Citation: Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221103. doi: 10.3866/PKU.WHXB202211034 shu

Recent Progress on Lithium Argyrodite Solid-State Electrolytes

  • Corresponding author: Chuang Yu, cyu2020@hust.edu.cn Jia Xie, xiejia@hust.edu.cn
  • Received Date: 20 November 2022
    Revised Date: 15 December 2022
    Accepted Date: 23 December 2022

    Fund Project: the National Key Research and Development Program of China 2021YFB2400200the National Natural Science Foundation of China 52177214the National Natural Science Foundation of China 51821005

  • All-solid-state batteries have attracted significant attention as next-generation energy-storage devices for electric vehicles and smart grids because of their excellent safety and high energy density. Research on solid electrolytes with high ionic conductivity at room temperature, good chemical/electrochemical stability, and superior electrode compatibility is important for promoting the development of all-solid-state batteries. Sulfide electrolytes have become a hot topic among different inorganic solid electrolytes because of their relatively high Li-ion conductivity (~10-3 Sžcm-1) and low solid-solid interfacial resistance between the solid electrolytes and electrode particles. Among these sulfide electrolytes, lithium argyrodite solid electrolytes have attracted much attention owing to their high Li-ion conductivity at room temperature and relatively low cost. However, many problems still need to be solved before their practical application, such as difficulties in batch preparation, poor air stability, narrow chemical/electrochemical stability window, and poor interface stability towards high-voltage active materials. Extensive research has been conducted by many research groups to solve these problems and significant progress has been achieved. This review summarizes the current research on the structural information, ion conduction behaviors, synthesis routes, modification methods for improving the chemical/electrochemical stability properties, and applications of lithium argyrodite electrolytes combined with various cathode and anode materials in all-solid-state batteries based on our own research and published works of others. Two types of synthesis routes, the solid-state reaction route and the liquid solution route, are used to prepare lithium argyrodite electrolytes. Typically, electrolytes obtained by the former method deliver higher conductivities than those obtained by the latter. Multiple characterization methods, including alternating current (AC) impedance, molecular dynamics (MD) simulations, spin lattice relaxation in 7Li nuclear magnetic resonance (NMR), and 1D/2D Li exchange NMR, have been applied to probe Li-ion diffusion in the bulk of a signal particle across the interface section between two electrolyte particles, across the cathode, and across electrolyte particles. Increasing the number of Li vacancies via halogen substitution and element doping has been widely applied to increase the Li-ion conductivity of argyrodite electrolytes. Improvements in air stability for these argyrodite electrolytes have been achieved using element doping (such as O, Sb, and Sn) based on the hard-soft-acid-base theory and surface coating strategies. Interface contact and stability between the active materials and solid electrolytes play a key role in battery performance. Owing to the poor chemical/electrochemical stability of cathode materials, homogenous surface coatings and lithium halide electrolyte additives have been introduced into the configuration to isolate the direct contact between sulfides and active materials in the cathode mixture. Poor lithium metal compatibility inhibits the application of lithium argyrodite electrolytes in solid-state lithium metal batteries with high energy densities. Elemental doping in lithium argyrodites can form lithium alloys that impede the growth of lithium dendrites, and the surface modification of lithium metal anodes is helpful in constructing solid-state batteries with lithium metal anodes. Furthermore, research on lithium argyrodite electrolyte film preparation has also been conducted to develop a new solid-state battery construction route. In addition, the challenges and problems are analyzed, and possible research directions and development trends of lithium argyrodite solid electrolytes are proposed.
  • 加载中
    1. [1]

      Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Adv. Energy Mater. 2019, 9, 1900161. doi: 10.1002/aenm.201900161  doi: 10.1002/aenm.201900161

    2. [2]

      Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A. Energies 2017, 10, 122107. doi: 10.3390/en10122107  doi: 10.3390/en10122107

    3. [3]

      Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    4. [4]

      Manthiram, A. ACS Cent. Sci. 2017, 3, 1063. doi: 10.1021/acscentsci.7b00288  doi: 10.1021/acscentsci.7b00288

    5. [5]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, e1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    6. [6]

      Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Adv. Mater. 2021, 121, 1623. doi: 10.1021/acs.chemrev.0c00767  doi: 10.1021/acs.chemrev.0c00767

    7. [7]

      Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Energy Storage Mater. 2018, 10, 246. doi: 10.1016/j.ensm.2017.05.013  doi: 10.1016/j.ensm.2017.05.013

    8. [8]

      Schnell, J.; Knorzer, H.; Imbsweiler, A. J.; Reinhart, G. Energy Technol.-Ger. 2020, 8, 1901237. doi: 10.1002/ente.201901237  doi: 10.1002/ente.201901237

    9. [9]

      Chen, J.; Wu, J.; Wang, X.; Zhou, A. A.; Yang, Z. Energy Storage Mater. 2021, 35, 70. doi: 10.1016/j.ensm.2020.11.017  doi: 10.1016/j.ensm.2020.11.017

    10. [10]

      Riphaus, N.; Stiaszny, B.; Beyer, H.; Indris, S.; Gasteiger, H. A.; Sedlmaier, S. J. J. Electrochem. Soc. 2019, 166, A975. doi: 10.1149/2.0351906jes  doi: 10.1149/2.0351906jes

    11. [11]

      Wang, H.; An, H.; Shan, H.; Zhao, L.; Wang, J. Acta Phys.-Chim. Sin. 2021, 37, 2007070.  doi: 10.3866/PKU.WHXB202007070

    12. [12]

      Liao, C.; Yu, C.; Peng, L.; Li, L.; Cheng, S.; Xie, J. Chin. J. Inorg. Chem. 2022, 38, 977.  doi: 10.11862/CJIC.2022.122

    13. [13]

      Wei, C.; Yu, C.; Wu, Z.; Peng, L.; Cheng, S.; Xie, J. Energy Storage Sci. Technol. 2022, 11, 1368.  doi: 10.19799/j.cnki.2095-4239.2021.0513

    14. [14]

      Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2, 16103. doi: 10.1038/natrevmats.2016.103  doi: 10.1038/natrevmats.2016.103

    15. [15]

      Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.; Maier, J.; Armand, M.; et al. Energy Environ. Sci. 2018, 11, 1945. doi: 10.1039/c8ee01053f  doi: 10.1039/c8ee01053f

    16. [16]

      Thangadurai, V.; Narayanan, S.; Pinzaru, D. Chem. Soc. Rev. 2014, 43, 4714. doi: 10.1039/c4cs00020j  doi: 10.1039/c4cs00020j

    17. [17]

      Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Joule 2019, 3, 1190. doi: 10.1016/j.joule.2019.03.019  doi: 10.1016/j.joule.2019.03.019

    18. [18]

      Liang, J.; Li, X.; Adair, K. R.; Sun, X. Acc. Chem. Res. 2021, 54, 1023. doi: 10.1021/acs.accounts.0c00762  doi: 10.1021/acs.accounts.0c00762

    19. [19]

      Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X. Energy Environ. Sci. 2020, 13, 1429. doi: 10.1039/c9ee03828k  doi: 10.1039/c9ee03828k

