Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines
- Corresponding author: Jinshui Zhang, jinshui.zhang@fzu.edu.cn Xinchen Wang, xcwang@fzu.edu.cn
Citation: Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 221102. doi: 10.3866/PKU.WHXB202211029
Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
doi: 10.1038/nmat2317
Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387. doi: 10.1038/s41929-019-0242-6
doi: 10.1038/s41929-019-0242-6
Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N.; Kudo, A.; Yamada, T.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589
doi: 10.1038/nmat4589
Li, Y. F.; Wu, Z. S.; Ma, Y. H. Acta Phys. -Chim. Sin. 2021, 37, 2009030.
Zhang, J. S.; Wang, X. C. Angew. Chem. Int. Ed. 2015, 54, 7230. doi: 10.1002/anie.201502659
doi: 10.1002/anie.201502659
Ledendecker, M.; Calderón, K.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. Angew. Chem. Int. Ed. 2015, 54, 12361. doi: 10.1002/anie.201502438
doi: 10.1002/anie.201502438
Mou, Q. X.; Wang, X. A.; Xu, Z. H.; Zul, P.; Li, E. L.; Zhao, P. P.; Liu, X. H.; Li, H. B.; Cheng, G. Z. Chin. Chem. Lett. 2022, 33, 562. doi: 10.1016/j.cclet.2021.08.028
doi: 10.1016/j.cclet.2021.08.028
Xia, B. Q.; Zhang, Y. Z.; Shi, B. Y.; Ran, J. R.; Davey, K.; Qiao, S. Z. Small Methods 2020, 4, 2000063. doi: 10.1002/smtd.202000063
doi: 10.1002/smtd.202000063
Biswal, B. P.; Vignolo-Gonzalez, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsc, B. V. J. Am. Chem. Soc. 2019, 141, 11082. doi: 10.1021/jacs.9b03243
doi: 10.1021/jacs.9b03243
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 1295. doi: 10.1002/anie.201912439
doi: 10.1002/anie.201912439
Zhao, X. X.; Feng, J. R.; Liu, J.; Shi, W.; Yang, G. M.; Wang, G. C.; Cheng, P. Angew. Chem. Int. Ed. 2018, 57, 9790. doi: 10.1002/anie.201805425
doi: 10.1002/anie.201805425
Wang, T.; Tao, X. Q.; Li, X. L.; Zhang, K.; Liu, S. J.; Li, B. X. Small 2021, 17, 2006255. doi: 10.1002/smll.202006255
doi: 10.1002/smll.202006255
Jiao, L.; Zhang, D. F.; Hao, Z. J.; Yu, F. H.; Lv, X. J. ACS Catal. 2021, 11, 8727. doi: 10.1021/acscatal.1c01520
doi: 10.1021/acscatal.1c01520
Chai, Z. G.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. S. J. Am. Chem. Soc. 2016, 138, 10128. doi: 10.1021/jacs.6b06860
doi: 10.1021/jacs.6b06860
Li, D. X.; Yu, J. C. C.; Nguyen, V. H.; Wu, J. C. S.; Wang, X. X. Appl. Catal. B-Environ. 2018, 239, 268. doi: 10.1016/j.apcatb.2018.08.010
doi: 10.1016/j.apcatb.2018.08.010
Liu, J. F.; Zheng, X. Z.; Pan, L. L.; Fu, X. L.; Zhang, S. J.; Meng, S. G.; Chen, S. F.; Appl. Catal. B-Environ. 2021, 298, 120619. doi: 10.1016/j.apcatb.2021.120619
doi: 10.1016/j.apcatb.2021.120619
An, P.; Fu, Y.; Wei, D. L.; Guo, Y. L.; Zhan, W. C.; Zhang, J. S. Acta Phys. -Chim. Sin. 2021, 37, 2001025.
