Citation: Xinshuo Zhao, Haiyan Qiu, Yi Shao, Panjie Wang, Shilong Yu, Hai Li, Yubin Zhou, Zhan Zhou, Lufang Ma, Chaoliang Tan. Silver Nanoparticle-Modified 2D MOF Nanosheets for Photothermally Enhanced Silver Ion Release Antibacterial Treatment[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221104. doi: 10.3866/PKU.WHXB202211043 shu

Silver Nanoparticle-Modified 2D MOF Nanosheets for Photothermally Enhanced Silver Ion Release Antibacterial Treatment

  • Corresponding author: Yubin Zhou, zybresearch@126.com Zhan Zhou, zhouzhan@lynu.edu.cn Lufang Ma, mazhuxp@126.com Chaoliang Tan, chaoltan@cityu.edu.hk
  • These authors contributed equally to this work.
  • Received Date: 23 November 2022
    Revised Date: 5 January 2023
    Accepted Date: 6 January 2023
    Available Online: 16 January 2023

    Fund Project: the National Natural Science Foundation of China 52102348the National Natural Science Foundation of China 22171123the National Natural Science Foundation of China 22005259the Science and Technology Innovation Talent Program of University in Henan Province 23HASTIT016the Guangdong Basic and Applied Basic Research Foundation 2019A1515111112the Guangdong Basic and Applied Basic Research Foundation 2021A1515011831the Special Projects in Key Areas for General Colleges and Universities of Guangdong Province 2021ZDZX2061the Start-Up Grant from City University of Hong Kong 9610495

  • Recently, two-dimensional (2D) metal-organic framework (MOF) nanosheet-based composites have been extensively investigated as promising materials for biomedical applications, including antibacterial applications. This study reports the synthesis of silver nanoparticle (Ag NP)-modified 2D Zr-ferrocene-MOF (MOF-Ag) nanosheets by growing Ag NPs on 2D MOF nanosheets via light irradiation-induced reduction for photothermally enhanced silver ion (Ag+) release antibacterial treatment. The MOF nanosheets were synthesized by a hydrothermal method followed by ultrasonic treatment. Subsequently, Ag NPs were grown on the MOF nanosheets to obtain MOF-Ag nanosheets by in situ light irradiation-induced reduction. Various characterization results, including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-mass spectrometry (ICP-MS), showed that Ag NPs were successfully loaded onto the surface of the MOF nanosheets. Fourier transform infrared (FTIR) spectroscopy further confirmed the successful modification of the MOF-Ag surface with polyvinylpyrrolidone (PVP). The modification with of PVP not only enhanced the stability of MOF-Ag in solution, but also enhanced its biocompatibility. Under 808 nm near-infrared laser (NIR) irradiation, the MOF nanosheets exhibited good photothermal properties and photothermal conversion efficiency. The temperature increase induced by the photothermal effect accelerates the oxidation of Ag NPs to Ag+, and thus MOF-Ag continuously releases silver ions to kill bacteria. It was concluded that PVP-functionalized MOF-Ag (PVP@MOF-Ag) nanosheets have good antibacterial properties using experimental analyses such as bacterial growth curves, relative number of colonies, and morphological changes of bacteria. PVP@MOF-Ag nanosheets not only kills S. aureus but also inhibits E. coli growth more efficiently, exhibiting broad-spectrum bactericidal properties. Additionally, the good photothermal performance of the 2D MOF nanosheets enhanced Ag+ release and cell membrane permeability. Ag NPs release Ag+ in solution via an oxidation mechanism, and the released Ag+ is more likely to enter the bacteria via the cell membrane under light conditions. In bacteria, Ag+ induces the generation of endogenous reactive oxygen species to trigger oxidative stress, thus realizing efficient antibacterial performance. Based on the above-mentioned antibacterial mechanism and good in vitro antibacterial properties, the PVP@MOF-Ag nanosheets were used for wound healing in mice. By developing a mouse wound healing model and treating mouse wounds within a week, it was observed that PVP@MOF-Ag nanosheets have a good therapeutic effect and good biosafety during treatment. These results demonstrate that PVP@MOF-Ag nanosheets are an efficient platform for photothermally enhanced Ag+ release antibacterial therapy and wound healing.
  • 加载中
    1. [1]