    20. [20]

      Chen, S.; Yu, C.; Chen, S.; Peng, L.; Liao, C.; Wei, C.; Wu, Z.; Cheng, S.; Xie, J. Chin. Chem. Lett. 2022, 33, 4635. doi: 10.1016/j.cclet.2021.12.048  doi: 10.1016/j.cclet.2021.12.048

    21. [21]

      Chen, S.; Yu, C.; Wei, C.; Peng, L.; Cheng, S.; Xie, J. Chin. Chem. Lett. 2022, doi: 10.1016/j.cclet.2022.05.058  doi: 10.1016/j.cclet.2022.05.058

    22. [22]

      Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Adv. Mater. 2019, 31, e1902029. doi: 10.1002/adma.201902029  doi: 10.1002/adma.201902029

    23. [23]

      Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Nano Res. 2017, 10, 4139. doi: 10.1007/s12274-017-1763-4  doi: 10.1007/s12274-017-1763-4

    24. [24]

      Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al. Chem. Rev. 2016, 116, 140. doi: 10.1021/acs.chemrev.5b00563  doi: 10.1021/acs.chemrev.5b00563

    25. [25]

      Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A. Nat. Rev. Mater. 2020, 5, 229. doi: 10.1038/s41578-019-0165-5  doi: 10.1038/s41578-019-0165-5

    26. [26]

      Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L. M. Adv. Energy Mater. 2020, 11, 2002689. doi: 10.1002/aenm.202002689  doi: 10.1002/aenm.202002689

    27. [27]

      Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Adv. Mater. 2020, 33, 2000751. doi: 10.1002/adma.202000751  doi: 10.1002/adma.202000751

    28. [28]

      Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L. Adv. Mater. 2019, 31, 1901131. doi: 10.1002/adma.201901131  doi: 10.1002/adma.201901131

    29. [29]

      Yuan, H.; Liu, J.; Lu, Y.; Zhao, C. Z.; Cheng, X. B.; Nan, H. X.; Liu, Q. B.; Huang, J. Q.; Zhang, Q. Chem. Res. Chin. Univ. 2020, 36, 377. doi: 10.1007/s40242-020-0103-5  doi: 10.1007/s40242-020-0103-5

    30. [30]

      Umeshbabu, E.; Zheng, B.; Yang, Y. Electrochem. Energy Rep. 2019, 2, 199. doi: 10.1007/s41918-019-00029-3  doi: 10.1007/s41918-019-00029-3

    31. [31]

      Wu, J. H.; Shen, L.; Zhang, Z. H.; Liu, G. Z.; Wang, Z. Y.; Zhou, D.; Wan, H. L.; Xu, X. X.; Yao, X. Y. Electrochem. Energy Rep. 2020, 4, 101. doi: 10.1007/s41918-020-00081-4  doi: 10.1007/s41918-020-00081-4

    32. [32]

      Wu, Z.; Chen, S.; Yu, C.; Wei, C.; Peng, L.; Wang, H.-L.; Cheng, S.; Xie, J. Chem. Eng. J. 2022, 442, 136346. doi: 10.1016/j.cej.2022.136346  doi: 10.1016/j.cej.2022.136346

    33. [33]

      Zhang, Z. R.; Zhang, J. X.; Sun, Y. L.; Jia, H. H.; Peng, L. F.; Zhang, Y. Y.; Xie, J. J. Energy Chem. 2020, 41, 171. doi: 10.1016/j.jechem.2019.05.015  doi: 10.1016/j.jechem.2019.05.015

    34. [34]

      Wei, C.; Liu, X.; Yu, C.; Chen, S.; Chen, S.; Cheng, S.; Xie, J. Chin. Chem. Lett. 2022, Accepted. doi: 10.1016/j.cclet.2022.107859

    35. [35]

      Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G. J. Mater. Chem. A 2017, 5, 18111. doi: 10.1039/c7ta06067j  doi: 10.1039/c7ta06067j

    36. [36]

      Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2007, 178, 1163. doi: 10.1016/j.ssi.2007.05.020  doi: 10.1016/j.ssi.2007.05.020

    37. [37]

      Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627. doi: 10.1039/c3ee41655k  doi: 10.1039/c3ee41655k

    38. [38]

      Xu, R. .; Xia, X.; Wang, X.; Xia, Y.; Tu, J. J. Mater. Chem. A 2017, 5, 2829. doi: 10.1039/c6ta10142a  doi: 10.1039/c6ta10142a

    39. [39]

      Xu, R.; Xia, X.; Li, S.; Zhang, S.; Wang, X.; Tu, J. J. Mater. Chem. A 2017, 5, 6310. doi: 10.1039/c7ta01147d  doi: 10.1039/c7ta01147d

    40. [40]

      Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C. J. Am. Chem. Soc. 2013, 135, 975. doi: 10.1021/ja3110895  doi: 10.1021/ja3110895

    41. [41]

      Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Solid State Ion. 2006, 177, 2721. doi: 10.1016/j.ssi.2006.04.017  doi: 10.1016/j.ssi.2006.04.017

    42. [42]

      Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. J. Am. Chem. Soc. 2015, 137, 1384. doi: 10.1021/ja508723m  doi: 10.1021/ja508723m

    43. [43]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066  doi: 10.1038/nmat3066

    44. [44]

      Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Gunne, J.; Dehnen, S.; Roling, B. J. Am. Chem. Soc. 2013, 135, 15694. doi: 10.1021/ja407393y  doi: 10.1021/ja407393y

    45. [45]

      Whiteley, J. M.; Woo, J. H.; Hu, E. Y.; Nam, K. W.; Lee, S. H. J. Electrochem. Soc. 2014, 161, A1812. doi: 10.1149/2.0501412jes  doi: 10.1149/2.0501412jes

    46. [46]

      Bron, P.; Dehnen, S.; Roling, B. J. Power Sources 2016, 329, 530. doi: 10.1016/j.jpowsour.2016.08.115  doi: 10.1016/j.jpowsour.2016.08.115

    47. [47]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 16030. doi: 10.1038/Nenergy.2016.30  doi: 10.1038/Nenergy.2016.30

    48. [48]

      Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M. ACS Appl. Mater. Interfaces 2018, 10, 33296. doi: 10.1021/acsami.8b07476  doi: 10.1021/acsami.8b07476

    49. [49]

      Yu, C.; Hageman, J.; Ganapathy, S.; van Eijck, L.; Zhang, L.; Adair, K. R.; Sun, X.; Wagemaker, M. J. Mater. Chem. A 2019, 7, 10412. doi: 10.1039/c9ta02126d  doi: 10.1039/c9ta02126d

    50. [50]

      Rao, R. P.; Adams, S. Phys. Status Solidi A 2011, 208, 1804. doi: 10.1002/pssa.201001117  doi: 10.1002/pssa.201001117

    51. [51]

      Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Angew. Chem. Int. Ed. 2019, 58, 8681. doi: 10.1002/anie.201814222  doi: 10.1002/anie.201814222

    52. [52]

