Citation: Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221105. doi: 10.3866/PKU.WHXB202211051 shu

Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction

  • Corresponding author: Pengwei Huo, huopw@ujs.edu.cn
  • Received Date: 26 November 2022
    Revised Date: 7 January 2023
    Accepted Date: 9 January 2023
    Available Online: 16 January 2023

    Fund Project: the National Natural Science Foundation of China 22078131

  • As a higher oxidation state compound of carbon, more electrons and protons are needed to reduce CO2. While the step-scheme (S-scheme) heterojunction driven by semiconductors performs excellently in the excitation and transport of electrons, which has strong redox ability while inhibiting electron hole recombination, and has exhibited excellent results in photocatalytic CO2 reduction. Herein, Ag/CN was prepared by an optical deposition method, and the Ag/CN/ZnIn2S4 S-scheme heterojunction composite photocatalyst was prepared by a hydrothermal method. The crystal structure, morphology and elements valences of the materials were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and other characterization methods, and the composite of the monomer was successfully verified. According to the electron spin resonance (ESR) and ultraviolet photoelectron spectroscopy (UPS) studies, formation of the S-scheme heterojunction was observed. Based on photoelectrochemical results and photoluminescence (PL) studies, the enhanced CO2 reduction can be attributed to the S-scheme electron transfer at the interface, which promotes charge separation. In the S-scheme electronic transmission system, CN acts as the reductive photocatalyst (RP) and ZnIn2S4 as the oxidative photocatalyst (OP). Owing to the difference in Fermi energy levels, the electron cloud density changes until the Fermi levels match after contact between the RP and OP. This process generates internal electric fields and band bending at the interface, facilitating hole separation and the transfer of photo-induced carriers and photogenerated electrons. The plasmonic effect of the interfacial Ag NPs of the composite was proven using UV-Vis diffuse reflectance spectroscopy (DRS). When exposed to light, Ag NPs, as reactive sites of the reaction, act as receptors for electron transport. The excitation of high-energy thermal electrons on the surface of Ag NPs leads to the generation of localized electromagnetic fields between CN and Ag NPs, which subsequently accelerates the electron transport rate on the CB of CN and enhances light absorption, thus improving the photoreduction performance of hybrid materials. Under the combined action of the S-scheme heterojunction and plasmonic effect, the interface carrier transfer efficiency can be improved. Finally, the charge transfer mechanism was analyzed. Simultaneously, the possible reaction paths of photocatalytic CO2 reduction were explained by comparing the in situ Fourier-transform infrared spectroscopy (FT-IR) spectra of the monomer and compound. The CO2 reduction capability of composite materials was better compared to that of monomer materials. The best yields of CO and CH4 of ACZ-60 were 5.63 μmol·g−1 and 0.23 μmol·g−1, which were 6.5 and 2.1 times that of CN, respectively. Across four cycles, the CO and CH4 yields and XRD patterns of ACZ-60 showed excellent stability. This study provides a scheme for the rational design of photocatalytic CO2 reduction S-scheme catalysts.
  • 加载中
    1. [1]

      Ola, O.; Maroto-Valer, M. M. J. Photochem. Photobiol. C 2015, 24, 16. doi: 10.1016/j.jphotochemrev.2015.06.001  doi: 10.1016/j.jphotochemrev.2015.06.001

    2. [2]

      Liu, Y.; Liu, X. F.; Xia, L.; Huang, C.; Wu, Z.; Wang, H.; Sun, Y. Acta Phys. -Chim. Sin. 2020, 38, 2002017.
       

    3. [3]

      Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.
       

    4. [4]

      Oschatz, M.; Antonietti, M. Energy Environ. Sci. 2018, 11, 57. doi: 10.1039/c7ee02110k  doi: 10.1039/c7ee02110k

    5. [5]

      Saha, P.; Amanullah, S. A. Acc. Chem. Res. 2022, 55, 134. doi: 10.1021/acs.accounts.1c00678  doi: 10.1021/acs.accounts.1c00678

    6. [6]

      Du, Y. C.; Meng, X. T.; Wang, Z.; Zhao, X.; Qiu, J. S. Acta Phys. -Chim. Sin. 2022, 38, 2101009.
       