      Liu, H.; Li, J.; Liu, X.; Li, Z.; Zhang, Y.; Liang, Y.; Zheng, Y.; Zhu, S.; Gui, Z.; Wu, S. ACS Nano 2021, 15, 18505. doi: 10.1021/acsnano.1c08409  doi: 10.1021/acsnano.1c08409

    2. [2]

      Huo, J.; Jia, Q.; Huang, H.; Zhang, J.; Li, P.; Dong, X.; Huang, W. Chem. Soc. Rev. 2021, 50, 8762. doi: 10.1039/d1cs00074h  doi: 10.1039/d1cs00074h

    3. [3]

      Li, Z.; Zhang, j.; Tian, X.; Yang, S.; Chen, S.; Zhou, H.; Yang, X. Chem. Sci. 2022, 13, 9381. doi: 10.1039/d2sc02662g  doi: 10.1039/d2sc02662g

    4. [4]

      Makabenta, J.; Nabawy, A.; Li, C.; Schmidt-Malan, S.; Patel, R.; Rotello, V. Nat. Rev. Microbiol. 2021, 19, 23. doi: 10.1038/s41579-020-0420-1  doi: 10.1038/s41579-020-0420-1

    5. [5]

      Li, X.; Zhao, X.; Chu, D.; Zhu, X.; Xue, B.; Chen, H.; Zhou, Z.; Li, J. Surf. Interfaces 2022, 33, 102247. doi: 10.1016/j.surfin.2022.102247  doi: 10.1016/j.surfin.2022.102247

    6. [6]

      Ding, Q.; Xu, Z.; Zhou, L.; Rao, C.; Li, W.; Mohd, S.; Li, B.; Yang, Q.; Liu, J. J. Colloid Interface Sci. 2022, 621, 180. doi: 10.1016/j.jcis.2022.04.078  doi: 10.1016/j.jcis.2022.04.078

    7. [7]

      Doolan, J.; Williams, G.; Hilton, K.; Chaudhari, R.; Fossey, J.; Goult, B.; Hiscock, J. Chem. Soc. Rev. 2022, 51, 8696. doi: 10.1039/d1cs00915j  doi: 10.1039/d1cs00915j

    8. [8]

      Hu, X.; Zhang, H.; Wang, Y.; Shiu, B.; Lin, J.; Zhang, S.; Lou, C.; Li, T. Chem. Eng. J. 2022, 450, 138129. doi: 10.1016/j.cej.2022.138129  doi: 10.1016/j.cej.2022.138129

    9. [9]

      Xiao, Z.; Chen, Q.; Yang, Y.; Tu, S.; Wang, B.; Qiu, Y.; Jiang, Y.; Huang, Q.; Ai, K. Chem. Eng. J. 2022, 49, 137889. doi: 10.1016/j.cej.2022.137889  doi: 10.1016/j.cej.2022.137889

    10. [10]

      Liu, S.; Pan, X.; Liu, H. Angew. Chem. Int. Ed. 2020, 132, 5943. doi: 10.1002/anie.201911477  doi: 10.1002/anie.201911477

    11. [11]

      Tang, Z.; Liu, Y.; He, M.; Bu, W. Angew. Chem. Int. Ed. 2019, 58, 946. doi: 10.1002/anie.20180566  doi: 10.1002/anie.20180566

    12. [12]

      Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.; de Roo Puente, Y.; Hoyos-Nogués, M.; Javier Gil, F.; Perez, R. Bioact. Mater. 2021, 6, 4470. doi: 10.1016/j.bioactmat.2021.04.033  doi: 10.1016/j.bioactmat.2021.04.033

    13. [13]

      He, J.; Wei, Q.; Wang, S.; Hua, S.; Zhou, M. Biomaterials 2021, 271, 120734. doi: 10.1016/j.biomaterials.2021.120734  doi: 10.1016/j.biomaterials.2021.120734

    14. [14]

      Cao, Y.; Ge, W.; Yin, J.; Yang, D.; Wang, W.; Song, X.; Hu, Y.; Yin, J.; Dong, X. Small 2020, 16, 2000436. doi: 10.1002/smll.202000436  doi: 10.1002/smll.202000436

    15. [15]

      Guo, C.; Cheng, F.; Liang, G.; Zhang, S.; Jia, Q.; He, L.; Duan, S.; Fu, Y.; Zhang, Z.; Du, M. Chem. Eng. J. 2022, 435, 134915. doi: 10.1016/j.cej.2022.134915  doi: 10.1016/j.cej.2022.134915