      Feng, X.; Chien, P.-H.; Wang, Y.; Patel, S.; Wang, P.; Liu, H.; Immediato-Scuotto, M.; Hu, Y.-Y. Energy Storage Mater. 2020, 30, 67. doi: 10.1016/j.ensm.2020.04.042  doi: 10.1016/j.ensm.2020.04.042

    53. [53]

      Wang, P.; Liu, H.; Patel, S.; Feng, X.; Chien, P.-H.; Wang, Y.; Hu, Y.-Y. Chem. Mater. 2020, 32, 3833. doi: 10.1021/acs.chemmater.9b05331  doi: 10.1021/acs.chemmater.9b05331

    54. [54]

      Patel, S. V.; Banerjee, S.; Liu, H.; Wang, P.; Chien, P.-H.; Feng, X.; Liu, J.; Ong, S. P.; Hu, Y.-Y. Chem. Mater. 2021, 33, 1435. doi: 10.1021/acs.chemmater.0c04650  doi: 10.1021/acs.chemmater.0c04650

    55. [55]

      Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G. J. Am. Chem. Soc. 2018, 140, 16330. doi: 10.1021/jacs.8b10282  doi: 10.1021/jacs.8b10282

    56. [56]

      Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F. J. Am. Chem. Soc. 2019, 141, 19002. doi: 10.1021/jacs.9b08357  doi: 10.1021/jacs.9b08357

    57. [57]

      Lee, Y.; Jeong, J.; Lee, H. J.; Kim, M.; Han, D.; Kim, H.; Yuk, J. M.; Nam, K.-W.; Chung, K. Y.; Jung, H.-G.; et al. ACS Energy Lett. 2021, 171, 02428. doi: 10.1021/acsenergylett.1c02428  doi: 10.1021/acsenergylett.1c02428

    58. [58]

      Ribes, M.; Barrau, B.; Souquet, J. L. J. Non-Cryst. Solids 1980, 38, 271. doi: 10.1016/0022-3093(80)90430-5  doi: 10.1016/0022-3093(80)90430-5

    59. [59]

      Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P. Mater. Res. Bull. 1983, 18, 189. doi: 10.1016/0025-5408(83)90080-6  doi: 10.1016/0025-5408(83)90080-6

    60. [60]

      Kennedy, J. H.; Zhang, Z. J. Electrochem. Soc. 1988, 135, 859. doi: 10.1149/1.2095811  doi: 10.1149/1.2095811

    61. [61]

      Zhang, Z.; Kennedy, J. Solid State Ion. 1990, 38, 217. doi: 10.1016/0167-2738(90)90424-p  doi: 10.1016/0167-2738(90)90424-p

    62. [62]

      Morimoto, H.; Yamashita, H.; Tatsumisago, M.; Minami, T. J. Am. Ceram. Soc. 1999, 82, 1352. doi: 10.1111/j.1151-2916.1999.tb01923.x  doi: 10.1111/j.1151-2916.1999.tb01923.x

    63. [63]

      Kim, Y.; Saienga, J.; Martin, S. W. J. Phys. Chem. B 2006, 110, 16318. doi: 10.1021/jp060670c  doi: 10.1021/jp060670c

    64. [64]

      Akitoshi, H.; Shigenori, H.; Hideyuki, M.; Masahiro, T.; Tsutomu, M. J. Am. Ceram. Soc. 2004, 84, 477. doi: 10.1111/j.1151-2916.2001.tb00685.x  doi: 10.1111/j.1151-2916.2001.tb00685.x

    65. [65]

      Mercier, R.; Jean, M.; Fahys, B.; Robert, G.; Douglade, J. Acta Cryst. 1982, B38, 1887. doi: 10.0567/cryst.82/071887-04  doi: 10.0567/cryst.82/071887-04

    66. [66]

      Dietrich, C.; Weber, D. A.; Culver, S.; Senyshyn, A.; Sedlmaier, S. J.; Indris, S.; Janek, J.; Zeier, W. G. Inorg. Chem. 2017, 56, 6681. doi: 10.1021/acs.inorgchem.7b00751  doi: 10.1021/acs.inorgchem.7b00751

    67. [67]

      Mercier, R.; Malugani, J. P.; Fahys, B.; Douglande, J.; Robert, G. J. Solid State Chem. 1982, 43, 151. doi: 10.1016/0022-4596(82)90224-9  doi: 10.1016/0022-4596(82)90224-9

    68. [68]

      Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Angew. Chem. Int. Ed. 2008, 120, 767. doi: 10.1002/ange.200703900  doi: 10.1002/ange.200703900

    69. [69]

      Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X. Nano Energy 2021, 83, 105858. doi: 10.1016/j.nanoen.2021.105858  doi: 10.1016/j.nanoen.2021.105858

    70. [70]

      Bai, X.; Duan, Y.; Zhuang, W.; Yang, R.; Wang, J. J. Mater. Chem. A 2020, 8, 25663. doi: 10.1039/d0ta08472g  doi: 10.1039/d0ta08472g

    71. [71]

      Zhang, Z.; Yao, J.; Yu, C.; Xu, R.; Ma, J.; Wei, C.; Peng, L.; Zhang, L.; Cheng, S.; Xie, J. J. Mater. Chem. A 2022, 10, 22155. doi: 10.1039/d2ta03168j  doi: 10.1039/d2ta03168j

    72. [72]

      Liao, C.; Yu, C.; Miao, X.; Chen, S.; Peng, L.; Wei, C.; Wu, Z.; Cheng, S.; Xie, J. Materialia 2022, 26, 101603. doi: 10.1016/j.mtla.2022.101603  doi: 10.1016/j.mtla.2022.101603

    73. [73]

      He, Z.-Y.; Zhang, Z.-Q.; Yu, M.; Yu, C.; Ren, H.-T.; Zhang, J.-Z.; Peng, L.-F.; Zhang, L.; Cheng, S.-J.; Xie, J. Rare Metals 2021, 41, 798. doi: 10.1007/s12598-021-01827-9  doi: 10.1007/s12598-021-01827-9

    74. [74]

      Zhang, Z.; Yu, C.; Xu, R.; Peng, L.; Ren, H.; Zhang, J.; Zhang, L.; Cheng, S.; Xie, J. Scr. Mater. 2022, 210, 114475. doi: 10.1016/j.scriptamat.2021.114475  doi: 10.1016/j.scriptamat.2021.114475

    75. [75]

      Liao, C.; Yu, C.; Peng, L.; Miao, X.; Chen, S.; Zhang, Z.; Cheng, S.; Xie, J. Solid State Ion. 2022, 377, 115871. doi: 10.1016/j.ssi.2022.115871  doi: 10.1016/j.ssi.2022.115871

    76. [76]

      Zhang, Z.; Sun, Y.; Duan, X.; Peng, L.; Jia, H.; Zhang, Y.; Shan, B.; Xie, J. J. Mater. Chem. A 2019, 7, 2717. doi: 10.1039/c8ta10790d  doi: 10.1039/c8ta10790d

    77. [77]