    7. [7]

      Shawky, A.; Mohamed, R. M. J. Environ. Chem. Eng. 2022, 10, 108249. doi: 10.1016/j.jece.2022.108249  doi: 10.1016/j.jece.2022.108249

    8. [8]

      Shi, X.; Cao, L. N.; Chen, Y. M.; Huang, Y. Chin. Chem. Lett. 2022, 33, 5023. doi: 10.1016/j.cclet.2022.01.066  doi: 10.1016/j.cclet.2022.01.066

    9. [9]

      Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Acta Phys. -Chim. Sin. 2021, 38, 2111008.  doi: 10.3866/PKU.WHXB202111008
       

    10. [10]

      He, H. B.; Gao, X. M.; Xu, K. X.; Li, H. Y.; Hu, Y.; Yang, C. M.; Fu, F. Chem. Eng. J. 2022, 450, 138266. doi: 10.1016/j.cej.2022.138266  doi: 10.1016/j.cej.2022.138266

    11. [11]

      Kamal, K. M.; Narayan, R.; Chandran. N. S.; Popović, S.; Nazrulla, M. A.; Kovač, J.; Vrtovec, N.; Bele M.; Hodnik, N.; Kržmanc, M.; et al. Appl. Catal. B-Environ. 2022, 307, 121181. doi: 10.1016/j.apcatb.2022.121181  doi: 10.1016/j.apcatb.2022.121181

    12. [12]

      Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2018, 30, 1704649. doi: 10.1002/adma.201704649  doi: 10.1002/adma.201704649

    13. [13]

      Wang, H. J.; Li, X.; Zhao, X. X.; Li, C. X.; Song, X. H.; Zhang, P.; Huo, P. W.; Li, X. Chin. J. Catal. 2022, 43, 178. doi: 10.1016/s1872-2067(21)63910-4  doi: 10.1016/s1872-2067(21)63910-4

    14. [14]

      Wang, Y.; Chen, E.; Tang, J. ACS Catal. 2022, 12, 7300. doi: 10.1021/acscatal.2c01012  doi: 10.1021/acscatal.2c01012

    15. [15]

      Wang, L.; Li, Y. K.; Wu, C.; Li, X.; Shao, G. S.; Zhang, P. Chin. J. Catal. 2022, 43, 507. doi: 10.1016/s1872-2067(21)63898-6  doi: 10.1016/s1872-2067(21)63898-6

    16. [16]

      Wang, K.; Fu, J.; Zheng, Y. Appl. Catal. B-Environ. 2019, 254, 270. doi: 10.1016/j.apcatb.2019.05.002  doi: 10.1016/j.apcatb.2019.05.002

    17. [17]

      Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Shao, Y. R.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Chem. Eng. J. 2022, 427, 130987. doi: 10.1016/j.cej.2021.130987  doi: 10.1016/j.cej.2021.130987

    18. [18]

      Meng, A. Y.; Cheng, B.; Tan, H. Y.; Fan, J. J.; Su, C. L.; Yu, J. G. Appl. Catal. B-Environ. 2021, 289, 120039. doi: 10.1016/j.apcatb.2021.120039  doi: 10.1016/j.apcatb.2021.120039

    19. [19]

      Guo, W. Q.; Luo, H. L.; Jiang, Z.; Shangguan, W. F. Chin. J. Catal. 2022, 43, 316. doi: 10.1016/s1872-2067(21)63846-9  doi: 10.1016/s1872-2067(21)63846-9

    20. [20]

      Tang, Z. L.; Wang, C. J.; He, W. J.; Wei, Y. C.; Zhao, Z.; Liu, J. Chin. Chem. Lett. 2022, 33, 939. doi: 10.1016/j.cclet.2021.07.020  doi: 10.1016/j.cclet.2021.07.020

    21. [21]

      Di, T. G.; Zhu B. C.; Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J.; Yu, J. Green Chem. 2022, 24, 5739. doi: 10.1016/j.jcat.2017.06.006  doi: 10.1016/j.jcat.2017.06.006

    22. [22]

      Wang, L. B.; Zhu, B. C.; Cheng, B.; Zhang, J. J.; Zhang, L. Y.; Yu, J. G. Chin. J. Catal. 2021, 42, 1648. doi: 10.1016/s1872-2067(21)63805-6  doi: 10.1016/s1872-2067(21)63805-6

    23. [23]

      Li, X.; Wei, Y. N.; Ma, C. C.; Jiang, H. P.; Gao, M.; Zhang, S. M.; Liu, W. K.; Huo, P. W.; Wang, H. Q.; Wang, L. L. ACS Appl. Mater. Interfaces 2021, 13, 11755. doi: 10.1021/acsami.0c18809  doi: 10.1021/acsami.0c18809