    16. [16]

      Xiu, Z.; Zhang, Q.; Puppala, H.; Colvin, V.; Alvarez, P. Nano Lett. 2012, 12, 4271. doi: 10.1021/nl301934w  doi: 10.1021/nl301934w

    17. [17]

      Han, F.; Lv, S.; Li, Z.; Jin, L.; Fan, B.; Zhang, J.; Zhang, R.; Zhang, X.; Han, L.; Li, J. NPG Asia Mater. 2020, 12, 15. doi: 10.1038/s41427-020-0195-x  doi: 10.1038/s41427-020-0195-x

    18. [18]

      Zhu, M.; Liu, X.; Tan, L.; Cui, Z.; Liang, Y.; Li, Z.; Yeung, K.; Wu, S. J. Hazard. Mater. 2020, 383, 121122. doi: 10.1016/j.jhazmat.2019.121122  doi: 10.1016/j.jhazmat.2019.121122

    19. [19]

      Wu, S.; Li, A.; Zhao, X.; Zhang, C.; Yu, B.; Zhao, N.; Xu, F. ACS Appl. Mater. Interfaces 2019, 11, 17177. doi: 10.1021/acsami.9b01149  doi: 10.1021/acsami.9b01149

    20. [20]

      Ouay, B.; Stellacci, F. Nano Today 2015, 10, 339. doi: 10.1016/j.nantod.2015.04.002  doi: 10.1016/j.nantod.2015.04.002

    21. [21]

      Li, R.; Zhang, X.; Xue, N.; Li, J.; Wu, T.; Xu, Z.; Wang, Y.; Li, N.; Tang, H.; Hou, S.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2011060  doi: 10.3866/PKU.WHXB202011060

    22. [22]

      Li, H.; Gong, M.; Xiao, J.; Hai, L.; Luo, Y.; He, L.; Wang, Z.; Deng, L.; He, D. Chem. Eng. J. 2022, 429, 132600. doi: 10.1016/j.cej.2021.132600  doi: 10.1016/j.cej.2021.132600

    23. [23]

      Zhu, X.; Zhu, Y.; Jia, K.; Abraha, B.; Li, Y.; Peng, W.; Zhang, F.; Fan, X.; Zhang, L. Nanoscale 2020, 12, 19129. doi: 10.1039/d0nr04925e  doi: 10.1039/d0nr04925e

    24. [24]

      Yang, Y.; Wu, X.; He, C.; Huang, J.; Yin, S.; Zhou, M.; Ma, L.; Zhao, W.; Qiu, L.; Cheng, C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 13698. doi: 10.1021/acsami.0c01666  doi: 10.1021/acsami.0c01666

    25. [25]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2108017.  doi: 10.3866/PKU.WHXB202108017

    26. [26]

      Xu, M.; Hu, Y.; Xiao, Y.; Zhang, Y.; Sun, K.; Wu, T.; Lv, N.; Wang, W.; Ding, W.; Li, F.; et al. ACS Appl. Mater. Interfaces 2020, 12, 50260. doi: 10.1021/acsami.0c14451  doi: 10.1021/acsami.0c14451

    27. [27]

      Zhou, Z.; Wang, X.; Zhang, H.; Huang, H.; Sun, L.; Ma, L.; Du, Y.; Pei, C.; Zhang, Q.; Li, H.; et al. Small 2021, 17, 2007486. doi: 10.1002/smll.202007486  doi: 10.1002/smll.202007486

    28. [28]

      Dong, L.; Li, T.; Zhang, T.; Zhao, Y.; Chen, T.; Gao, X.; Ma, L.; Jin, G. Chem. Sci., 2022, 13, 5130. doi: 10.1039/d2sc00437b  doi: 10.1039/d2sc00437b

    29. [29]

      Zhou, Z.; Li, B.; Shen, C.; Wu, D.; Fan, H.; Zhao, J.; Li, H.; Zeng, Z.; Luo, Z.; Ma, L.; et al. Small 2020, 16, 2004173. doi: 10.1002/smll.202004173  doi: 10.1002/smll.202004173

    30. [30]

      Li, J.; Song, S.; Meng, J.; Tan, L.; Liu, X.; Zheng, Y.; Li, Z.; Yeung, K.; Cui, Z.; Liang, Y.; et al. J. Am. Chem. Soc. 2021, 143, 15427. doi: 10.1021/jacs.1c07875  doi: 10.1021/jacs.1c07875