      Zhang, Z.; Zhang, J.; Jia, H.; Peng, L.; An, T.; Xie, J. J. Power Sources 2020, 450, 227601. doi: 10.1016/j.jpowsour.2019.227601  doi: 10.1016/j.jpowsour.2019.227601

    78. [78]

      Wei, C.; Yu, C.; Peng, L.; Zhang, Z.; Xu, R.; Wu, Z.; Liao, C.; Zhang, W.; Zhang, L.; Cheng, S.; et al. Mater. Adv. 2022, 3, 1047. doi: 10.1039/d1ma00987g  doi: 10.1039/d1ma00987g

    79. [79]

      Kong, S. T.; Gun, O.; Koch, B.; Deiseroth, H. J.; Eckert, H.; Reiner, C. Chem 2010, 16, 5138. doi: 10.1002/chem.200903023  doi: 10.1002/chem.200903023

    80. [80]

      Rao, R. P.; Sharma, N.; Peterson, V. K.; Adams, S. Solid State Ion. 2013, 230, 72. doi: 10.1016/j.ssi.2012.09.014  doi: 10.1016/j.ssi.2012.09.014

    81. [81]

      Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C. Z. Anorg. Allg. Chem. 2011, 637, 1287. doi: 10.1002/zaac.201100158  doi: 10.1002/zaac.201100158

    82. [82]

      Hanghofer, I.; Gadermaier, B.; Wilkening, H. M. R. Chem. Mater. 2019, 31, 4591. doi: 10.1021/acs.chemmater.9b01435  doi: 10.1021/acs.chemmater.9b01435

    83. [83]

      Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489. doi: 10.1039/c9cp00664h  doi: 10.1039/c9cp00664h

    84. [84]

      Kraft, M. A.; Culver, S. P.; Calderon, M.; Bocher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G. J. Am. Chem. Soc. 2017, 139, 10909. doi: 10.1021/jacs.7b06327  doi: 10.1021/jacs.7b06327

    85. [85]

      de Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M. Chem. Mater. 2016, 28, 7955. doi: 10.1021/acs.chemmater.6b03630  doi: 10.1021/acs.chemmater.6b03630

    86. [86]

      Stamminger, A. R.; Ziebarth, B.; Mrovec, M.; Hammerschmidt, T.; Drautz, R. Chem. Mater. 2019, 31, 8673. doi: 10.1021/acs.chemmater.9b02047  doi: 10.1021/acs.chemmater.9b02047

    87. [87]

      Yu, C.; Ganapathy, S.; de Klerk, N. J.; Roslon, I.; van Eck, E. R.; Kentgens, A. P.; Wagemaker, M. J. Am. Chem. Soc. 2016, 138, 11192. doi: 10.1021/jacs.6b05066  doi: 10.1021/jacs.6b05066

    88. [88]

      Gautam, A.; Sadowski, M.; Ghidiu, M.; Minafra, N.; Senyshyn, A.; Albe, K.; Zeier, W. G. Adv. Energy Mater. 2020, 11, 2003369. doi: 10.1002/aenm.202003369  doi: 10.1002/aenm.202003369

    89. [89]

      Schlenker, R.; Hansen, A.-L.; Senyshyn, A.; Zinkevich, T.; Knapp, M.; Hupfer, T.; Ehrenberg, H.; Indris, S. Chem. Mater. 2020, 32, 8420. doi: 10.1021/acs.chemmater.0c02418  doi: 10.1021/acs.chemmater.0c02418

    90. [90]

      Wang, H.; Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Wagemaker, M. J. Power Sources 2019, 412, 29. doi: 10.1016/j.jpowsour.2018.11.029  doi: 10.1016/j.jpowsour.2018.11.029

    91. [91]

      Ganapathy, S.; Yu, C.; van Eck, E. R. H.; Wagemaker, M. ACS Energy Lett. 2019, 4, 1092. doi: 10.1021/acsenergylett.9b00610  doi: 10.1021/acsenergylett.9b00610

    92. [92]

      Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M. Electrochim. Acta 2016, 215, 93. doi: 10.1016/j.electacta.2016.08.081  doi: 10.1016/j.electacta.2016.08.081

    93. [93]

      Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V. Solid State Ion. 2012, 221, 1. doi: 10.1016/j.ssi.2012.06.008  doi: 10.1016/j.ssi.2012.06.008

    94. [94]

      Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Basak, S.; Liu, Y.; Zhang, L.; Zandbergen, H. W.; Wagemaker, M. J. Mater. Chem. A 2017, 5, 21178. doi: 10.1039/c7ta05031c  doi: 10.1039/c7ta05031c

    95. [95]

      Zhang, Z.; Zhang, L.; Liu, Y.; Yu, C.; Yan, X.; Xu, B.; Wang, L.-M. J. Alloy. Compd. 2018, 747, 227. doi: 10.1016/j.jallcom.2018.03.027  doi: 10.1016/j.jallcom.2018.03.027

    96. [96]

      Liu, Y.; Peng, H.; Su, H.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Adv. Mater. 2022, 34, e2107346. doi: 10.1002/adma.202107346  doi: 10.1002/adma.202107346

    97. [97]

      Peng, L.; Ren, H.; Zhang, J.; Chen, S.; Yu, C.; Miao, X.; Zhang, Z.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J. Energy Storage Mater. 2021, 43, 53. doi: 10.1016/j.ensm.2021.08.028  doi: 10.1016/j.ensm.2021.08.028

    98. [98]

      Peng, L.; Yu, C.; Zhang, Z.; Ren, H.; Zhang, J.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J. Chem. Eng. J. 2022, 430, 132896. doi: 10.1016/j.cej.2021.132896  doi: 10.1016/j.cej.2021.132896

    99. [99]

      Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L.; Nan, C. W. ACS Appl. Mater. Interfacesfaces 2018, 10, 42279. doi: 10.1021/acsami.8b15121  doi: 10.1021/acsami.8b15121

    100. [100]

      Zhang, Z.; Zhang, L.; Liu, Y.; Yan, X.; Xu, B.; Wang, L. J. Alloy. Compd. 2020, 812, 152103. doi: 10.1016/j.jallcom.2019.152103  doi: 10.1016/j.jallcom.2019.152103

    101. [101]

      Wu, L.; Zhang, Z.; Liu, G.; Weng, W.; Zhang, Z.; Yao, X. ACS Appl. Mater. Interfacesfaces 2021, 13, 46644. doi: 10.1021/acsami.1c13031  doi: 10.1021/acsami.1c13031

    102. [102]

      Yubuchi, S.; Uematsu, M.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. J. Mater. Chem. A 2019, 7, 558. doi: 10.1039/c8ta09477b  doi: 10.1039/c8ta09477b

    103. [103]

      Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280  doi: 10.1021/acsaem.8b00280

    104. [104]

      Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2015, 293, 941. doi: 10.1016/j.jpowsour.2015.05.093  doi: 10.1016/j.jpowsour.2015.05.093

    105. [105]

      Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S. Nano Lett. 2017, 17, 3013. doi: 10.1021/acs.nanolett.7b00330  doi: 10.1021/acs.nanolett.7b00330

