Citation: Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221105. doi: 10.3866/PKU.WHXB202211057 shu

Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries

  • Corresponding author: Shaohua Guo, shguo@nju.edu.cn
  • Received Date: 30 November 2022
    Revised Date: 31 December 2022
    Accepted Date: 9 January 2023
    Available Online: 18 January 2023

    Fund Project: the Shenzhen Science and Technology Innovation Committee RCYX20200714114524165the Shenzhen Science and Technology Innovation Committee JCYJ20210324123002008the Shenzhen Science and Technology Innovation Committee 2021Szvup055Guangdong Basic and Applied Basic Research Foundation 2022A1515010026

  • High-performance rechargeable lithium-ion batteries have been widely used in portable electronic devices, electric vehicles and other fields of electrochemical energy storage. However, in order to achieve a wider range of commercial applications, the energy density of lithium-ion batteries needs to be further improved. Layered lithium-rich oxide materials with a high reversible specific capacity of over 250 mAh∙g−1 are regarded as commercially promising cathodes for next-generation high-energy lithium-ion batteries. The high capacity of layered lithium-rich materials can be attributed to its unique oxygen redox chemistry, which can achieve additional charge storage thus increasing its capacity. However, many challenges must be addressed, including high-voltage oxygen release, structural changes from layered to rock-salt phase and structural degradation owing to the migration of transition metal ions, before it can be applied practically. These existing challenges result in low initial Coulombic efficiency, voltage/capacity decay, and insufficient cycle life. In view of the above issues, the modification of layered lithium-rich materials is an effective method. This review systematically introduces the composition and structure of lithium-rich materials, and then analyzes the electrochemical mechanism and internal causes which affect the electrochemical performance of lithium-rich materials. Furthermore, recent material modification strategies are discussed with regards to the current challenges. In addition, current methods and developmental trends of modification strategies such as bulk doping, surface coating, defect design, ion exchange and microstructure regulation are summarized in detail. According to the different charge properties, the doping modification can be divided into cationic doping, anion doping and anion-cation co-doping. Among them, cationic doping can be further categorized into transition metal layer doping substitution and lithium layer doping substitution, depending on the doping site. Two tables for the doping and ion exchange modifications were tabulated, and the representative scientific research was summarized. Recent research conducted on hotspot high-entropy materials were also mentioned. Finally, design ideas for high-capacity, long-cycle layered lithium-rich materials and high specific energy lithium-ion batteries were prospected. This comprehensive review is expected to promote further lithium-rich oxide materials research.
  • 加载中
    1. [1]

      Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 6710. doi: 10.1002/anie.201803221  doi: 10.1002/anie.201803221

    2. [2]

      Crabtree, G. Science 2019, 366, 422. doi: 10.1126/science.aax0704  doi: 10.1126/science.aax0704

    3. [3]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    4. [4]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    5. [5]

      Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783. doi: 10.1016/0025-5408(80)90012-4  doi: 10.1016/0025-5408(80)90012-4

    6. [6]

      Ye, Y.; Hu, Z.; Liu, J.; Lin, W.; Chen, T.; Zheng, J.; Pan, F. Acta Phys.-Chim. Sin. 2021, 37, 2011003.  doi: 10.3866/PKU.WHXB202011003

    7. [7]

      Wu, F.; Li, Q.; Chen, L.; Wang, Z.; Chen, G.; Bao, L.; Lu, Y.; Chen, S.; Su, Y. Acta Phys.-Chim. Sin. 2022, 38, 2007017.  doi: 10.3866/PKU.WHXB202007017

    8. [8]

      Liu, J.; Wang, J.; Ni, Y.; Zhang, K.; Cheng, F.; Chen, J. Mater. Today 2021, 43, 132. doi: 10.1016/j.mattod.2020.10.028  doi: 10.1016/j.mattod.2020.10.028

    9. [9]

      Li, M.; Lu, J. Science 2020, 367, 979. doi: 10.1126/science.aba9168  doi: 10.1126/science.aba9168

    10. [10]

      Boivin, E.; Guerrini, N.; House, R. A.; Lozano, J. G.; Jin, L.; Rees, G. J.; Somerville, J. W.; Kuss, C.; Roberts, M. R.; Bruce, P. G. Adv. Funct. Mater. 2021, 31, 2003660. doi: 10.1002/adfm.202003660  doi: 10.1002/adfm.202003660

    11. [11]

