Citation: Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 221102. doi: 10.3866/PKU.WHXB202211029 shu

Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines

  • Corresponding author: Jinshui Zhang, jinshui.zhang@fzu.edu.cn Xinchen Wang, xcwang@fzu.edu.cn
  • Received Date: 16 November 2022
    Revised Date: 5 January 2023
    Accepted Date: 5 January 2023
    Available Online: 9 January 2023

    Fund Project: the National Natural Science Foundation of China 21972022the National Natural Science Foundation of China 22072021the National Natural Science Foundation of China U21A20326

  • Supported metal nanocatalysts are promising candidates for heterogenous photocatalysis because the metal nanoparticles (e.g., Au, Pt, or Pd) loaded on the semiconductor surface not only act as a reductive cocatalyst, which accelerates the kinetics of reactions such as H+ reduction, but also trap the photoelectrons, which allows charge separation. Owing to these unique benefits, supported metal photocatalysts have been extensively studied for green H2 production at the reductive side integrated with organic selective oxidation at the oxidative side in a closed photocatalytic redox cycle. Imines and their derivatives are important chemicals in the industrial production of functional polymers, agrochemicals, and pharmaceuticals. Recently, imines have been successfully produced via the photocatalytic dehydrogenative coupling of amines over supported metal nanocatalysts. However, owing to the strong adsorption of H atoms and imines on the metal surface, the produced imines are converted to secondary amines via a self-hydrogenation process, thus greatly decreasing the selectivity toward the desired imines. Herein, we demonstrate that the construction of an ultrathin carbon layer on a Pd/TiO2 photocatalyst (Pd/TiO2@C) via the thermal annealing of self-assembled polydopamine layers is a simple yet effective strategy to address this issue. Temperature-programmed reduction of hydro-oxygen titration and cyclic voltammetry curves for Pd/TiO2vs. Pd/TiO2@C indicate that the conformable coating of the carbon layer on the catalyst surface facilitates kinetic control of H atom adsorption on the supported Pd nanoparticles. Furthermore, in situ Fourier-transform infrared spectroscopy demonstrates that the conformably coated ultrathin carbon layer also decreases the adsorption of substrate molecules such as N-benzylidenebenzylamine on the catalyst surface, which weakens their interaction with the supported Pd nanoparticles. Thus, the construction of an ultrathin conformable carbon coating on Pd/TiO2 is a facile strategy to kinetically control the adsorption behavior of H atoms and imines on the Pd surface during photocatalytic redox reactions, which can suppress the excessive hydrogenation of imines toward selectivity improvement. In addition, owing to the strong electronic interaction between the Pd nanoparticles and the carbon layer, the encapsulated Pd nanoparticles retain their unique catalytic properties toward the H2 evolution reaction. As a result, Pd/TiO2@C with an optimized carbon layer thickness facilitates improved photocatalytic synthesis of imines, with conversion and selectivity as high as 95% and 99%, respectively. This study provides an effective strategy to develop high-performance supported metal nanocatalysts for integrated photocatalytic systems to produce H2 and valuable organic chemicals.
  • 加载中
    1. [1]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    2. [2]

      Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387. doi: 10.1038/s41929-019-0242-6  doi: 10.1038/s41929-019-0242-6

    3. [3]

      Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N.; Kudo, A.; Yamada, T.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589  doi: 10.1038/nmat4589

    4. [4]

      Li, Y. F.; Wu, Z. S.; Ma, Y. H. Acta Phys. -Chim. Sin. 2021, 37, 2009030.
       

    5. [5]

      Zhang, J. S.; Wang, X. C. Angew. Chem. Int. Ed. 2015, 54, 7230. doi: 10.1002/anie.201502659  doi: 10.1002/anie.201502659

    6. [6]

      Ledendecker, M.; Calderón, K.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. Angew. Chem. Int. Ed. 2015, 54, 12361. doi: 10.1002/anie.201502438  doi: 10.1002/anie.201502438

    7. [7]

      Mou, Q. X.; Wang, X. A.; Xu, Z. H.; Zul, P.; Li, E. L.; Zhao, P. P.; Liu, X. H.; Li, H. B.; Cheng, G. Z. Chin. Chem. Lett. 2022, 33, 562. doi: 10.1016/j.cclet.2021.08.028  doi: 10.1016/j.cclet.2021.08.028

    8. [8]

      Xia, B. Q.; Zhang, Y. Z.; Shi, B. Y.; Ran, J. R.; Davey, K.; Qiao, S. Z. Small Methods 2020, 4, 2000063. doi: 10.1002/smtd.202000063  doi: 10.1002/smtd.202000063

    9. [9]