    106. [106]

      Rosero-Navarro, N. C.; Kinoshita, T.; Miura, A.; Higuchi, M.; Tadanaga, K. Ionics 2017, 23, 1619. doi: 10.1007/s11581-017-2106-x  doi: 10.1007/s11581-017-2106-x

    107. [107]

      Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Power Sources 2018, 396, 33. doi: 10.1016/j.jpowsour.2018.06.011  doi: 10.1016/j.jpowsour.2018.06.011

    108. [108]

      Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L. F. ACS Energy Lett. 2019, 4, 265. doi: 10.1021/acsenergylett.8b01997  doi: 10.1021/acsenergylett.8b01997

    109. [109]

      Kim, D. H.; Lee, Y. H.; Song, Y. B.; Kwak, H.; Lee, S. Y.; Jung, Y. S. ACS Energy Lett. 2020, 5, 718. doi: 10.1021/acsenergylett.0c00251  doi: 10.1021/acsenergylett.0c00251

    110. [110]

      Lee, J.; Lee, K.; Lee, T.; Kim, H.; Kim, K.; Cho, W.; Coskun, A.; Char, K.; Choi, J. W. Adv. Mater. 2020, 32, 2001702. doi: 10.1002/adma.202001702  doi: 10.1002/adma.202001702

    111. [111]

      Song, Y. B.; Kim, D. H.; Kwak, H.; Han, D.; Kang, S.; Lee, J. H.; Bak, S. M.; Nam, K. W.; Lee, H. W.; Jung, Y. S. Nano Lett. 2020, 20, 4337. doi: 10.1021/acs.nanolett.0c01028  doi: 10.1021/acs.nanolett.0c01028

    112. [112]

      Kim, M. J.; Park, J. W.; Kim, B. G.; Lee, Y. J.; Ha, Y. C.; Lee, S. M.; Baeg, K. J. Sci. Rep. 2020, 10, 68885. doi: 10.1038/s41598-020-68885-4  doi: 10.1038/s41598-020-68885-4

    113. [113]

      Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D. J. Electrochem. Soc. 2018, 166, A5193. doi: 10.1149/2.0301903jes  doi: 10.1149/2.0301903jes

    114. [114]

      Yubuchi, S.; Nakamura, W.; Bibienne, T.; Rousselot, S.; Taylor, L. W.; Pasquali, M.; Dolle, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2019, 417, 125. doi: 10.1016/j.jpowsour.2019.01.070  doi: 10.1016/j.jpowsour.2019.01.070

    115. [115]

      Yubuchi, S.; Tsukasaki, H.; Sakuda, A.; Mori, S.; Hayashi, A.; Tatsumisago, M. RSC Adv. 2019, 9, 14465. doi: 10.1039/c9ra00949c  doi: 10.1039/c9ra00949c

    116. [116]

      Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J.; et al. Adv. Mater. 2022, 34, e2200083. doi: 10.1002/adma.202200083  doi: 10.1002/adma.202200083

    117. [117]

      Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F. Chem. Mater. 2020, 33, 146. doi: 10.1021/acs.chemmater.0c03090  doi: 10.1021/acs.chemmater.0c03090

    118. [118]

      Yu, C.; Li, Y.; Willans, M.; Zhao, Y.; Adair, K. R.; Zhao, F.; Li, W.; Deng, S.; Liang, J.; Banis, M. N.; et al. Nano Energy 2020, 69, 104396. doi: 10.1016/j.nanoen.2019.104396  doi: 10.1016/j.nanoen.2019.104396

    119. [119]

      Yu, C.; Li, Y.; Li, W.; Adair, K. R.; Zhao, F.; Willans, M.; Liang, J.; Zhao, Y.; Wang, C.; Deng, S.; et al. Energy Storage Mater. 2020, 30, 238. doi: 10.1016/j.ensm.2020.04.014  doi: 10.1016/j.ensm.2020.04.014

    120. [120]

      Subramanian, Y.; Rajagopal, R.; Ryu, K.-S. J. Power Sources 2022, 520, 230849. doi: 10.1016/j.jpowsour.2021.230849  doi: 10.1016/j.jpowsour.2021.230849

    121. [121]

      Fang, H.; Jena, P. Nat. Commun. 2022, 13, 2078. doi: 10.1038/s41467-022-29769-5  doi: 10.1038/s41467-022-29769-5

    122. [122]

      Schneider, H.; Sedlmaier, S. J.; Du, H.; Kelley, T.; Leitner, K.; ter Maat, J.; Scordilis-Kelley, C.; Mudalige, A.; Kulisch, J.; Schneider, L. ChemistrySelect 2019, 4, 3351. doi: 10.1002/slct.201803388  doi: 10.1002/slct.201803388

    123. [123]

      Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G. J. Mater. Chem. A 2018, 6, 645. doi: 10.1039/c7ta08581h  doi: 10.1039/c7ta08581h

    124. [124]

      Ohno, S.; Helm, B.; Fuchs, T.; Dewald, G.; Kraft, M. A.; Culver, S. P.; Senyshyn, A.; Zeier, W. G. Chem. Mater. 2019, 31, 4936. doi: 10.1021/acs.chemmater.9b01857  doi: 10.1021/acs.chemmater.9b01857

    125. [125]

      Lee, Y.; Jeong, J.; Lim, H.-D.; Kim, S.-O.; Jung, H.-G.; Chung, K. Y.; Yu, S. ACS Sustain. Chem. Eng. 2020, 9, 120. doi: 10.1021/acssuschemeng.0c05549  doi: 10.1021/acssuschemeng.0c05549

    126. [126]

      Chen, T.; Zhang, L.; Zhang, Z. X.; Li, P.; Wang, H. Q.; Yu, C.; Yan, X. L.; Wang, L. M.; Xu, B. ACS Appl. Mater. Interfaces 2019, 11, 40808. doi: 10.1021/acsami.9b13313  doi: 10.1021/acsami.9b13313

    127. [127]

      Peng, L.; Chen, S.; Yu, C.; Wei, C.; Liao, C.; Wu, Z.; Wang, H. L.; Cheng, S.; Xie, J. ACS Appl. Mater. Interfacesfaces 2022, 14, 4179. doi: 10.1021/acsami.1c21561  doi: 10.1021/acsami.1c21561

    128. [128]

      Lu, P.; Wu, D.; Chen, L.; Li, H.; Wu, F. Electrochem. Energy Rep. 2022, 5, 00149. doi: 10.1007/s41918-022-00149-3  doi: 10.1007/s41918-022-00149-3

    129. [129]

      Chen, T.; Zeng, D.; Zhang, L.; Yang, M.; Song, D.; Yan, X.; Yu, C. J. Energy Chem. 2021, 59, 530. doi: 10.1016/j.jechem.2020.11.031  doi: 10.1016/j.jechem.2020.11.031

    130. [130]

      Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W.; et al. Adv. Energy Mater. 2020, 10, 1903422. doi: 10.1002/aenm.201903422  doi: 10.1002/aenm.201903422