Tang, W. J.; Zhang, X. M. Chem. Rev. 2003, 103, 3029. doi: 10.1021/cr020049i
doi: 10.1021/cr020049i
Huang, S. T.; Zhao, Z. J.; Wei, Z. Z.; Wang, M. X.; Chen, Y.; Wang, X. S.; Shao, F. G.; Zhong, X.; Li, X. N.; Wang, J. G. Green Chem. 2022, 24, 6945. doi: 10.1039/D2GC02161G
doi: 10.1039/D2GC02161G
Chen, H.; Tang, T. H.; Malapit, C. A.; Lee, Y. S.; Prater, M. B.; Weliwatte, N. S.; Minteer, S. D. J. Am. Chem. Soc. 2022, 144, 4047. doi: 10.1021/jacs.1c13063
doi: 10.1021/jacs.1c13063
Tang, L.; Sun, H. Y.; Li, Y. F.; Zha, Z. G.; Wang, Z. Y. Green Chem. 2012, 14, 3423. doi:10.1039/C2GC36312G
doi: 10.1039/C2GC36312G
Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 5379. doi: 10.1002/anie.201800320
doi: 10.1002/anie.201800320
Huang, Y.; Liu, C. B.; Li, M. Y.; Li, H. Z.; Li, Y. W.; Su, R.; Zhang, B. ACS Catal. 2020, 10, 3904. doi: 10.1021/acscatal.0c00282
doi: 10.1021/acscatal.0c00282
Yu, W. W.; Zhang, D.; Guo, X. W.; Song, C. S.; Zhao, Z. K. Catal. Sci. Technol. 2018, 8, 5148. doi: 10.1039/C8CY01326H
doi: 10.1039/C8CY01326H
Zou, J. H.; Zhou, W. H.; Huang, L. Q.; Guo, B. B.; Yang, C.; Hou, Y. D.; Zhang, J. S.; Wu, L. J. Catal. 2021, 400, 347. doi: 10.1016/j.jcat.2021.07.003
doi: 10.1016/j.jcat.2021.07.003
Bai, P.; Tong, X. L.; Gao, Y. Q.; Guo, P. F. Catal. Sci. Technol. 2019, 9, 5803. doi: 10.1039/C9CY01311C
doi: 10.1039/C9CY01311C
Chen, Y. J.; Sun, D.; Du, L. Z.; Jiao, Y. Z.; Han, W. Tian, G. H. ACS Appl. Mater. Interfaces 2022, 14, 24425. doi: 10.1021/acsami.2c04826
doi: 10.1021/acsami.2c04826
Ohyama, J.; Yamamoto, A.; Teramura, K.; Shishido, T.; Tanaka, T.; ACS Catal. 2011, 1, 187. doi: 10.1021/cs100072k
doi: 10.1021/cs100072k
Ma, M. J.; Wang, H. Q.; Liu, H. Chin. Chem. Lett. 2021, 32, 3613. doi: 10.1016/j.cclet.2021.04.012
doi: 10.1016/j.cclet.2021.04.012
Wenderich, K.; Mul, G. D.; Chem. Rev. 2016, 116, 14587. doi: 10.1021/acs.chemrev.6b00327
doi: 10.1021/acs.chemrev.6b00327
Du, X. H.; Li, Y.; Yin, H., Xiang, Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.
Yu, J.; Liu, Q.; Qiao, W.; Lv, D. D.; Li, Y. R.; Liu, C. B.; Yu, Y. F.; Li, Y. W.; Niemantsverdriet, H.; Zhang, B.; et al. ACS Catal. 2021, 11, 6656. doi: 10.1021/acscatal.1c01519
doi: 10.1021/acscatal.1c01519
Wang, L. M.; Kobayashi, K.; Arisawa, M.; Saito, S.; Naka, H. Org. Lett. 2019, 21, 341. doi: 10.1021/acs.orglett.8b03271
doi: 10.1021/acs.orglett.8b03271
Lu, E. J.; Wu, J. C.; Yang, B. Y.; Yu, D. X.; Yu, Z. Y.; Hou, Y. D.; Zhang, J. S. ACS Appl. Nano Mater. 2020, 3, 9192. doi: 10.1021/acsanm.0c01824
doi: 10.1021/acsanm.0c01824
Yang, B. Y.; Zhang, S. K.; Gao, Y.; Huang, L. Q.; Yang, C.; Hou, Y. D.; Zhang, J. S. Appl. Catal. B-Environ. 2022, 304, 120999. doi: 10.1016/j.apcatb.2021.120999
doi: 10.1016/j.apcatb.2021.120999
Zeng, L. D.; Liang, H. Y.; An, P.; Yu, D. X.; Yang, C.; Hou, Y. D.; Zhang, J. S. Appl. Catal. A-Gen. 2022, 633, 118499. doi: 10.1016/j.apcata.2022.118499
doi: 10.1016/j.apcata.2022.118499
Wei, Z. Z.; Chen, Y. Q.; Wang, J. Su, D. F.; Tang, M. H.; Mao, S. J.; Wang, Y. ACS Catal. 2016, 6, 5816. doi: 10.1021/acscatal.6b01240
doi: 10.1021/acscatal.6b01240
Zhan, W. C.; He, Q.; Liu, X. F.; Guo, Y. Q.; Wang, Y. Q.; Wang, L.; Guo, Y.; Borisevich, A. Y.; Zhang, J. S.; Lu, G. Z.; et al. J. Am. Chem. Soc. 2016, 138, 16130. doi: 10.1021/jacs.6b10472
doi: 10.1021/jacs.6b10472
Fronczak, M.; Kasprzak, A.; Bystrzejewski, M. J. Environ. Chem. Eng. 2021, 9, 104673. doi: 10.1016/j.jece.2020.104673
doi: 10.1016/j.jece.2020.104673
Jiao, Z. F.; Zhao, J. X.; Guo, X. N.; Tong, X. L.; Zhang, B.; Jin, G. Q.; Qin, Y.; Guo, X. Y. Catal. Sci. Technol. 2019, 9, 2266. doi: 10.1039/C9CY00353C
doi: 10.1039/C9CY00353C
Li, J.; Zhang, L.; Li, J. W.; An, P.; Hou, Y. D.; Zhang, J. S. ACS Sustain. Chem. Eng. 2019, 7, 14023. doi: 10.1021/acssuschemeng.9b02529
doi: 10.1021/acssuschemeng.9b02529
Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. ACS Catal. 2013, 3, 2318. doi: 10.1021/cs400532p
doi: 10.1021/cs400532p
Zhang, J. S.; Qiao, Z. A.; Mahurin, S. M.; Jiang, X. G.; Chai, S. H.; Lu, H. F.; Nelson, K.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 4582. doi: 10.1002/anie.201500305
doi: 10.1002/anie.201500305
Sun, X. M.; Gao, L. J. Acta Phys. -Chim. Sin. 2015, 31, 1521.
Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. J. Am. Chem. Soc. 2012, 134, 7600. doi: 10.1021/ja3012676
doi: 10.1021/ja3012676
Sasan, K.; Zuo, F.; Wang, Y.; Feng, P. Y. Nanoscale 2015, 7, 13369. doi: 10.1039/C5NR02974K
doi: 10.1039/C5NR02974K
Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. doi: 10.1021/acscatal.5b01933
doi: 10.1021/acscatal.5b01933
Chen, H.; Yang, Z. Z.; Wang, X.; Polo-Garzon, F.; Halstenberg, P. W.; Wang, T.; Suo, X.; Yang, S. Z.; Meyer, H. M.; Wu, Z. L.; et al. J. Am. Chem. Soc. 2021, 143, 8521. doi: 10.1021/jacs.0c12817
doi: 10.1021/jacs.0c12817
Lu, E. J.; Zhang, Z. X.; Tao, J. Q.; Yu, Z. Y.; Hou, Y. D.; Zhang, J. S. Chem. Eur. J. 2022, 28, e202201590. doi: 10.1002/chem.202201590
doi: 10.1002/chem.202201590
Lupan, O.; Postica, V.; Hoppe, M.; Wolff, N.; Polonskyi, O.; Pauporté, T.; Viana, B.; Majérus, O.; Kienle, L.; Faupel, F.; et al. Nanoscale 2018, 10, 14107. doi: 10.1039/C8NR03260B
doi: 10.1039/C8NR03260B
Zhao, J. R.; Fu, J. H.; Wang, J.; Tang, K. X.; Liu, Q.; Huang, J. H. J. Phys. Chem. C 2022, 126, 15167. doi: 10.1021/acs.jpcc.2c03945
doi: 10.1021/acs.jpcc.2c03945
Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. doi: 10.1021/acscatal.5b01933
doi: 10.1021/acscatal.5b01933
Zhang, N.; Li, X. Y.; Liu, Y. F.; Long, R.; Li, M. Q.; Chen, S. G.; Qi, Z. M.; Wang, C. M.; Song, L. S.; Jiang, J. J.; et al. Small 2017, 13, 1701354. doi: 10.1002/smll.201701354
doi: 10.1002/smll.201701354
Wang, H. T.; Yu, J. N.; Wei, S.; Lin, M. M.; Song, Y. J.; Wu, L. Chem. Eng. J. 2022, 441, 136020. doi: 10.1016/j.cej.2022.136020
doi: 10.1016/j.cej.2022.136020
Ma, R.; Yang, T. X.; Sun, J. H.; He, Y. F.; Feng, J. T.; Miller, J. T.; Li, D. Q. Chem. Eng. Sci. 2019, 210, 115216. doi: 10.1016/j.ces.2019.115216
doi: 10.1016/j.ces.2019.115216
Zhang, B.; Yang, F.; Liu, H. C.; Yan, L. N.; Yang, W.; Xu, C.; Huang, S.; Li, Q.; Bao, W. J.; Liu, B.; et al. Ind. Eng. Chem. Res. 2019, 58, 19486. doi: 10.1021/acs.iecr.9b03619
doi: 10.1021/acs.iecr.9b03619
Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Angew. Chem. Int. Ed. 2020, 59, 6224. doi: 10.1002/anie.201915774
doi: 10.1002/anie.201915774
Deng, Y.; Yan, W. J.; Guo, Y. J.; Wang, Q.; Bi, Y. P.; Dong, C.; Fan, L. F. J. Hazard. Mater. 2022, 426, 128107. doi: 10.1016/j.jhazmat.2021.128107
doi: 10.1016/j.jhazmat.2021.128107
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886