Citation: Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221102. doi: 10.3866/PKU.WHXB202211025 shu

Recent Advances in High-Efficiency Perovskite for Medical Sensors

  • Corresponding author: Jinjin Zhao, jinjinzhao2012@163.com
  • Received Date: 16 November 2022
    Revised Date: 21 December 2022
    Accepted Date: 22 December 2022
    Available Online: 30 December 2022

    Fund Project: the National Natural Science Foundation of China U213012the National Natural Science Foundation of China 11772207the Natural Science Foundation of Hebei Province F2020210016the Natural Science Foundation of Hebei Province E2022210097the Natural Science Foundation of Hebei (The Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region) H2022205047the Central Government Guiding Local Science and Technology Development Project 216Z4302Gthe Innovation Capability Improvement Plan Project of Hebei Province 22567604Hthe Youth Top-notch Talents Supporting Plan of Hebei Province, and the Hebei Administration for Market Supervision Science and Technology Project List 2023ZC03

  • Perovskite materials have considerable potential in medical sensors. This is because the diverse element substitution of the perovskite ABX3 composition brings rich physical and chemical properties for perovskite materials, including photoelectric conversion, all-optical conversion, and electro-optical conversion. By modifying the A-site, B-site, or X-site elements, the bandgap width of perovskite materials can be adjusted. Moreover, the absorption spectrum, photoelectric conversion electrical signal, and all-optical conversion luminescence spectrum can be regulated in perovskite materials. Perovskite materials also have the advantages of easy fabrication, excellent biocompatibility after modification, variable chemical valence states of constituent elements, and adjustable morphology. Therefore, perovskite materials are expected to be used in medical sensors with different operation mechanisms, such as photoelectric sensors, all-optical conversion sensors, electrocatalytic sensors, physicochemically loading sensors, and surface plasmon resonance (SPR) sensors. Based on the photoelectric conversion mechanism, perovskite medical sensors can detect metabolic substances, cancer-related substances and drugs in three ways: hindering charge transfer, trapping charges, and changing the number of photo-induced carriers. Furthermore, perovskite photoelectric medical sensors exhibit an ultrasensitive detection performance, even reaching 10−3 fmol·L−1. Based on the all-optical conversion mechanism, metabolite substances and drugs are detected by perovskite all-optical conversion medical sensors via electron/hole transfer, perovskite material degradation, or perovskite material phase transition. Perovskite all-optical conversion medical sensors can be used to detect medical substances based on precise measurement using the photoluminescence spectrum and direct estimation based on the visible color changes. Based on the variable chemical valence states of constituent elements for perovskite materials, metabolite substances, neurotransmitters, cancer-related substances, and drugs are detected by the perovskite electrocatalytic medical sensors via oxidation reaction or reductive reaction. These have variable electrochemical measurement methods for medical substances, such as cyclic voltammetry, amperometry, and differential pulse voltammetry. They can not only simultaneously detect multiple substances but also are biocompatible. Based on the physicochemical loading and SPR mechanisms, metabolite substances and cancer-related substances are detected. Perovskite physicochemically loading medical sensors can detect both liquid and gaseous substances by utilizing the electrical conductivity or adsorbability of perovskite materials, and the detection of perovskite SPR medical sensors will not damage medical substances. In conclusion, owing to the different operation mechanisms of perovskite medical sensors, they exhibit high sensitivity and precision for detecting a wide range of medical substances, which meets the diverse requirements of medical detection. Thus, perovskite medical sensors pave the way for future multidisciplinary integration and development between the medicine and engineering fields.
  • 加载中
    1. [1]

      Reiss, A. L.; Jo, B.; Arbelaez, A. M.; Tsalikian, E.; Buckingham, B.; Weinzimer, S. A.; Fox, L. A.; Cato, A.; White, N. H.; Tansey, M.; et al. Nat. Commun. 2022, 13, 4940. doi: 10.1038/s41467-022-32289-x  doi: 10.1038/s41467-022-32289-x

    2. [2]

      Li, S.; Zhang, Y.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhu, M. J.; Wang, H. M.; Zhang, M. C.; Qiu, X. P.; Song, Y. F.; et al. Nat. Commun. 2022, 13, 5416. doi: 10.1038/s41467-022-33133-y  doi: 10.1038/s41467-022-33133-y

    3. [3]

      Wageh, S.; Ahmed, A. A.-G.; Zhao, L. Acta Phys. -Chim. Sin. 2022, 38, 2111009.  doi: 10.3866/PKU.WHXB202111009

    4. [4]

      Zheng, C.; Liu, A. Q.; Bi, C. H.; Tian, J. J. Acta Phys. -Chim. Sin. 2021, 37, 2007084.  doi: 10.3866/PKU.WHXB202007084

    5. [5]

      Zou, G. R. X.; Chen, Z. M.; Li, Z. C.; Yip, H. L. Acta Phys. -Chim. Sin. 2021, 37, 2009002.  doi: 10.3866/PKU.WHXB202009002