    131. [131]

      Zhang, J.; Gu, X. Rare Metals 2022, doi: 10.1007/s12598-022-02188-7  doi: 10.1007/s12598-022-02188-7

    132. [132]

      Xu, J.; Li, Y.; Lu, P.; Yan, W.; Yang, M.; Li, H.; Chen, L.; Wu, F. Adv. Energy Mater. 2021, 12, 2102348. doi: 10.1002/aenm.202102348  doi: 10.1002/aenm.202102348

    133. [133]

      Li, Y.; Arnold, W.; Thapa, A.; Jasinski, J. B.; Sumanasekera, G.; Sunkara, M.; Druffel, T.; Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 42653. doi: 10.1021/acsami.0c08261  doi: 10.1021/acsami.0c08261

    134. [134]

      Singer, C.; Topper, H. C.; Kutsch, T.; Schuster, R.; Koerver, R.; Daub, R. ACS Appl. Mater. Interfacesfaces 2022, 14, 24245. doi: 10.1021/acsami.2c01099  doi: 10.1021/acsami.2c01099

    135. [135]

      Simon, F. J.; Hanauer, M.; Richter, F. H.; Janek, J. ACS Appl. Mater. Interfacesfaces 2020, 12, 11713. doi: 10.1021/acsami.9b22968  doi: 10.1021/acsami.9b22968

    136. [136]

      Wang, Y.; Ju, J.; Dong, S.; Yan, Y.; Jiang, F.; Cui, L.; Wang, Q.; Han, X.; Cui, G. Adv. Funct. Mater. 2021, 31, 2101523. doi: 10.1002/adfm.202101523  doi: 10.1002/adfm.202101523

    137. [137]

      Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y.; et al. Adv. Energy Mater. 2022, 12, 2200660. doi: 10.1002/aenm.202200660  doi: 10.1002/aenm.202200660

    138. [138]

      Schneider, H.; Du, H.; Kelley, T.; Leitner, K.; ter Maat, J.; Scordilis-Kelley, C.; Sanchez-Carrera, R.; Kovalev, I.; Mudalige, A.; Kulisch, J.; et al. J. Power Sources 2017, 366, 151. doi: 10.1016/j.jpowsour.2017.09.012  doi: 10.1016/j.jpowsour.2017.09.012

    139. [139]

      Huang, W. Z.; Yoshino, K.; Hori, S.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R. J. Solid State Chem. 2019, 270, 487. doi: 10.1016/j.jssc.2018.12.015  doi: 10.1016/j.jssc.2018.12.015

    140. [140]

      Xu, M.; Sun, Y.; Hori, S.; Suzuki, K.; Huang, W.; Hirayama, M.; Kanno, R. Solid State Ion. 2020, 356, 115458. doi: 10.1016/j.ssi.2020.115458  doi: 10.1016/j.ssi.2020.115458

    141. [141]

      Sakuda, A.; Yamauchi, A.; Yubuchi, S.; Kitamura, N.; Idemoto, Y.; Hayashi, A.; Tatsumisago, M. ACS Omega 2018, 3, 5453. doi: 10.1021/acsomega.8b00377  doi: 10.1021/acsomega.8b00377

    142. [142]

      Zhu, Y.; He, X.; Mo, Y. ACS Appl. Mater. Interfacesfaces 2015, 7, 23685. doi: 10.1021/acsami.5b07517  doi: 10.1021/acsami.5b07517

    143. [143]

      Auvergniot, J.; Cassel, A.; Ledeuil, J. B.; Viallet, V.; Seznec, V.; Dedryvere, R. Chem. Mater. 2017, 29, 3883. doi: 10.1021/acs.chemmater.6b04990  doi: 10.1021/acs.chemmater.6b04990

    144. [144]

      Walther, F.; Koerver, R.; Fuchs, T.; Ohno, S.; Sann, J.; Rohnke, M.; Zeier, W. G.; Janek, J. Chem. Mater. 2019, 31, 3745. doi: 10.1021/acs.chemmater.9b00770  doi: 10.1021/acs.chemmater.9b00770

    145. [145]

      Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; de Klerk, N. J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y.; van der Maas, E.; et al. Nat. Mater. 2020, 19, 428. doi: 10.1038/s41563-019-0576-0  doi: 10.1038/s41563-019-0576-0

    146. [146]

      Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. ACS Energy Lett. 2019, 4, 2418. doi: 10.1021/acsenergylett.9b01693  doi: 10.1021/acsenergylett.9b01693

    147. [147]

      Wang, S.; Tang, M.; Zhang, Q.; Li, B.; Ohno, S.; Walther, F.; Pan, R.; Xu, X.; Xin, C.; Zhang, W.; Li, L.; et al. Adv. Energy Mater. 2021, 11, 2101370. doi: 10.1002/aenm.202101370  doi: 10.1002/aenm.202101370

    148. [148]

      Wang, S.; Xu, X. F.; Zhang, X.; Xin, C. Z.; Xu, B. Q.; Li, L. L.; Lin, Y. H.; Shen, Y.; Li, B. H.; Nan, C. W. J. Mater. Chem. A 2019, 7, 18612. doi: 10.1039/c9ta04289j  doi: 10.1039/c9ta04289j

    149. [149]

      Gil-González, E.; Ye, L.; Wang, Y.; Shadike, Z.; Xu, Z.; Hu, E.; Li, X. Energy Storage Mater. 2022, 45, 484. doi: 10.1016/j.ensm.2021.12.008  doi: 10.1016/j.ensm.2021.12.008

    150. [150]

      Zhang, J.; Zheng, C.; Li, L. J.; Xia, Y.; Huang, H.; Gan, Y. P.; Liang, C.; He, X. P.; Tao, X. Y.; Zhang, W. K. Adv. Energy Mater. 2020, 10, 1903311. doi: 10.1002/aenm.201903311  doi: 10.1002/aenm.201903311

    151. [151]

      Ye, L.; Li, X. Nature 2021, 593, 218. doi: 10.1038/s41586-021-03486-3  doi: 10.1038/s41586-021-03486-3

    152. [152]

      Zeng, D.; Yao, J.; Zhang, L.; Xu, R.; Wang, S.; Yan, X.; Yu, C.; Wang, L. Nat. Commun. 2022, 13, 1909. doi: 10.1038/s41467-022-29596-8  doi: 10.1038/s41467-022-29596-8

    153. [153]

      Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Adv. Energy Mater. 2019, 10, 1903253. doi: 10.1002/aenm.201903253  doi: 10.1002/aenm.201903253

    154. [154]

      Liu, G.; Weng, W.; Zhang, Z.; Wu, L.; Yang, J.; Yao, X. Nano Lett. 2020, 20, 6660. doi: 10.1021/acs.nanolett.0c02489  doi: 10.1021/acs.nanolett.0c02489

    155. [155]

      Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi: 10.1038/s41563-019-0438-9  doi: 10.1038/s41563-019-0438-9

    156. [156]