      Biswal, B. P.; Vignolo-Gonzalez, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsc, B. V. J. Am. Chem. Soc. 2019, 141, 11082. doi: 10.1021/jacs.9b03243  doi: 10.1021/jacs.9b03243

    10. [10]

      Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 1295. doi: 10.1002/anie.201912439  doi: 10.1002/anie.201912439

    11. [11]

      Zhao, X. X.; Feng, J. R.; Liu, J.; Shi, W.; Yang, G. M.; Wang, G. C.; Cheng, P. Angew. Chem. Int. Ed. 2018, 57, 9790. doi: 10.1002/anie.201805425  doi: 10.1002/anie.201805425

    12. [12]

      Wang, T.; Tao, X. Q.; Li, X. L.; Zhang, K.; Liu, S. J.; Li, B. X. Small 2021, 17, 2006255. doi: 10.1002/smll.202006255  doi: 10.1002/smll.202006255

    13. [13]

      Jiao, L.; Zhang, D. F.; Hao, Z. J.; Yu, F. H.; Lv, X. J. ACS Catal. 2021, 11, 8727. doi: 10.1021/acscatal.1c01520  doi: 10.1021/acscatal.1c01520

    14. [14]

      Chai, Z. G.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. S. J. Am. Chem. Soc. 2016, 138, 10128. doi: 10.1021/jacs.6b06860  doi: 10.1021/jacs.6b06860

    15. [15]

      Li, D. X.; Yu, J. C. C.; Nguyen, V. H.; Wu, J. C. S.; Wang, X. X. Appl. Catal. B-Environ. 2018, 239, 268. doi: 10.1016/j.apcatb.2018.08.010  doi: 10.1016/j.apcatb.2018.08.010

    16. [16]

      Liu, J. F.; Zheng, X. Z.; Pan, L. L.; Fu, X. L.; Zhang, S. J.; Meng, S. G.; Chen, S. F.; Appl. Catal. B-Environ. 2021, 298, 120619. doi: 10.1016/j.apcatb.2021.120619  doi: 10.1016/j.apcatb.2021.120619

    17. [17]

      An, P.; Fu, Y.; Wei, D. L.; Guo, Y. L.; Zhan, W. C.; Zhang, J. S. Acta Phys. -Chim. Sin. 2021, 37, 2001025.
       

    18. [18]

      Tang, W. J.; Zhang, X. M. Chem. Rev. 2003, 103, 3029. doi: 10.1021/cr020049i  doi: 10.1021/cr020049i

    19. [19]

      Huang, S. T.; Zhao, Z. J.; Wei, Z. Z.; Wang, M. X.; Chen, Y.; Wang, X. S.; Shao, F. G.; Zhong, X.; Li, X. N.; Wang, J. G. Green Chem. 2022, 24, 6945. doi: 10.1039/D2GC02161G  doi: 10.1039/D2GC02161G

    20. [20]

      Chen, H.; Tang, T. H.; Malapit, C. A.; Lee, Y. S.; Prater, M. B.; Weliwatte, N. S.; Minteer, S. D. J. Am. Chem. Soc. 2022, 144, 4047. doi: 10.1021/jacs.1c13063  doi: 10.1021/jacs.1c13063

    21. [21]

      Tang, L.; Sun, H. Y.; Li, Y. F.; Zha, Z. G.; Wang, Z. Y. Green Chem. 2012, 14, 3423. doi:10.1039/C2GC36312G  doi: 10.1039/C2GC36312G

    22. [22]

      Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 5379. doi: 10.1002/anie.201800320  doi: 10.1002/anie.201800320

    23. [23]

      Huang, Y.; Liu, C. B.; Li, M. Y.; Li, H. Z.; Li, Y. W.; Su, R.; Zhang, B. ACS Catal. 2020, 10, 3904. doi: 10.1021/acscatal.0c00282  doi: 10.1021/acscatal.0c00282

    24. [24]

      Yu, W. W.; Zhang, D.; Guo, X. W.; Song, C. S.; Zhao, Z. K. Catal. Sci. Technol. 2018, 8, 5148. doi: 10.1039/C8CY01326H  doi: 10.1039/C8CY01326H

    25. [25]

      Zou, J. H.; Zhou, W. H.; Huang, L. Q.; Guo, B. B.; Yang, C.; Hou, Y. D.; Zhang, J. S.; Wu, L. J. Catal. 2021, 400, 347. doi: 10.1016/j.jcat.2021.07.003  doi: 10.1016/j.jcat.2021.07.003

    26. [26]

      Bai, P.; Tong, X. L.; Gao, Y. Q.; Guo, P. F. Catal. Sci. Technol. 2019, 9, 5803. doi: 10.1039/C9CY01311C  doi: 10.1039/C9CY01311C