    6. [6]

      Wang, Y. N.; Ma, P.; Peng, L. M.; Zhang, D.; Fang, Y. Y.; Zhou, X. W.; Lin, Y. Acta Phys. -Chim. Sin. 2017, 33, 2099.  doi: 10.3866/PKU.WHXB201705115

    7. [7]

      Bu, H.; He, C. L.; Xu, Y. Q.; Xing, L.; Liu, X. M.; Ren, S. X.; Yi, S. H.; Chen, L.; Wu, H.; Zhang, G. L.; et al. Adv. Electron. Mater. 2022, 8, 2101204. doi: 10.1002/aelm.202101204  doi: 10.1002/aelm.202101204

    8. [8]

      Jiang, J. Z.; Xiong, M.; Fan, K.; Bao, C. X.; Xin, D. Y.; Pan, Z. W.; Fei, L. F.; Huang, H. T.; Zhou, L.; Yao, K.; et al. Nat. Photonics 2022, 16, 575. doi: 10.1038/s41566-022-01024-9  doi: 10.1038/s41566-022-01024-9

    9. [9]

      Choi, J.; Han, J. S.; Hong, K.; Kim, S. Y.; Jang, H. W. Adv. Mater. 2018, 30, 1704002. doi: 10.1002/adma.201704002  doi: 10.1002/adma.201704002

    10. [10]

      Jiang, Y.; Wang, X.; Pan, A. L. Adv. Mater. 2019, 31, 1806671. doi: 10.1002/adma.201806671  doi: 10.1002/adma.201806671

    11. [11]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    12. [12]

      Yuan, Y. B.; Huang, J. S. Acc. Chem. Res. 2016, 49, 286. doi: 10.1021/acs.accounts.5b00420  doi: 10.1021/acs.accounts.5b00420

    13. [13]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    14. [14]

      Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167  doi: 10.1126/science.1243167

    15. [15]

      Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Science 2015, 347, 967. doi: 10.1126/science.aaa5760  doi: 10.1126/science.aaa5760

    16. [16]

      Aparna, T.; Sivasubramanian, R. Mater. Chem. Phys. 2019, 233, 319. doi: 10.1016/j.matchemphys.2019.05.073  doi: 10.1016/j.matchemphys.2019.05.073

    17. [17]

      Song, X.; Li, Q.; Han, J.; Ma, C.; Xu, Z.; Li, H. J.; Wang, P. J.; Yang, Z.; Cui, Q. Y.; Gao, L. Adv. Mater. 2021, 33, 2102190. doi: 10.1002/adma.202102190  doi: 10.1002/adma.202102190

    18. [18]

      Wang, Y. C.; Huang, S. K.; Nakamura, T.; Kao, Y. T.; Chiang, C. H.; Wang, D. Y.; Chang, Y. J.; Koshida, N.; Shimada, T.; Liu, S. H.; et al. NPG Asia Mater. 2020, 12, 54. doi: 10.1038/s41427-020-00236-1  doi: 10.1038/s41427-020-00236-1

    19. [19]

      Wang, P.; Zhao, J. J.; Liu, J. X.; Wei, L. Y.; Liu, Z. H.; Guan, L. H.; Cao, G. Z. J. Power Sources 2017, 339, 51. doi: 10.1016/j.jpowsour.2016.11.046  doi: 10.1016/j.jpowsour.2016.11.046

    20. [20]

      Wu, L. M.; Chen, K. Q.; Huang, W. C.; Lin, Z. T.; Zhao, J. L.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Xiao, Q. N.; Guo, Z. N.; et al. Adv. Opt. Mater. 2018, 6, 1800400. doi: 10.1002/adom.201800400  doi: 10.1002/adom.201800400

    21. [21]

      Wang, Y. Y.; Yin, L.; Wu, J.; Li, N.; He, N.; Zhao, H. X.; Wu, Q.; Li, X. T. Ceram. Int. 2021, 47, 29807. doi: 10.1016/j.ceramint.2021.07.152  doi: 10.1016/j.ceramint.2021.07.152

    22. [22]

      Shafi, P. M.; Joseph, N.; Karthik, R.; Shim, J. J.; Bose, A. C.; Ganesh, V. Microchem. J. 2021, 164, 105945. doi: 10.1016/j.microc.2021.105945  doi: 10.1016/j.microc.2021.105945

    23. [23]

      Qin, J. Q.; Cui, S. B.; Yang, X. Q.; Yang, G.; Zhu, Y. S.; Wang, Y. H.; Qiu, D. F. J. Phys. D: Appl. Phys. 2019, 52, 415101. doi: 10.1088/1361-6463/ab3147  doi: 10.1088/1361-6463/ab3147

    24. [24]

      Wang, T.; Wei, X.; Zong, Y. H.; Zhang, S.; Guan, W. S. J. Mater. Chem. C 2020, 8, 12196. doi: 10.1039/d0tc02852e  doi: 10.1039/d0tc02852e