      Li, Y.; Zhang, D.; Xu, X.; Wang, Z.; Liu, Z.; Shen, J.; Liu, J.; Zhu, M. J. Energy Chem. 2021, 60, 32. doi: 10.1016/j.jechem.2020.12.017  doi: 10.1016/j.jechem.2020.12.017

    157. [157]

      Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F. H.; Nan, C.-W. J. Materiomics 2021, 7, 209. doi: 10.1016/j.jmat.2020.09.003  doi: 10.1016/j.jmat.2020.09.003

    158. [158]

      Zheng, C.; Li, L.; Wang, K.; Wang, C.; Zhang, J.; Xia, Y.; Huang, H.; Liang, C.; Gan, Y.; He, X.; Tao, X.; Zhang, W. Batteries Supercaps 2020, 4, 8. doi: 10.1002/batt.202000147  doi: 10.1002/batt.202000147

    159. [159]

      Li, B.; Sun, Z.; Lv, N.; Hu, Y.; Jiang, L.; Zhang, Z.; Liu, F. ACS Appl. Mater. Interfacesfaces 2022, 14, 37738. doi: 10.1021/acsami.2c09013  doi: 10.1021/acsami.2c09013

    160. [160]

      Hänsel, C.; Singh, B.; Kiwic, D.; Canepa, P.; Kundu, D. Chem. Mater. 2021, 33, 6029. doi: 10.1021/acs.chemmater.1c01431  doi: 10.1021/acs.chemmater.1c01431

    161. [161]

      Li, M.; Zhou, D.; Wang, C.; Weng, W.; Jiang, M.; Liu, G.; Yao, X.; He, H. ACS Appl. Mater. Interfaces 2021, 13, 50076. doi: 10.1021/acsami.1c16356  doi: 10.1021/acsami.1c16356

    162. [162]

      Jiang, Z.; Peng, H.; Liu, Y.; Li, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Adv. Energy Mater. 2021, 11, 2101521. doi: 10.1002/aenm.202101521  doi: 10.1002/aenm.202101521

    163. [163]

      Xu, H.; Cao, G.; Shen, Y.; Yu, Y.; Hu, J.; Wang, Z.; Shao, G. Energy Environm. Mater. 2021, 5, 852. doi: 10.1002/eem2.12282  doi: 10.1002/eem2.12282

    164. [164]

      Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C.; et al. ACS Energy Lett. 2020, 5, 1035. doi: 10.1021/acsenergylett.0c00207  doi: 10.1021/acsenergylett.0c00207

    165. [165]

      Liu, Y.; Su, H.; Li, M.; Xiang, J.; Wu, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J. J. Mater. Chem. A 2021, 9, 13531. doi: 10.1039/d1ta03343c  doi: 10.1039/d1ta03343c

    166. [166]

      Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S.; et al. Nano Energy 2021, 90, 106542. doi: 10.1016/j.nanoen.2021.106542  doi: 10.1016/j.nanoen.2021.106542

    167. [167]

      Banik, A.; Liu, Y.; Ohno, S.; Rudel, Y.; Jiménez-Solano, A.; Gloskovskii, A.; Vargas-Barbosa, N. M.; Mo, Y.; Zeier, W. G. ACS Appl. Energy Mater. 2022, 5, 2045. doi: 10.1021/acsaem.1c03599  doi: 10.1021/acsaem.1c03599

    168. [168]

      Xiao, Y. H.; Miara, L. J.; Wang, Y.; Ceder, G. Joule 2019, 3, 1252. doi: 10.1016/j.joule.2019.02.006  doi: 10.1016/j.joule.2019.02.006

    169. [169]

      Strauss, F.; Teo, J. H.; Maibach, J.; Kim, A. Y.; Mazilkin, A.; Janek, J.; Brezesinski, T. ACS Appl. Mater. Interfacesfaces 2020, 12, 57146. doi: 10.1021/acsami.0c18590  doi: 10.1021/acsami.0c18590

    170. [170]

      Culver, S. P.; Koerver, R.; Zeier, W. G.; Janek, J. Adv. Energy Mater. 2019, 9, 1900626. doi: 10.1002/aenm.201900626  doi: 10.1002/aenm.201900626

    171. [171]

      Kim, Y.-J.; Rajagopal, R.; Kang, S.; Ryu, K.-S. Chem. Eng. J. 2020, 386, 123975. doi: 10.1016/j.cej.2019.123975  doi: 10.1016/j.cej.2019.123975

    172. [172]

      Haruyama, J.; Sodeyama, K.; Han, L. Y.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26, 4248. doi: 10.1021/cm5016959  doi: 10.1021/cm5016959

    173. [173]

      Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. J. Power Sources 2020, 456, 227997. doi: 10.1016/j.jpowsour.2020.227997  doi: 10.1016/j.jpowsour.2020.227997

    174. [174]

      Lee, J. S.; Park, Y. J. ACS Appl. Mater. Interfacesfaces 2021, 13, 38333. doi: 10.1021/acsami.1c10294  doi: 10.1021/acsami.1c10294

    175. [175]

      Lim, C. B.; Park, Y. J. Sci. Rep. 2020, 10, 10501. doi: 10.1038/s41598-020-67493-6  doi: 10.1038/s41598-020-67493-6

    176. [176]

      Zhao, F.; Zhao, Y.; Wang, J.; Sun, Q.; Adair, K.; Zhang, S.; Luo, J.; Li, J.; Li, W.; Sun, Y.; et al. Energy Storage Mater. 2020, 33, 139. doi: 10.1016/j.ensm.2020.06.013  doi: 10.1016/j.ensm.2020.06.013

    177. [177]

      Zhang, Y.; Sun, X.; Cao, D.; Gao, G.; Yang, Z.; Zhu, H.; Wang, Y. Energy Storage Mater. 2021, 41, 505. doi: 10.1016/j.ensm.2021.06.024  doi: 10.1016/j.ensm.2021.06.024

    178. [178]

      Cao, D.; Zhang, Y.; Nolan, A. M.; Sun, X.; Liu, C.; Sheng, J.; Mo, Y.; Wang, Y.; Zhu, H. Nano Lett. 2020, 20, 1483. doi: 10.1021/acs.nanolett.9b02678  doi: 10.1021/acs.nanolett.9b02678

    179. [179]

      Wang, L.; Sun, X.; Ma, J.; Chen, B.; Li, C.; Li, J.; Chang, L.; Yu, X.; Chan, T. S.; Hu, Z.; Noked, M.; Cui, G. Adv. Energy Mater. 2021, 11, 2100881. doi: 10.1002/aenm.202100881  doi: 10.1002/aenm.202100881

    180. [180]

      Doerrer, C.; Capone, I.; Narayanan, S.; Liu, J.; Grovenor, C. R. M.; Pasta, M.; Grant, P. S. ACS Appl. Mater. Interfacesfaces 2021, 13, 37809. doi: 10.1021/acsami.1c07952  doi: 10.1021/acsami.1c07952

    181. [181]

      Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Adv. Mater. 2018, 30, e1803075. doi: 10.1002/adma.201803075  doi: 10.1002/adma.201803075

