, S. J. Sol-Gel Sci. Technol. 2017, 81 (2), 576. doi: 10.1007/s10971-016-4208-8  doi: 10.1007/s10971-016-4208-8

    33. [33]

      Wang, X.; Lan, Z.; Zhang, K.; Chen, J.; Jiang, L.; Wang, R. J. Phys. Chem. C 2017, 121 (6), 3339. doi: 10.1021/acs.jpcc.6b10446  doi: 10.1021/acs.jpcc.6b10446

    34. [34]

      Liu, C.; Shi, J. W.; Gao, C.; Niu, C. Appl. Catal. A 2016, 522, 54. doi: 10.1016/j.apcata.2016.04.023  doi: 10.1016/j.apcata.2016.04.023

    35. [35]

      Zhou, J.; Wang, B.; Ma, J.; Li, G.; Sun, Q.; Xu, W.; Li, Y. Environ. Chem. 2018, 37 (4), 782.  doi: 10.7524/j.issn.0254-6108.2017091904

    36. [36]

      Zhu, W.; Tang, X.; Gao, F.; Yi, H.; Zhang, R.; Wang, J.; Yang, C.; Ni, S. Chem. Eng. J. 2020, 385, 123797. doi: 10.1016/j.cej.2019.123797  doi: 10.1016/j.cej.2019.123797

    37. [37]

      Zhang, L.; Shi, L.; Huang, L.; Zhang, J.; Gao, R.; Zhang, D. ACS Catal. 2014, 4 (6), 1753. doi: 10.1021/cs401185c  doi: 10.1021/cs401185c

    38. [38]

      Liu, Y.; Gao, F.; Ko, S.; Wang, C.; Liu, H.; Tang, X.; Yi, H.; Zhou, Y. Chem. Eng. J. 2022, 434, 134770. doi: 10.1016/j.cej.2022.134770  doi: 10.1016/j.cej.2022.134770

    39. [39]

      Yang, S.; Xiong, S.; Liao, Y.; Xiao, X.; Qi, F.; Peng, Y.; Fu, Y.; Shan, W.; Li, J. Environ. Sci. Technol. 2014, 48 (17), 10354. doi: 10.1021/es502585s  doi: 10.1021/es502585s

    40. [40]

      Ma, S.; Zhao, X.; Li, Y.; Zhang, T.; Yuan, F.; Niu, X.; Zhu, Y. Appl. Catal. B 2019, 248, 226. doi: 10.1016/j.apcatb.2019.02.015  doi: 10.1016/j.apcatb.2019.02.015

    41. [41]

      Zhang, B.; Zhang, S.; Liu, B. React. Kinet. Mech. Catal. 2019, 127 (2), 637. doi: 10.1007/s11144-019-01586-w  doi: 10.1007/s11144-019-01586-w

    42. [42]

      Chen, T.; Guan, B.; Lin, H.; Zhu, L. Chin. J. Catal. 2014, 35 (3), 294. doi: 10.1016/s1872-2067(12)60730-x  doi: 10.1016/s1872-2067(12)60730-x

    43. [43]

      Liu, F.; He, H. Catal. Today 2010, 153 (3–4), 70. doi: 10.1016/j.cattod.2010.02.043  doi: 10.1016/j.cattod.2010.02.043

    44. [44]

      Liu, Y.; Gu, T.; Weng, X.; Wang, Y.; Wu, Z.; Wang, H. J. Phys. Chem. C 2012, 116 (31), 16582. doi: 10.1021/jp304390e  doi: 10.1021/jp304390e

    45. [45]

      Jiang, B.; Li, Z.; Lee, S.-C. Chem. Eng. J. 2013, 225, 52. doi: 10.1016/j.cej.2013.03.022  doi: 10.1016/j.cej.2013.03.022

  • 加载中
    1. [1]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    2. [2]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    3. [3]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    4. [4]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    5. [5]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    6. [6]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    7. [7]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    8. [8]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    9. [9]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    17. [17]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(13)
  • Abstract views(664)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return