      Gent, W. E.; Abate, I. I.; Yang, W.; Nazar, L. F.; Chueh, W. C. Joule 2020, 4, 1369. doi: 10.1016/j.joule.2020.05.004  doi: 10.1016/j.joule.2020.05.004

    12. [12]

      He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L.; et al. Adv. Mater. 2021, 33, 2005937. doi: 10.1002/adma.202005937  doi: 10.1002/adma.202005937

    13. [13]

      Lu, Z.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A778. doi: 10.1149/1.1471541  doi: 10.1149/1.1471541

    14. [14]

      Yabuuchi, N.; Nakayama, M.; Takeuchi, M.; Komaba, S.; Hashimoto, Y.; Mukai, T.; Shiiba, H.; Sato, K.; Kobayashi, Y.; Nakao, A.; et al. Nat. Commun. 2016, 7, 13814. doi: 10.1038/ncomms13814  doi: 10.1038/ncomms13814

    15. [15]

      Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17, 3112. doi: 10.1039/B702425H  doi: 10.1039/B702425H

    16. [16]

      Huang, W.; Wu, C. Y.; Zeng, Y. W.; Jin, C. H.; Zhang, Z. Acta Phys.-Chim. Sin. 2016, 32, 2287.  doi: 10.3866/PKU.WHXB201605164

    17. [17]

      Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A. J. Mater. Chem. 2005, 15, 2257. doi: 10.1039/B417616M  doi: 10.1039/B417616M

    18. [18]

      Pan, C.; Lee, Y. J.; Ammundsen, B.; Grey, C. P. Chem. Mater. 2002, 14, 2289. doi: 10.1021/cm011623u  doi: 10.1021/cm011623u

    19. [19]

      Jarvis, K. A.; Deng, Z.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Chem. Mater. 2011, 23, 3614. doi: 10.1021/cm200831c  doi: 10.1021/cm200831c

    20. [20]

      Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Science 2014, 343, 519. doi: 10.1126/science.1246432  doi: 10.1126/science.1246432

    21. [21]

      Van der Ven, A.; Bhattacharya, J.; Belak, A. A. Acc. Chem. Res. 2013, 46, 1216. doi: 10.1021/ar200329r  doi: 10.1021/ar200329r

    22. [22]

      Catti, M. Phys. Rev. B 2000, 61, 1795. doi: 10.1103/PhysRevB.61.1795  doi: 10.1103/PhysRevB.61.1795

    23. [23]

      Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977. doi: 10.1126/science.1122152  doi: 10.1126/science.1122152

    24. [24]

      Van der Ven, A. Electrochem. Solid-State Lett. 1999, 3, 301. doi: 10.1149/1.1391130  doi: 10.1149/1.1391130

    25. [25]

      Van der Ven, A.; Ceder, G. J. Power Sources 2001, 97–98, 529. doi: 10.1016/S0378-7753(01)00638-3  doi: 10.1016/S0378-7753(01)00638-3

    26. [26]

      Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S. Adv. Energy Mater. 2016, 6, 1600906. doi: 10.1002/aenm.201600906  doi: 10.1002/aenm.201600906

    27. [27]

      Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M. Electrochem. Commun. 2004, 6, 1085. doi: 10.1016/j.elecom.2004.08.002  doi: 10.1016/j.elecom.2004.08.002

    28. [28]

      Li, J.; Liu, Z.; Wang, Y.; Wang, R. J. Alloys Compd. 2020, 834, 155150. doi: 10.1016/j.jallcom.2020.155150  doi: 10.1016/j.jallcom.2020.155150

    29. [29]

      Liu, P.; Zhang, H.; He, W.; Xiong, T.; Cheng, Y.; Xie, Q.; Ma, Y.; Zheng, H.; Wang, L.; Zhu, Z.-Z.; et al. J. Am. Chem. Soc. 2019, 141, 10876. doi: 10.1021/jacs.9b04974  doi: 10.1021/jacs.9b04974

    30. [30]

      Shunmugasundaram, R.; Senthil Arumugam, R.; Dahn, J. R. Chem. Mater. 2015, 27, 757. doi: 10.1021/cm504583y  doi: 10.1021/cm504583y

    31. [31]

      Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. ACS Appl. Mater. Interfaces 2018, 10, 38892. doi: 10.1021/acsami.8b13158  doi: 10.1021/acsami.8b13158

    32. [32]