    31. [31]

      Zhou, Z.; Wang, Y.; Peng, F.; Meng, F.; Zha, J.; Ma, L.; Du, Y.; Peng, N.; Ma, L.; Zhang, Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115939. doi: 10.1002/anie.202115939  doi: 10.1002/anie.202115939

    32. [32]

      Luo, Y.; Ge, M.; Lin, H.; He, R.; Yuan, X.; Yang, C.; Wang, W.; Zhang, X. Adv. Healthc. Mater. 2019, 9, 1901375. doi: 10.1002/adhm.201901375  doi: 10.1002/adhm.201901375

    33. [33]

      Rastin, H.; Mansouri, N.; Tung, T.; Hassan, K.; Mazinani, A.; Ramezanpour, M.; Yap, P.; Yu, L.; Vreugde, S.; Losic, D. Adv. Healthc. Mater. 2021, 10, 2101439. doi: 10.1002/adhm.202101439  doi: 10.1002/adhm.202101439

    34. [34]

      Zhu, Z.; Liu, Y.; Chen, J.; He, Z.; Tan, P.; He, Y.; Pei, X.; Wang, J.; Tan, L.; Wan, Q. Adv. Sci. 2022, 9, 2204553. doi: 10.1002/advs.202204553  doi: 10.1002/advs.202204553

    35. [35]

      Liu, S.; Xu, Y.; Yang, H.; Liu, L.; Zhao, M.; Yin, W.; Xu, Y.; Huang, Y.; Tan, C.; Dai, Z.; et al. Adv. Mater. 2021, 33, 2100849. doi: 10.1002/adma.202100849  doi: 10.1002/adma.202100849

    36. [36]

      Zhou, Z.; Li, X.; Hu, H.; Xue, B.; Chen, H.; Ma, L.; Liang, R.; Tan, C. Adv. NanoBiomed. Res. 2022, 2, 2200065. doi: 10.1002/anbr.202200065  doi: 10.1002/anbr.202200065

    37. [37]

      Huang, H.; Zha, J.; Li, S.; Tan, C. Chin. Chem. Lett. 2022, 33, 163. doi: 10.1016/j.cclet.2021.06.004  doi: 10.1016/j.cclet.2021.06.004

    38. [38]

      Nong, W.; Wu, J.; Ghiladi, R.; Guan, Y. Coord. Chem. Rev. 2021, 442, 214007. doi: 10.1016/j.ccr.2021.214007  doi: 10.1016/j.ccr.2021.214007

    39. [39]

      Li, R.; Chen, T.; Pan, X. ACS Nano 2021, 15, 3808. doi: 10.1021/acsnano.0c09617  doi: 10.1021/acsnano.0c09617

    40. [40]

      Zhao, X.; Zheng, M.; Gao, X.; Zhang, J.; Wang, E.; Gao, Z. Coord. Chem. Rev. 2021, 440, 213970. doi: 10.1016/j.ccr.2021.213970  doi: 10.1016/j.ccr.2021.213970

    41. [41]

      Zheng, Q.; Liu, X.; Zheng, Y.; Yeung, K.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Wang, X.; Wu, S. Chem. Soc. Rev. 2021, 50, 5086. doi: 10.1039/d1cs00056j  doi: 10.1039/d1cs00056j

    42. [42]

      Han, X.; Boix, G.; Balcerzak, M.; Moriones, O.; Cano-Sarabia, M.; Cortés, P.; Bastús, N.; Puntes, V.; Llagostera, M.; Imaz, I.; et al. Adv. Funct. Mater. 2022, 32, 2112902. doi: 10.1002/adfm.202112902  doi: 10.1002/adfm.202112902

    43. [43]

      Bhunia, S.; Deo, K.; Gaharwar, A. Adv. Funct. Mater. 2020, 30, 2002046. doi: 10.1002/adfm.202002046  doi: 10.1002/adfm.202002046

    44. [44]

      Huang, Z.; Yu, H.; Wang, L.; Liu, X.; Lin, T.; Haq, F.; Vatsadze, S.; Lemenovskiy, D. Coord. Chem. Rev. 2021, 430, 213737. doi: 10.1016/j.ccr.2020.213737  doi: 10.1016/j.ccr.2020.213737

    45. [45]