    27. [27]

      Chen, Y. J.; Sun, D.; Du, L. Z.; Jiao, Y. Z.; Han, W. Tian, G. H. ACS Appl. Mater. Interfaces 2022, 14, 24425. doi: 10.1021/acsami.2c04826  doi: 10.1021/acsami.2c04826

    28. [28]

      Ohyama, J.; Yamamoto, A.; Teramura, K.; Shishido, T.; Tanaka, T.; ACS Catal. 2011, 1, 187. doi: 10.1021/cs100072k  doi: 10.1021/cs100072k

    29. [29]

      Ma, M. J.; Wang, H. Q.; Liu, H. Chin. Chem. Lett. 2021, 32, 3613. doi: 10.1016/j.cclet.2021.04.012  doi: 10.1016/j.cclet.2021.04.012

    30. [30]

      Wenderich, K.; Mul, G. D.; Chem. Rev. 2016, 116, 14587. doi: 10.1021/acs.chemrev.6b00327  doi: 10.1021/acs.chemrev.6b00327

    31. [31]

      Du, X. H.; Li, Y.; Yin, H., Xiang, Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.
       

    32. [32]

      Yu, J.; Liu, Q.; Qiao, W.; Lv, D. D.; Li, Y. R.; Liu, C. B.; Yu, Y. F.; Li, Y. W.; Niemantsverdriet, H.; Zhang, B.; et al. ACS Catal. 2021, 11, 6656. doi: 10.1021/acscatal.1c01519  doi: 10.1021/acscatal.1c01519

    33. [33]

      Wang, L. M.; Kobayashi, K.; Arisawa, M.; Saito, S.; Naka, H. Org. Lett. 2019, 21, 341. doi: 10.1021/acs.orglett.8b03271  doi: 10.1021/acs.orglett.8b03271

    34. [34]

      Lu, E. J.; Wu, J. C.; Yang, B. Y.; Yu, D. X.; Yu, Z. Y.; Hou, Y. D.; Zhang, J. S. ACS Appl. Nano Mater. 2020, 3, 9192. doi: 10.1021/acsanm.0c01824  doi: 10.1021/acsanm.0c01824

    35. [35]

      Yang, B. Y.; Zhang, S. K.; Gao, Y.; Huang, L. Q.; Yang, C.; Hou, Y. D.; Zhang, J. S. Appl. Catal. B-Environ. 2022, 304, 120999. doi: 10.1016/j.apcatb.2021.120999  doi: 10.1016/j.apcatb.2021.120999

    36. [36]

      Zeng, L. D.; Liang, H. Y.; An, P.; Yu, D. X.; Yang, C.; Hou, Y. D.; Zhang, J. S. Appl. Catal. A-Gen. 2022, 633, 118499. doi: 10.1016/j.apcata.2022.118499  doi: 10.1016/j.apcata.2022.118499

    37. [37]

      Wei, Z. Z.; Chen, Y. Q.; Wang, J. Su, D. F.; Tang, M. H.; Mao, S. J.; Wang, Y. ACS Catal. 2016, 6, 5816. doi: 10.1021/acscatal.6b01240  doi: 10.1021/acscatal.6b01240

    38. [38]

      Zhan, W. C.; He, Q.; Liu, X. F.; Guo, Y. Q.; Wang, Y. Q.; Wang, L.; Guo, Y.; Borisevich, A. Y.; Zhang, J. S.; Lu, G. Z.; et al. J. Am. Chem. Soc. 2016, 138, 16130. doi: 10.1021/jacs.6b10472  doi: 10.1021/jacs.6b10472

    39. [39]

      Fronczak, M.; Kasprzak, A.; Bystrzejewski, M. J. Environ. Chem. Eng. 2021, 9, 104673. doi: 10.1016/j.jece.2020.104673  doi: 10.1016/j.jece.2020.104673

    40. [40]

      Jiao, Z. F.; Zhao, J. X.; Guo, X. N.; Tong, X. L.; Zhang, B.; Jin, G. Q.; Qin, Y.; Guo, X. Y. Catal. Sci. Technol. 2019, 9, 2266. doi: 10.1039/C9CY00353C  doi: 10.1039/C9CY00353C

    41. [41]

      Li, J.; Zhang, L.; Li, J. W.; An, P.; Hou, Y. D.; Zhang, J. S. ACS Sustain. Chem. Eng. 2019, 7, 14023. doi: 10.1021/acssuschemeng.9b02529  doi: 10.1021/acssuschemeng.9b02529

    42. [42]

      Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. ACS Catal. 2013, 3, 2318. doi: 10.1021/cs400532p  doi: 10.1021/cs400532p

    43. [43]

      Zhang, J. S.; Qiao, Z. A.; Mahurin, S. M.; Jiang, X. G.; Chai, S. H.; Lu, H. F.; Nelson, K.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 4582. doi: 10.1002/anie.201500305  doi: 10.1002/anie.201500305

    44. [44]

      Sun, X. M.; Gao, L. J. Acta Phys. -Chim. Sin. 2015, 31, 1521.
       