      Yan, P.; Zheng, J.; Liu, J.; Wang, B.; Cheng, X.; Zhang, Y.; Sun, X.; Wang, C.; Zhang, J.-G. Nat. Energy 2018, 3, 600. doi: 10.1038/s41560-018-0191-3  doi: 10.1038/s41560-018-0191-3

    33. [33]

      Xiao, B.; Sun, X. Adv. Energy Mater. 2018, 8, 1802057. doi: 10.1002/aenm.201802057  doi: 10.1002/aenm.201802057

    34. [34]

      Zhu, G.-L.; Zhao, C.-Z.; Huang, J.-Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q. Small 2019, 15, 1805389. doi: 10.1002/smll.201805389  doi: 10.1002/smll.201805389

    35. [35]

      Li, X.; Tang, M.; Feng, X.; Hung, I.; Rose, A.; Chien, P.-H.; Gan, Z.; Hu, Y.-Y. Chem. Mater. 2017, 29, 8282. doi: 10.1021/acs.chemmater.7b02589  doi: 10.1021/acs.chemmater.7b02589

    36. [36]

      Wang, Z. Q.; Wu, M. S.; Xu, B.; Ouyang, C. Y. J. Alloys Compd. 2016, 658, 818. doi: 10.1016/j.jallcom.2015.11.013  doi: 10.1016/j.jallcom.2015.11.013

    37. [37]

      Yu, X.; Lyu, Y.; Gu, L.; Wu, H.; Bak, S.-M.; Zhou, Y.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K.-W.; et al. Adv. Energy Mater. 2014, 4, 1300950. doi: 10.1002/aenm.201300950  doi: 10.1002/aenm.201300950

    38. [38]

      Gao, Y.; Wang, X.; Ma, J.; Wang, Z.; Chen, L. Chem. Mater. 2015, 27, 3456. doi: 10.1021/acs.chemmater.5b00875  doi: 10.1021/acs.chemmater.5b00875

    39. [39]

      Gu, M.; Genc, A.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G.; Browning, N. D.; Liu, J.; et al. Chem. Mater. 2013, 25, 2319. doi: 10.1021/cm4009392  doi: 10.1021/cm4009392

    40. [40]

      Yan, P.; Zheng, J.; Zheng, J.; Wang, Z.; Teng, G.; Kuppan, S.; Xiao, J.; Chen, G.; Pan, F.; Zhang, J.-G.; et al. Adv. Energy Mater. 2016, 6, 1502455. doi: 10.1002/aenm.201502455  doi: 10.1002/aenm.201502455

    41. [41]

      Doan, T. N. L.; Yoo, K.; Hoang, T. K. A.; Chen, P. Front. Energy Res. 2014, 2, 36. doi: 10.3389/fenrg.2014.00036  doi: 10.3389/fenrg.2014.00036

    42. [42]

      Hoang, K. Phys. Rev. Appl. 2015, 3, 024013. doi: 10.1103/PhysRevApplied.3.024013  doi: 10.1103/PhysRevApplied.3.024013

    43. [43]

      Lee, E.; Persson, K. A. Adv. Energy Mater. 2014, 4, 1400498. doi: 10.1002/aenm.201400498  doi: 10.1002/aenm.201400498

    44. [44]

      Chen, H.; Islam, M. S. Chem. Mater. 2016, 28, 6656. doi: 10.1021/acs.chemmater.6b02870  doi: 10.1021/acs.chemmater.6b02870

    45. [45]

      Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J.-M. Nat. Commun. 2017, 8, 2219. doi: 10.1038/s41467-017-02291-9  doi: 10.1038/s41467-017-02291-9

    46. [46]

      Lee, S. H.; Moon, J.-S.; Lee, M.-S.; Yu, T.-H.; Kim, H.; Park, B. M. J. Power Sources 2015, 281, 77. doi: 10.1016/j.jpowsour.2015.01.158  doi: 10.1016/j.jpowsour.2015.01.158

    47. [47]

      Leifer, N.; Penki, T.; Nanda, R.; Grinblat, J.; Luski, S.; Aurbach, D.; Goobes, G. Phys. Chem. Chem. Phys. 2020, 22, 9098. doi: 10.1039/D0CP00400F  doi: 10.1039/D0CP00400F

    48. [48]

      Zheng, J.; Shi, W.; Gu, M.; Xiao, J.; Zuo, P.; Wang, C.; Zhang, J.-G. J. Electrochem. Soc. 2013, 160, A2212. doi: 10.1149/2.090311jes  doi: 10.1149/2.090311jes