    24. [24]

      Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2539. doi: 10.1016/s1872-2067(21)64024-x  doi: 10.1016/s1872-2067(21)64024-x

    25. [25]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem. 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    26. [26]

      Wang, L.; Chen, D. L.; Miao, S. Q.; Chen, F.; Guo, C. F.; Ye, P. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Chem. Eng. J. 2022, 434, 133867. doi: 10.1016/j.cej.2021.133867  doi: 10.1016/j.cej.2021.133867

    27. [27]

      Dai, B. L.; Zhao, W.; Wei, W.; Cao, J. H.; Yang, G.; Li, S. J.; Sun, C.; Leung, Y. C. D. Carbon 2022, 193, 272. doi: 10.1016/j.carbon.2022.03.038  doi: 10.1016/j.carbon.2022.03.038

    28. [28]

      Wang, K.; Feng, X.; Shangguan, Y.; Wu. X.; Chen, H. Chin. J. Catal. 2022, 43, 246. doi: 10.1016/s1872-2067(21)63819-6  doi: 10.1016/s1872-2067(21)63819-6

    29. [29]

      He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. Appl. Catal. B-Environ. 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    30. [30]

      Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2021.126498  doi: 10.1016/j.cej.2021.126498

    31. [31]

      He, R. A.; Ou, S. J.; Liu, Y. X.; Liu, Y.; Xu, D. F. Chin. J. Catal. 2022, 43, 370. doi: 10.1016/s1872-2067(21)63911-6  doi: 10.1016/s1872-2067(21)63911-6

    32. [32]

      Dou, X. C.; Zhang, C. L.; Shi, H. F. Sep. Purif. Technol. 2022, 282, 120023. doi: 10.1016/j.seppur.2021.120023  doi: 10.1016/j.seppur.2021.120023

    33. [33]

      Yuan, X. X.; Yang, J. Y.; Yao, Y. Y.; Shen, H.; Meng, Y.; Xie, B.; Ni, Z. M.; Xia, S. J. Sep. Purif. Technol. 2022, 291, 120965. doi: 10.1016/j.seppur.2022.120965  doi: 10.1016/j.seppur.2022.120965

    34. [34]

      Su, Y.; Xu, X.; Li, R.; Luo, X.; Yao, H.; Fang, S.; Peter, H. K.; Huang, Z.; Gao, Y.; Chen, X. Chem. Eng. J. 2022, 429, 132241. doi: 10.1016/j.cej.2021.132241  doi: 10.1016/j.cej.2021.132241

    35. [35]

      Jia, Y.; Wang, Z.; Qiao, X. Q.; Huang, L.; Gan, S.; Hou, D.; Zhao, J.; Sun, C. D.; Li, S. Chem. Eng. J. 2021, 424, 130368. doi: 10.1016/j.cej.2021.130368  doi: 10.1016/j.cej.2021.130368

    36. [36]

      Liu, J. H.; Wei, X. N.; Sun, W. Q.; Guan, X. X.; Zheng, X. C.; Li, J.; Environ. Res. 2021, 197, 111136. doi: 10.1016/j.envres.2021.111136  doi: 10.1016/j.envres.2021.111136

    37. [37]

      Patnaik, S.; Mishra, B. P.; Parida, K. Catal. Sci. Technol. 2021, 11, 7505. doi: 10.1039/d1cy01462e  doi: 10.1039/d1cy01462e

    38. [38]

      Li, Y. F.; Xia, Z. L.; Yang, Q.; Wang, L. X.; Xing, Y. J. Mater. Sci. Technol. 2022, 125, 128. doi: 10.1016/j.jmst.2022.02.035  doi: 10.1016/j.jmst.2022.02.035

    39. [39]

      Gan, Z. Y.; Huang, C. F.; Shen, Y. F.; Zhou, Q.; Han, D.; Ma, J.; Liu, S. Q.; Zhang, Y. J. Chin. Chem. Lett. 2020, 31, 513. doi: 10.1016/j.cclet.2019.04.065  doi: 10.1016/j.cclet.2019.04.065

    40. [40]

      Mo, Z.; Zhu, X. W.; Jiang, Z. F.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; She, Y. B.; Lei, Y. C.; Yuan, S. Q.; et al. Appl. Catal. B-Environ. 2019, 256, 117854. doi: 10.1016/j.apcatb.2019.117854  doi: 10.1016/j.apcatb.2019.117854