    45. [45]

      Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. J. Am. Chem. Soc. 2012, 134, 7600. doi: 10.1021/ja3012676  doi: 10.1021/ja3012676

    46. [46]

      Sasan, K.; Zuo, F.; Wang, Y.; Feng, P. Y. Nanoscale 2015, 7, 13369. doi: 10.1039/C5NR02974K  doi: 10.1039/C5NR02974K

    47. [47]

      Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. doi: 10.1021/acscatal.5b01933  doi: 10.1021/acscatal.5b01933

    48. [48]

      Chen, H.; Yang, Z. Z.; Wang, X.; Polo-Garzon, F.; Halstenberg, P. W.; Wang, T.; Suo, X.; Yang, S. Z.; Meyer, H. M.; Wu, Z. L.; et al. J. Am. Chem. Soc. 2021, 143, 8521. doi: 10.1021/jacs.0c12817  doi: 10.1021/jacs.0c12817

    49. [49]

      Lu, E. J.; Zhang, Z. X.; Tao, J. Q.; Yu, Z. Y.; Hou, Y. D.; Zhang, J. S. Chem. Eur. J. 2022, 28, e202201590. doi: 10.1002/chem.202201590  doi: 10.1002/chem.202201590

    50. [50]

      Lupan, O.; Postica, V.; Hoppe, M.; Wolff, N.; Polonskyi, O.; Pauporté, T.; Viana, B.; Majérus, O.; Kienle, L.; Faupel, F.; et al. Nanoscale 2018, 10, 14107. doi: 10.1039/C8NR03260B  doi: 10.1039/C8NR03260B

    51. [51]

      Zhao, J. R.; Fu, J. H.; Wang, J.; Tang, K. X.; Liu, Q.; Huang, J. H. J. Phys. Chem. C 2022, 126, 15167. doi: 10.1021/acs.jpcc.2c03945  doi: 10.1021/acs.jpcc.2c03945

    52. [52]

      Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. doi: 10.1021/acscatal.5b01933  doi: 10.1021/acscatal.5b01933

    53. [53]

      Zhang, N.; Li, X. Y.; Liu, Y. F.; Long, R.; Li, M. Q.; Chen, S. G.; Qi, Z. M.; Wang, C. M.; Song, L. S.; Jiang, J. J.; et al. Small 2017, 13, 1701354. doi: 10.1002/smll.201701354  doi: 10.1002/smll.201701354

    54. [54]

      Wang, H. T.; Yu, J. N.; Wei, S.; Lin, M. M.; Song, Y. J.; Wu, L. Chem. Eng. J. 2022, 441, 136020. doi: 10.1016/j.cej.2022.136020  doi: 10.1016/j.cej.2022.136020

    55. [55]

      Ma, R.; Yang, T. X.; Sun, J. H.; He, Y. F.; Feng, J. T.; Miller, J. T.; Li, D. Q. Chem. Eng. Sci. 2019, 210, 115216. doi: 10.1016/j.ces.2019.115216  doi: 10.1016/j.ces.2019.115216

    56. [56]

      Zhang, B.; Yang, F.; Liu, H. C.; Yan, L. N.; Yang, W.; Xu, C.; Huang, S.; Li, Q.; Bao, W. J.; Liu, B.; et al. Ind. Eng. Chem. Res. 2019, 58, 19486. doi: 10.1021/acs.iecr.9b03619  doi: 10.1021/acs.iecr.9b03619

    57. [57]

      Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Angew. Chem. Int. Ed. 2020, 59, 6224. doi: 10.1002/anie.201915774  doi: 10.1002/anie.201915774

    58. [58]

      Deng, Y.; Yan, W. J.; Guo, Y. J.; Wang, Q.; Bi, Y. P.; Dong, C.; Fan, L. F. J. Hazard. Mater. 2022, 426, 128107. doi: 10.1016/j.jhazmat.2021.128107  doi: 10.1016/j.jhazmat.2021.128107

  • 加载中
    1. [1]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    2. [2]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    3. [3]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    6. [6]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    7. [7]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    8. [8]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    11. [11]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    12. [12]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    13. [13]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    14. [14]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    15. [15]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    18. [18]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    19. [19]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    20. [20]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

Metrics
  • PDF Downloads(5)
  • Abstract views(109)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return