    49. [49]

      Deng, Z. Q.; Manthiram, A. J. Phys. Chem. C 2011, 115, 7097. doi: 10.1021/jp200375d  doi: 10.1021/jp200375d

    50. [50]

      Shin, Y.; Ding, H.; Persson, K. A. Chem. Mater. 2016, 28, 2081. doi: 10.1021/acs.chemmater.5b04862  doi: 10.1021/acs.chemmater.5b04862

    51. [51]

      Wei, G.-Z.; Lu, X.; Ke, F.-S.; Huang, L.; Li, J.-T.; Wang, Z.-X.; Zhou, Z.-Y.; Sun, S.-G. Adv. Mater. 2010, 22, 4364. doi: 10.1002/adma.201001578  doi: 10.1002/adma.201001578

    52. [52]

      Hou, Y.; Chang, K.; Li, B.; Tang, H.; Wang, Z.; Zou, J.; Yuan, H.; Lu, Z.; Chang, Z. Nano Res. 2018, 11, 2424. doi: 10.1007/s12274-017-1864-0  doi: 10.1007/s12274-017-1864-0

    53. [53]

      Chen, L.; Su, Y.; Chen, S.; Li, N.; Bao, L.; Li, W.; Wang, Z.; Wang, M.; Wu, F. Adv. Mater. 2014, 26, 6756. doi: 10.1002/adma.201402541  doi: 10.1002/adma.201402541

    54. [54]

      Assat, G.; Tarascon, J.-M. Nat. Energy 2018, 3, 373. doi: 10.1038/s41560-018-0097-0  doi: 10.1038/s41560-018-0097-0

    55. [55]

      McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-017-02088-w  doi: 10.1038/s41467-017-02088-w

    56. [56]

      Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H. L.; Jaye, C.; Fischer, D. A.; et al. Nat. Energy 2018, 3, 690. doi: 10.1038/s41560-018-0207-z  doi: 10.1038/s41560-018-0207-z

    57. [57]

      Li, B.; Yan, H.; Zuo, Y.; Xia, D. Chem. Mater. 2017, 29, 2811. doi: 10.1021/acs.chemmater.6b04743  doi: 10.1021/acs.chemmater.6b04743

    58. [58]

      Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Adv. Energy Mater. 2019, 9, 1900551. doi: 10.1002/aenm.201900551  doi: 10.1002/aenm.201900551

    59. [59]

      Mohanty, D.; Huq, A.; Payzant, E. A.; Sefat, A. S.; Li, J.; Abraham, D. P.; Wood, D. L., Ⅲ; Daniel, C. Chem. Mater. 2013, 25, 4064. doi: 10.1021/cm402278q  doi: 10.1021/cm402278q

    60. [60]

      Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Energy Environ. Sci. 2011, 4, 2223. doi: 10.1039/C1EE01131F  doi: 10.1039/C1EE01131F

    61. [61]

      Zheng, J.; Xu, P.; Gu, M.; Xiao, J.; Browning, N. D.; Yan, P.; Wang, C.; Zhang, J.-G. Chem. Mater. 2015, 27, 1381. doi: 10.1021/cm5045978  doi: 10.1021/cm5045978

    62. [62]

      Zuo, Y.; Li, B.; Jiang, N.; Chu, W.; Zhang, H.; Zou, R.; Xia, D. Adv. Mater. 2018, 30, 1707255. doi: 10.1002/adma.201707255  doi: 10.1002/adma.201707255

    63. [63]

      Ben Yahia, M.; Vergnet, J.; Saubanère, M.; Doublet, M.-L. Nat. Mater. 2019, 18, 496. doi: 10.1038/s41563-019-0318-3  doi: 10.1038/s41563-019-0318-3

    64. [64]

      Liu, S.; Liu, Z.; Shen, X.; Wang, X.; Liao, S.-C.; Yu, R.; Wang, Z.; Hu, Z.; Chen, C.-T.; Yu, X. , et al. Adv. Energy Mater. 2019, 9, 1901530. doi: 10.1002/aenm.201901530  doi: 10.1002/aenm.201901530

    65. [65]

      Mo, Y.; Guo, L.; Cao, B.; Wang, Y.; Zhang, L.; Jia, X.; Chen, Y. Energy Storage Mater. 2019, 18, 260. doi: 10.1016/j.ensm.2018.09.003  doi: 10.1016/j.ensm.2018.09.003

    66. [66]