      Wang, H.; Yu, D.; Fang, J.; Cao, C.; Liu, Z.; Ren, J.; Qu, X. ACS Nano 2019, 13, 9206. doi: 10.1021/acsnano.9b03531  doi: 10.1021/acsnano.9b03531

    46. [46]

      Zhao, M.; Chen, J.; Chen, B.; Zhang, X.; Shi, Z.; Liu, Z.; Ma, L.; Peng, Y.; Tan, C.; Wu, X.; et al. Am. Chem. Soc. 2020, 142, 8953. doi: 10.1021/jacs.0c02489  doi: 10.1021/jacs.0c02489

    47. [47]

      Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. ACS Nano 2019, 13, 5222. doi: 10.1021/acsnano.8b09501  doi: 10.1021/acsnano.8b09501

    48. [48]

      Zhu, J.; Chen, X.; Thang, A.; Li, F.; Chen, D.; Geng, H.; Rui, X.; Yan, Q. SmartMat 2022, 3, 384. doi: 10.1002/smm2.1091  doi: 10.1002/smm2.1091

    49. [49]

      Qin, Y.; Guo, J.; Zhao, M. Trans. Tianjin Univ. 2021, 27, 434. doi: 10.1007/s12209-021-00298-4  doi: 10.1007/s12209-021-00298-4

    50. [50]

      Zheng, G.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. SmartMat 2021, 2, 446. doi: 10.1002/smm2.1047  doi: 10.1002/smm2.1047

    51. [51]

      Li, B.; Wang, X.; Chen, L.; Zhou, Y.; Dang, W.; Chang, J.; Wu, C. Theranostics 2018, 8, 15. doi: 10.7150/thno.25433  doi: 10.7150/thno.25433

    52. [52]

      Deng, Z.; Fang, Chao.; Ma, X.; Li, X.; Zhang, Y.; Pang, X. ACS Appl. Mater. Interfaces 2020, 12, 20321. doi: 10.1021/acsami.0c06648  doi: 10.1021/acsami.0c06648

    53. [53]

      Wang, X.; Sun, X.; Bu, T.; Wang, Q.; Zhang, H.; Jia, P.; Li, L.; Wang, L. Acta Biomater. 2021, 135, 342. doi: 10.1016/j.actbio.2021.08.022  doi: 10.1016/j.actbio.2021.08.022

    54. [54]

      Su, J.; Xu, N.; Murase, R.; Yang, Z.; D'Alessandro, D.; Zuo, J.; Zhu, J. Angew. Chem. Int. Ed. 2021, 133, 4839. doi: 10.1002/anie.202013811  doi: 10.1002/anie.202013811

    55. [55]

      Xue, X.; Wang, J.; Zhu, Q.; Xue, Y.; Liu, H. Dalton Trans. 2021, 50, 1374. doi: 10.1039/D0DT03952G  doi: 10.1039/D0DT03952G

    56. [56]

      Huang, X.; Lu, Y.; Guo, M.; Du, S.; Han, N. Theranostics 2021, 11, 7546. doi: 10.7150/thno.56482  doi: 10.7150/thno.56482

    57. [57]

      Zhao, X.; He, X.; Hou, X.; Cheng, C.; Wang, X.; Yue, Y.; Wu, Z.; Wu, H.; Liu, B.; Li, H.; et al. Inorg. Chem. 2022, 61, 9328. doi: 10.1021/acs.inorgchem.2c01091  doi: 10.1021/acs.inorgchem.2c01091

    58. [58]

      Deng, Z.; Yu, H.; Wang, L.; Liu, J.; Shea, K. J. J. Mater. Chem. A 2019, 7, 15975. doi: 10.1039/c9ta03403j  doi: 10.1039/c9ta03403j

    59. [59]

      Yi, X.; Yang, Y.; Xu, D.; Tian, Y.; Song, S.; Cao, C. Trans. Tianjin Univ. 2022, 28, 174. doi: 10.1007/s12209-022-00325-y  doi: 10.1007/s12209-022-00325-y

  • 加载中
    1. [1]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    2. [2]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    3. [3]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    4. [4]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    5. [5]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    6. [6]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    7. [7]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    8. [8]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    9. [9]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    10. [10]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    11. [11]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    14. [14]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    18. [18]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    19. [19]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    20. [20]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

Metrics
  • PDF Downloads(95)
  • Abstract views(1562)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return