    182. [182]

      Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S. Adv. Energy Mater. 2021, 11, 2100126. doi: 10.1002/aenm.202100126  doi: 10.1002/aenm.202100126

    183. [183]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    184. [184]

      He, Y.; Chen, W.; Zhao, Y.; Li, Y.; Lv, C.; Li, H.; Yang, J.; Gao, Z.; Luo, J. Energy Storage Mater. 2022, 49, 19. doi: 10.1016/j.ensm.2022.03.043  doi: 10.1016/j.ensm.2022.03.043

    185. [185]

      Chen, Y.; Li, W. W.; Sun, C. Z.; Jin, J.; Wang, Q.; Chen, X. D.; Zha, W. P.; Wen, Z. Y. Adv. Energy Mater. 2020, 11, 2002545. doi: 10.1002/aenm.202002545  doi: 10.1002/aenm.202002545

    186. [186]

      Wan, H.; Zhang, J.; Xia, J.; Ji, X.; He, X.; Liu, S.; Wang, C. Adv. Funct. Mater. 2021, 32, 2110876. doi: 10.1002/adfm.202110876  doi: 10.1002/adfm.202110876

    187. [187]

      Lu, Y.; Zhao, C. Z.; Zhang, R.; Yuan, H.; Hou, L. P.; Fu, Z. H.; Chen, X.; Huang, J. Q.; Zhang, Q. Sci. Adv. 2021, 7, eabi5520. doi: 10.1126/sciadv.abi5520  doi: 10.1126/sciadv.abi5520

    188. [188]

      Wan, J.; Song, Y. X.; Chen, W. P.; Guo, H. J.; Shi, Y.; Guo, Y. J.; Shi, J. L.; Guo, Y. G.; Jia, F. F.; Wang, F. Y.; et al. J. Am. Chem. Soc. 2021, 143, 839. doi: 10.1021/jacs.0c10121  doi: 10.1021/jacs.0c10121

    189. [189]

      Peng, L.; Yu, C.; Zhang, Z.; Xu, R.; Sun, M.; Zhang, L.; Cheng, S.; Xie, J. Energy Environm. Mater. 2022, . doi: 10.1002/eem2.12308  doi: 10.1002/eem2.12308

    190. [190]

      Peng, L.; Chen, S.; Yu, C.; Liao, C.; Sun, M.; Wang, H.-L.; Zhang, L.; Cheng, S.; Xie, J. J. Power Sources 2022, 520, 230890. doi: 10.1016/j.jpowsour.2021.230890  doi: 10.1016/j.jpowsour.2021.230890

    191. [191]

      Pan, H.; Zhang, M.; Cheng, Z.; Jiang, H.; Yang, J.; Wang, P.; He, P.; Zhou, H. Sci. Adv. 2022, 8, 4372. doi: 10.1126/sciadv.abn4372  doi: 10.1126/sciadv.abn4372

    192. [192]

      Li, X. N.; Liang, J. W.; Li, X.; Wang, C. H.; Luo, J.; Li, R. Y.; Sun, X. L. Energy Environ. Sci. 2018, 11, 2828. doi: 10.1039/c8ee01621f  doi: 10.1039/c8ee01621f

    193. [193]

      Fan, Z.; Ding, B.; Li, Z.; Hu, B.; Xu, C.; Xu, C.; Dou, H.; Zhang, X. Small 2022, 18, e2204037. doi: 10.1002/smll.202204037  doi: 10.1002/smll.202204037

    194. [194]

      Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Sol-Gel Sci. Technol. 2021, 101, 8. doi: 10.1007/s10971-021-05634-7  doi: 10.1007/s10971-021-05634-7

    195. [195]

      Kim, J.; Kim, C.; Jang, I.; Park, J.; Kim, J.; Paik, U.; Song, T. J. Power Sources 2021, 510, 230425. doi: 10.1016/j.jpowsour.2021.230425  doi: 10.1016/j.jpowsour.2021.230425

    196. [196]

      Kim, D. H.; Lee, H. A.; Song, Y. B.; Park, J. W.; Lee, S. M.; Jung, Y. S. J. Power Sources 2019, 426, 143. doi: 10.1016/j.jpowsour.2019.04.028  doi: 10.1016/j.jpowsour.2019.04.028

    197. [197]

      Darren, H. S.; Tan, Y.-T. C.; Hedi, Y.; Wurigumula, B.; Bhagath, S.; Jean, D.; Weikang, L.; Bingyu, L.; So-Yeon, H.; Baharak, S.; et al. Science 2021, 373, 1494. doi: 10.1126/science.abg7217  doi: 10.1126/science.abg7217

    198. [198]

      Li, Y.; Arnold, W.; Jasinski, J. B.; Thapa, A.; Sumanasekera, G.; Sunkara, M.; Narayanan, B.; Druffel, T.; Wang, H. Electrochim. Acta 2020, 363, 137128. doi: 10.1016/j.electacta.2020.137128  doi: 10.1016/j.electacta.2020.137128

    199. [199]

      Budiman, B. A.; Saputro, A.; Rahardian, S.; Aziz, M.; Sambegoro, P.; Nurprasetio, I. P. J. Energy Storage 2022, 52, 104810. doi: 10.1016/j.est.2022.104810  doi: 10.1016/j.est.2022.104810

    200. [200]

      Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy 2020, 5, 299. doi: 10.1038/s41560-020-0575-z  doi: 10.1038/s41560-020-0575-z

    201. [201]

      Zhang, J.; Zhong, H.; Zheng, C.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W. J. Power Sources 2018, 391, 73. doi: 10.1016/j.jpowsour.2018.04.069  doi: 10.1016/j.jpowsour.2018.04.069

    202. [202]

      Zhu, G. L.; Zhao, C. Z.; Peng, H. J.; Yuan, H.; Hu, J. K.; Nan, H. X.; Lu, Y.; Liu, X. Y.; Huang, J. Q.; He, C.; et al. Adv. Funct. Mater. 2021, 31, 210. doi: 10.1002/adfm.202101985  doi: 10.1002/adfm.202101985

    203. [203]

      Cao, D.; Li, Q.; Sun, X.; Wang, Y.; Zhao, X.; Cakmak, E.; Liang, W.; Anderson, A.; Ozcan, S.; Zhu, H. Adv. Mater. 2021, 33, e2105505. doi: 10.1002/adma.202105505  doi: 10.1002/adma.202105505

    204. [204]

      Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X. Nano Lett. 2021, 21, 5233. doi: 10.1021/acs.nanolett.1c01344  doi: 10.1021/acs.nanolett.1c01344

    205. [205]

      Wang, C.; Yu, R.; Duan, H.; Lu, Q.; Li, Q.; Adair, K. R.; Bao, D.; Liu, Y.; Yang, R.; Wang, J.; Zhao, S.; Huang, H.; Sun, X. ACS Energy Lett. 2021, 410, 02261. doi: 10.1021/acsenergylett.1c02261  doi: 10.1021/acsenergylett.1c02261

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(133)
  • Abstract views(2181)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return