      He, T.; Lu, Y.; Su, Y.; Bao, L.; Tan, J.; Chen, L.; Zhang, Q.; Li, W.; Chen, S.; Wu, F. ChemSusChem 2018, 11, 1639. doi: 10.1002/cssc.201702451  doi: 10.1002/cssc.201702451

    67. [67]

      Zhang, L.; He, W.; Peng, D.-L.; Xie, Q.; Xie, R.-J. ChemElectroChem 2019, 6, 1542. doi: 10.1002/celc.201801895  doi: 10.1002/celc.201801895

    68. [68]

      You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Angew. Chem. Int. Ed. 2018, 57, 6480. doi: 10.1002/anie.201801533  doi: 10.1002/anie.201801533

    69. [69]

      Choi, A.; Lim, J.; Kim, H.-J.; Jung, S. C.; Lim, H.-W.; Kim, H.; Kwon, M.-S.; Han, Y. K.; Oh, S. M.; Lee, K. T. Adv. Energy Mater. 2018, 8, 1702514. doi: 10.1002/aenm.201702514  doi: 10.1002/aenm.201702514

    70. [70]

      Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L. ACS Appl. Mater. Interfaces 2014, 6, 10330. doi: 10.1021/am5017649  doi: 10.1021/am5017649

    71. [71]

      He, W.; Liu, P.; Zhou, Y.; Zheng, H.; Zheng, Z.; Liu, B.; Yuan, J.; Zhang, Q.; Wang, L.; Luo, Q.; et al. Sustain. Mater. Technol. 2020, 25, e00171. doi: 10.1016/j.susmat.2020.e00171  doi: 10.1016/j.susmat.2020.e00171

    72. [72]

      An, J.; Shi, L.; Chen, G.; Li, M.; Liu, H.; Yuan, S.; Chen, S.; Zhang, D. J. Mater. Chem. A 2017, 5, 19738. doi: 10.1039/C7TA05971J  doi: 10.1039/C7TA05971J

    73. [73]

      Yan, H.; Li, B.; Yu, Z.; Chu, W.; Xia, D. J. Phys. Chem. C. 2017, 121, 7155. doi: 10.1021/acs.jpcc.7b01168  doi: 10.1021/acs.jpcc.7b01168

    74. [74]

      Li, L.; Song, B. H.; Chang, Y. L.; Xia, H.; Yang, J. R.; Lee, K. S.; Lu, L. J. Power Sources 2015, 283, 162. doi: 10.1016/j.jpowsour.2015.02.085  doi: 10.1016/j.jpowsour.2015.02.085

    75. [75]

      Jin, X.; Xu, Q.; Liu, H.; Yuan, X.; Xia, Y. Electrochim. Acta 2014, 136, 19. doi: 10.1016/j.electacta.2014.05.043  doi: 10.1016/j.electacta.2014.05.043

    76. [76]

      Meng, J.; Wang, Z.; Xu, L.; Xu, H.; Zhang, S.; Yan, Q. J. Electrochem. Soc. 2017, 164, A2594. doi: 10.1149/2.1141712jes  doi: 10.1149/2.1141712jes

    77. [77]

      Ramesha, R. N.; Laisa, C. P.; Ramesha, K. Electrochim. Acta 2017, 249, 377. doi: 10.1016/j.electacta.2017.08.039  doi: 10.1016/j.electacta.2017.08.039

    78. [78]

      Huang, J.; Liu, H.; Hu, T.; Meng, Y. S.; Luo, J. J. Power Sources 2018, 375, 21. doi: 10.1016/j.jpowsour.2017.11.048  doi: 10.1016/j.jpowsour.2017.11.048

    79. [79]

      Ming, L.; Zhang, B.; Cao, Y.; Zhang, J.-F.; Wang, C.-H.; Wang, X.-W.; Li, H. Front. Chem. 2018, 6, 76. doi: 10.3389/fchem.2018.00076  doi: 10.3389/fchem.2018.00076

    80. [80]

      Liang, Y.; Li, S.; Xie, J.; Yang, L.; Li, W.; Li, C.; Ai, L.; Fu, X.; Cui, X.; Shangguan, X. New, J. Chem. 2019, 43, 12004. doi: 10.1039/C9NJ01539F  doi: 10.1039/C9NJ01539F

    81. [81]

      Li, B.; Wang, X.; Gao, Y.; Wang, B.; Qiu, J.; Cheng, X.; Dai, D. J. Materiomics 2019, 5, 149. doi: 10.1016/j.jmat.2019.01.005  doi: 10.1016/j.jmat.2019.01.005