    41. [41]

      Zhang, F. W.; Wen, Q. J.; Hong, M. Z.; Zhuang, Z. Y.; Yu, Y. Chem. Eng. J. 2017, 307, 593. doi: 10.1016/j.cej.2016.08.120  doi: 10.1016/j.cej.2016.08.120

    42. [42]

      Qin, Z. Z.; Wu, J.; Li, B.; Su, T. M.; Ji, H. B. Acta Phys. -Chim. Sin. 2020, 37, 2005027.
       

    43. [43]

      Gong, S.; Teng, X.; Niu, Y.; Liu, X.; Xu, M.; Xu, C.; Ji, L.; Chen, Z. Appl. Catal. B-Environ. 2021, 298, 120521. doi: 10.1016/j.apcatb.2021.120521  doi: 10.1016/j.apcatb.2021.120521

    44. [44]

      Zhang, X. D.; Kim, D.; Yan, J.; Lee, L. Y. S. ACS Appl. Mater. Interfaces 2021, 13, 9762. doi: 10.1021/acsami.0c17926  doi: 10.1021/acsami.0c17926

    45. [45]

      Huang, Q. L.; Hu, J. Q.; Hu, Y. F.; Liu, J. C.; He, J. L.; Zhou, G. B.; Hu, N.; Yang, Z.; Zhang, Y. C.; Zhou, Y.; et al. Environ. Sci. Nano 2022, 9, 4433doi: 10.1039/d2en00781a  doi: 10.1039/d2en00781a

    46. [46]

      Zhou, Q.; Zhang, L. H.; Zhang, L. F.; Jiang, B.; Sun, Y. L. J. Hazard. Mater. 2022, 438, 129438. doi: 10.1016/j.jhazmat.2022.129438  doi: 10.1016/j.jhazmat.2022.129438

    47. [47]

      Zhu, C. Z.; He, Q. Y.; Wang, W. K.; Du, F.; Yang, F.; Chen, C. X.; Wang, C. H.; Wang, S. B.; Duan, X. G. J. Colloid Interface Sci. 2022, 620, 253. doi: 10.1016/j.jcis.2022.04.024  doi: 10.1016/j.jcis.2022.04.024

    48. [48]

      Cao, S.; Yu, J. G.; Wageh, S.; AlGhamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/d2ta05181h  doi: 10.1039/d2ta05181h

    49. [49]

      Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/s1872-2067(21)63883-4  doi: 10.1016/s1872-2067(21)63883-4

    50. [50]

      Li, Q. Y.; Wei, G. T.; Yang, Y. J.; Gao, L.; Zhang, L. Y.; Li, Z. M.; Huang, X. Y.; Gan, J. Y. Chem. Eng. J. 2021, 424, 130537. doi: 10.1016/j.cej.2021.130537  doi: 10.1016/j.cej.2021.130537

    51. [51]

      Wang, B.; Li, Z.; Ma, H. X.; Zhang, J. B.; Jiao, L. Y.; Hao, H.; Liu, E. Z.; Xu, L.; Wang, C.; Zhou, B.; et al. Appl. Catal. B-Environ. 2022, 318, 121882. doi: 10.1016/j.apcatb.2022.121882  doi: 10.1016/j.apcatb.2022.121882

    52. [52]

      Zhu, Y. K.; Zhuang, Y.; Wang, L. L.; Tang, H.; Meng, X. F.; She, X. L. Chin. J. Catal. 2022, 43, 2558. doi: 10.1016/s1872-2067(22)64099-3  doi: 10.1016/s1872-2067(22)64099-3

    53. [53]

      Zhao, L. N.; Bian, J.; Zhang, X. F.; Bai, L. L.; Xu, L. Y.; Qu, Y.; Li, Z. J.; Li, Y. X.; Jing, L. Q. Adv. Mater. 2022, 34, 2205303. doi: 10.1002/adma.202205303  doi: 10.1002/adma.202205303

    54. [54]

      Yue, X. Y.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Appl. Catal. B-Environ. 2022, 304, 120979. doi: 10.1016/j.apcatb.2021.120979  doi: 10.1016/j.apcatb.2021.120979

    55. [55]