    82. [82]

      Bao, L.; Yang, Z.; Chen, L.; Su, Y.; Lu, Y.; Li, W.; Yuan, F.; Dong, J.; Fang, Y.; Ji, Z.; et al. ChemSusChem 2019, 12, 2294. doi: 10.1002/cssc.201900226  doi: 10.1002/cssc.201900226

    83. [83]

      Li, M.; Wang, H.; Zhao, L.; Zhou, Y.; Zhang, F.; He, D. J. Alloy. Compd. 2019, 782, 451. doi: 10.1016/j.jallcom.2018.12.072  doi: 10.1016/j.jallcom.2018.12.072

    84. [84]

      Jiang, W.; Zhang, C.; Feng, Y.; Wei, B.; Chen, L.; Zhang, R.; Ivey, D. G.; Wang, P.; Wei, W. Energy Storage Mater. 2020, 32, 37. doi: 10.1016/j.ensm.2020.07.035  doi: 10.1016/j.ensm.2020.07.035

    85. [85]

      Zheng, H.; Zhang, C.; Zhang, Y.; Lin, L.; Liu, P.; Wang, L.; Wei, Q.; Lin, J.; Sa, B.; Xie, Q.; et al. Adv. Funct. Mater. 2021, 31, 2100783. doi: 10.1002/adfm.202100783  doi: 10.1002/adfm.202100783

    86. [86]

      Meng, J.; Xu, L.; Ma, Q.; Yang, M.; Fang, Y.; Wan, G.; Li, R.; Yuan, J.; Zhang, X.; Yu, H.; et al. Adv. Funct. Mater. 2022, 32, 2113013. doi: 10.1002/adfm.202113013  doi: 10.1002/adfm.202113013

    87. [87]

      Cheng, W.; Ding, J.; Liu, Z.; Zhang, J.; Liu, Q.; Wang, X.; Wang, L.; Sun, Z.; Cheng, Y.; Xu, Z.; et al. Chem. Eng. J. (Lausanne) 2023, 451, 138678. doi: 10.1016/j.cej.2022.138678  doi: 10.1016/j.cej.2022.138678

    88. [88]

      Li, N.; An, R.; Su, Y.; Wu, F.; Bao, L.; Chen, L.; Zheng, Y.; Shou, H.; Chen, S. J. Mater. Chem. A 2013, 1, 9760. doi: 10.1039/C3TA11665D  doi: 10.1039/C3TA11665D

    89. [89]

      Li, X.; Zhang, K.; Mitlin, D.; Yang, Z.; Wang, M.; Tang, Y.; Jiang, F.; Du, Y.; Zheng, J. Chem. Mater. 2018, 30, 2566. doi: 10.1021/acs.chemmater.7b04861  doi: 10.1021/acs.chemmater.7b04861

    90. [90]

      Wang, T.; Zhang, C.; Li, S.; Shen, X.; Zhou, L.; Huang, Q.; Liang, C.; Wang, Z.; Wang, X.; Wei, W. ACS Appl. Mater. Interfaces 2021, 13, 12159. doi: 10.1021/acsami.1c01351  doi: 10.1021/acsami.1c01351

    91. [91]

      Song, J. H.; Kapylou, A.; Choi, H. S.; Yu, B. Y.; Matulevich, E.; Kang, S. H. J. Power Sources 2016, 313, 65. doi: 10.1016/j.jpowsour.2016.02.058  doi: 10.1016/j.jpowsour.2016.02.058

    92. [92]

      Si, M.; Wang, D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C.; Lu, X.; Zhao, H.; Bai, Y. Adv. Sci. 2020, 7, 1902538. doi: 10.1002/advs.201902538  doi: 10.1002/advs.201902538

    93. [93]

      Zhang, W.; Sun, Y.; Deng, H.; Ma, J.; Zeng, Y.; Zhu, Z.; Lv, Z.; Xia, H.; Ge, X.; Cao, S.; et al. Adv. Mater. 2020, 32, 2000496. doi: 10.1002/adma.202000496  doi: 10.1002/adma.202000496

    94. [94]

      Kim, S. Y.; Park, C. S.; Hosseini, S.; Lampert, J.; Kim, Y. J.; Nazar, L. F. Adv. Energy Mater. 2021, 11, 2100552. doi: 10.1002/aenm.202100552  doi: 10.1002/aenm.202100552

    95. [95]

      Yan, P.; Zheng, J.; Tang, Z.-K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J.-G.; Liu, L.-M.; Wang, C. Nat. Nanotechnol. 2019, 14, 602. doi: 10.1038/s41565-019-0428-8  doi: 10.1038/s41565-019-0428-8

    96. [96]

      Zhao, E.; Li, Q.; Meng, F.; Liu, J.; Wang, J.; He, L.; Jiang, Z.; Zhang, Q.; Yu, X.; Gu, L. , et al. Angew. Chem. Int. Ed. 2019, 58, 4323. doi: 10.1002/anie.201900444  doi: 10.1002/anie.201900444

    97. [97]

      Guo, H.; Wei, Z.; Jia, K.; Qiu, B.; Yin, C.; Meng, F.; Zhang, Q.; Gu, L.; Han, S.; Liu, Y.; et al. Energy Storage Mater. 2019, 16, 220. doi: 10.1016/j.ensm.2018.05.022  doi: 10.1016/j.ensm.2018.05.022

    98. [98]

      Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C. J. Electrochem. Soc. 2013, 160, A786. doi: 10.1149/2.038306jes  doi: 10.1149/2.038306jes

    99. [99]

      Jiang, W.; Yin, C.; Xia, Y.; Qiu, B.; Guo, H.; Cui, H.; Hu, F.; Liu, Z. ACS Appl. Mater. Interfaces 2019, 11, 14023. doi: 10.1021/acsami.8b21201  doi: 10.1021/acsami.8b21201

    100. [100]

      Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; et al. Nat. Commun. 2016, 7, 12108. doi: 10.1038/ncomms12108  doi: 10.1038/ncomms12108

    101. [101]

      Erickson, E. M.; Sclar, H.; Schipper, F.; Liu, J.; Tian, R.; Ghanty, C.; Burstein, L.; Leifer, N.; Grinblat, J.; Talianker, M.; et al. Adv. Energy Mater. 2017, 7, 1700708. doi: 10.1002/aenm.201700708  doi: 10.1002/aenm.201700708

    102. [102]

      Ding, X.; Luo, D.; Cui, J.; Xie, H.; Ren, Q.; Lin, Z. Angew. Chem. Int. Ed. 2020, 59, 7778. doi: 10.1002/anie.202000628  doi: 10.1002/anie.202000628

    103. [103]

      Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A. M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. Chem. Mater. 2017, 29, 9923. doi: 10.1021/acs.chemmater.7b03230  doi: 10.1021/acs.chemmater.7b03230

    104. [104]

      Cao, X.; Qiao, Y.; Jia, M.; He, P.; Zhou, H. Adv. Energy Mater. 2022, 12, 2003972. doi: 10.1002/aenm.202003972  doi: 10.1002/aenm.202003972

    105. [105]

      Paulsen, J. M.; Donaberger, R. A.; Dahn, J. R. Chem. Mater. 2000, 12, 2257. doi: 10.1021/cm990810d  doi: 10.1021/cm990810d

    106. [106]

      Paulsen, J. M.; Dahn, J. R. Solid State Ionics 1999, 126, 3. doi: 10.1016/S0167-2738(99)00147-2  doi: 10.1016/S0167-2738(99)00147-2

    107. [107]

      Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J.; Cho, S.-P.; Yoon, G.; Lee, M. H.; Jung, S.-K.; Yang, W.; et al. Nat. Mater. 2020, 19, 419. doi: 10.1038/s41563-019-0572-4  doi: 10.1038/s41563-019-0572-4

    108. [108]

      Cao, X.; Li, H.; Qiao, Y.; He, P.; Qian, Y.; Yue, X.; Jia, M.; Cabana, J.; Zhou, H. Joule 2022, 6, 1290. doi: 10.1016/j.joule.2022.05.006  doi: 10.1016/j.joule.2022.05.006

    109. [109]

      Liu, Z.; Xu, X.; Ji, S.; Zeng, L.; Zhang, D.; Liu, J. Chem. Eur. J. 2020, 26, 7747. doi: 10.1002/chem.201905131  doi: 10.1002/chem.201905131

    110. [110]

      Paulsen, J. M.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 2478. doi: 10.1149/1.1393556  doi: 10.1149/1.1393556

    111. [111]

      Paulsen, J. M.; Larcher, D.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 2862. doi: 10.1149/1.1393617  doi: 10.1149/1.1393617