      Zhao, Z. L.; Bian, J.; Zhao, L. N.; Wu, H. J.; Xu, S.; Sun, L.; Li, Z. J.; Zhang, Z. Q.; Jing, L. Q. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/s1872-2067(21)64005-6  doi: 10.1016/s1872-2067(21)64005-6

    56. [56]

      Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/s1872-2067(19)63481-9  doi: 10.1016/s1872-2067(19)63481-9

    57. [57]

      Jiang, Y. B.; Sun, Z. Z.; Chen, Q. W.; Cao, C.; Zhao, Y.; Yang, W. S.; Zeng, L.; Huang, L. M. Appl. Surf. Sci. 2022, 571, 151287. doi: 10.1016/j.apsusc.2021.151287  doi: 10.1016/j.apsusc.2021.151287

    58. [58]

      Zhang, Y. P.; Han, W.; Yang, Y.; Zhang, H. Y.; Wang, Y.; Wang, L.; Sun, X. J.; Zhang, F. M. Chem. Eng. J. 2022, 446, 137213. doi: 10.1016/j.cej.2022.137213  doi: 10.1016/j.cej.2022.137213

    59. [59]

      Zhu, C.; Yao, H.; Le, S.; Yin, Y.; Chen, C.; Xu, H.; Wang, S.; Duan, X. Compos. Part B-Eng. 2022, 242, 110082. doi: 10.1016/j.compositesb.2022.110082  doi: 10.1016/j.compositesb.2022.110082

    60. [60]

      Wang, A. W.; Ni, J. X.; Wang, W.; Wang, X. Y.; Liu, D. M.; Zhu, Q. J. Hazard. Mater. 2022, 426, 128106. doi: 10.1016/j.jhazmat.2021.128106  doi: 10.1016/j.jhazmat.2021.128106

    61. [61]

      Deng, H. Z.; Fei, X. G.; Yang, Y.; Fan, J. J.; Yu, J. G.; Cheng, B.; Zhang, L. Y. Chem. Eng. J. 2021, 409, 127377. doi: 10.1016/j.cej.2020.127377  doi: 10.1016/j.cej.2020.127377

    62. [62]

      Zhang, Y.; Qiu, J. Y.; Zhu; B. C., Fedin, M. V.; Cheng, B.; Yu, J. G.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi: 10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    63. [63]

      Wang, J.; Sun, S. J.; Zhou, R.; Li, Y. Z.; He, Z. T.; Ding, H.; Chen, D. M.; Ao, W. H. J. Mater. Sci. Technol. 2021, 78, 1. doi: 10.1016/j.jmst.2020.09.045  doi: 10.1016/j.jmst.2020.09.045

    64. [64]

      Li, M. Z.; Wang, L. L.; Zhang, X. Y.; Yin, W. N.; Zhang, Y. B.; Li, J. W.; Yin, Z. Y.; Cai, Y. T.; Liu, S. J.; Zhao, Q. Chin. Chem. Lett. 2022, 22, 107775. doi: 10.1016/j.cclet.2022.107775  doi: 10.1016/j.cclet.2022.107775

    65. [65]

      Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    66. [66]

      Li, L. L.; Ma, D. K.; Xu, Q. L.; Huang, S. M. Chem. Eng. J. 2022, 437, 135153. doi: 10.1016/j.cej.2022.135153  doi: 10.1016/j.cej.2022.135153

    67. [67]

      He, Z. Q.; Tong, L. L.; Zhang, Z. P.; Chen, J. M.; Song, S. Acta Phys. -Chim. Sin. 2015, 31, 2341.

    68. [68]

      Zhang, L. S.; Ding, N.; Lou, L. C.; Iwasaki, K.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Nakata, K.; Fujishima, A.; Meng, Q. B. Adv. Funct. Mater. 2019, 29, 1806774. doi: 10.1002/adfm.201806774  doi: 10.1002/adfm.201806774

    69. [69]

      Humayun, M.; Ullah, H.; Cheng, Z. E.; Tahir, A. A.; Luo, W.; Wang, C. Appl. Catal. B-Environ. 2022, 310, 121322. doi: 10.1016/j.apcatb.2022.121322  doi: 10.1016/j.apcatb.2022.121322

    70. [70]

      Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. Adv. Mater. 2018, 30, 1706108. doi: 10.1002/adma.201706108  doi: 10.1002/adma.201706108

  • 加载中
    1. [1]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    12. [12]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(9)
  • Abstract views(536)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return