    112. [112]

      Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A237. doi: 10.1149/1.1350016  doi: 10.1149/1.1350016

    113. [113]

      Delmas, C.; Braconnier, J.-J.; Hagenmuller, P. Mater. Res. Bull. 1982, 17, 117. doi: 10.1016/0025-5408(82)90192-1  doi: 10.1016/0025-5408(82)90192-1

    114. [114]

      Lu, Z.; Dahn, J. R. Chem. Mater. 2001, 13, 2078. doi: 10.1021/cm000885d  doi: 10.1021/cm000885d

    115. [115]

      Armstrong, A. R.; Bruce, P. G. Nature 1996, 381, 499. doi: 10.1038/381499a0  doi: 10.1038/381499a0

    116. [116]

      Cao, X.; Li, H.; Qiao, Y.; Jia, M.; Li, X.; Cabana, J.; Zhou, H. Adv. Mater. 2021, 33, 2004280. doi: 10.1002/adma.202004280  doi: 10.1002/adma.202004280

    117. [117]

      Cao, X.; Sun, J.; Chang, Z.; Wang, P.; Yue, X.; Okagaki, J.; He, P.; Yoo, E.; Zhou, H. Adv. Funct. Mater. 2022, 32, 2205199. doi: 10.1002/adfm.202205199  doi: 10.1002/adfm.202205199

    118. [118]

      Cao, X.; Li, H.; Qiao, Y.; Chang, Z.; Wang, P.; Li, C.; Yue, X.; He, P.; Cabana, J.; Zhou, H. ACS Energy Lett. 2022, 7, 2349. doi: 10.1021/acsenergylett.2c01072  doi: 10.1021/acsenergylett.2c01072

    119. [119]

      Cao, X.; Li, H.; Qiao, Y.; Jia, M.; He, P.; Cabana, J.; Zhou, H. Energy Storage Mater. 2021, 38, 1. doi: 10.1016/j.ensm.2021.02.047  doi: 10.1016/j.ensm.2021.02.047

    120. [120]

      Kawai, K.; Shi, X.-M.; Takenaka, N.; Jang, J.; de Boisse, B. M.; Tsuchimoto, A.; Asakura, D.; Kikkawa, J.; Nakayama, M.; Okubo, M.; et al. Energy Environ. Sci. 2022, 15, 2591. doi: 10.1039/D1EE03503G  doi: 10.1039/D1EE03503G

    121. [121]

      Deng, Y.-P.; Fu, F.; Wu, Z.-G.; Yin, Z.-W.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G. J. Mater. Chem. A 2016, 4, 257. doi: 10.1039/C5TA06945A  doi: 10.1039/C5TA06945A

    122. [122]

      Liu, J.; Wang, J.; Ni, Y.; Zhang, Y.; Luo, J.; Cheng, F.; Chen, J. Small Methods 2019, 3, 1900350. doi: 10.1002/smtd.201900350  doi: 10.1002/smtd.201900350

    123. [123]

      Zhu, Z.; Yu, D.; Yang, Y.; Su, C.; Huang, Y.; Dong, Y.; Waluyo, I.; Wang, B.; Hunt, A.; Yao, X. Nat. Energy 2019, 4, 1049. doi: 10.1038/s41560-019-0508-x  doi: 10.1038/s41560-019-0508-x

    124. [124]

      Qing, R.-P.; Shi, J.-L.; Xiao, D.-D.; Zhang, X.-D.; Yin, Y.-X.; Zhai, Y.-B.; Gu, L.; Guo, Y.-G. Adv. Energy Mater. 2016, 6, 1501914. doi: 10.1002/aenm.201501914  doi: 10.1002/aenm.201501914

    125. [125]

      Zhu, Z.; Yu, D.; Shi, Z.; Gao, R.; Xiao, X.; Waluyo, I.; Ge, M.; Dong, Y.; Xue, W.; Xu, G.; et al. Energy Environ. Sci. 2020, 13, 1865. doi: 10.1039/D0EE00231C  doi: 10.1039/D0EE00231C

    126. [126]

      Song, J.; Ning, F.; Zuo, Y.; Li, A.; Wang, H.; Zhang, K.; Yang, T.; Yang, Y.; Gao, C.; Xiao, W.; et al. Adv. Mater. 2023, doi: 10.1002/adma.202208726  doi: 10.1002/adma.202208726

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(48)
  • Abstract views(1151)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return