    25. [25]

      Chen, L.; Song, M. X.; Guan, J.; Shu, Y.; Jin, D. Q.; Fan, G. C.; Xu, Q.; Hu, X. Y. Talanta 2021, 225, 122050. doi: 10.1016/j.talanta.2020.122050  doi: 10.1016/j.talanta.2020.122050

    26. [26]

      Park, B.; Kang, S. M.; Lee, G. W.; Kwak, C. H.; Rethinasabapathy, M.; Huh, Y. S. Ind. Eng. Chem. Res. 2019, 59, 793. doi: 10.1021/acs.iecr.9b05946  doi: 10.1021/acs.iecr.9b05946

    27. [27]

      Sun, Y. F.; Nguyen, T. N.; Anderson, A.; Cheng, X.; Gage, T. E.; Lim, J.; Zhang, Z.; Zhou, H.; Rodolakis, F.; Zhang, Z. ACS Appl. Mater. Interfaces 2020, 12, 24564. doi: 10.1021/acsami.0c02826  doi: 10.1021/acsami.0c02826

    28. [28]

      Thomas, J.; Anitha, P.; Thomas, T.; Thomas, N. Microchem. J. 2021, 168, 106443. doi: 10.1016/j.microc.2021.106443  doi: 10.1016/j.microc.2021.106443

    29. [29]

      Zhang, Z. H.; Zhang, S. D.; Jiang, C. J.; Guo, H. C.; Qu, F. D.; Shimakawa, Y. C.; Yang, M. H. J. Hazard. Mater. 2021, 413, 125380. doi: 10.1016/j.jhazmat.2021.125380  doi: 10.1016/j.jhazmat.2021.125380

    30. [30]

      Chen, M. Z.; An, J.; Hu, Y. Q.; Chen, R. B.; Lyu, Y.; Hu, N.; Luo, M. F.; Yuan, M. D.; Liu, Y. F. Sensor. Actuat. B: Chem. 2020, 325, 128809. doi: 10.1016/j.snb.2020.128809  doi: 10.1016/j.snb.2020.128809

    31. [31]

      Li, F.; Feng, Y.; Huang, Y.; Yao, Q.; Huang, G.; Zhu, Y.; Chen, X. Microchim. Acta 2021, 188, 2. doi: 10.1007/s00604-020-04653-5  doi: 10.1007/s00604-020-04653-5

    32. [32]

      Wang, L.; Li, J.; Feng, M. J.; Min, L. F.; Yang, J.; Yu, S. H.; Zhang, Y. C.; Hu, X. Y.; Yang, Z. J. Biosens. Bioelectron. 2017, 96, 220. doi: 10.1016/j.bios.2017.05.004  doi: 10.1016/j.bios.2017.05.004

    33. [33]

      Kim, C.; Pilania, G.; Ramprasad, R. J. Phys. Chem. C 2016, 120, 14575. doi: 10.1021/acs.jpcc.6b05068  doi: 10.1021/acs.jpcc.6b05068

    34. [34]

      Wang, X. Y.; Tian, H.; Li, X.; Sang, H.; Zhong, C. G.; Liu, J. M.; Yang, Y. R. Phys. Chem. Chem. Phys. 2021, 23, 3479. doi: 10.1039/D0CP05892K  doi: 10.1039/D0CP05892K

    35. [35]

      Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. Energy Environ. Sci. 2020, 13, 1408. doi: 10.1039/D0EE00092B  doi: 10.1039/D0EE00092B

    36. [36]

      Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Mater. Today 2014, 17, 16. doi: 10.1016/j.mattod.2013.12.002  doi: 10.1016/j.mattod.2013.12.002

    37. [37]

      Zhang, X. L.; Zhao, D.; Liu, X.; Bai, R. C.; Ma, X.; Fu, M.; Zhang, B. B.; Zha, G. Q. J. Phys. Chem. Lett. 2021, 12, 8685. doi: 10.1021/acs.jpclett.1c02606  doi: 10.1021/acs.jpclett.1c02606

    38. [38]

      Alsalloum, A. Y.; Turedi, B.; Zheng, X.; Mitra, S.; Zhumekenov, A. A.; Lee, K. J.; Maity, P.; Gereige, I.; AlSaggaf, A.; Roqan, I. S.; et al. ACS Energy Lett. 2020, 5, 657. doi: 10.1021/acsenergylett.9b02787  doi: 10.1021/acsenergylett.9b02787

    39. [39]

      Li, F. C.; Zhou, S. J.; Yuan, J. Y.; Qin, C. C.; Yang, Y. G.; Shi, J. W.; Ling, X. F.; Li, Y. Y.; Ma, W. L. ACS Energy Lett. 2019, 4, 2571. doi: 10.1021/acsenergylett.9b01920  doi: 10.1021/acsenergylett.9b01920

    40. [40]

      Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 8094. doi: 10.1021/ja5033259  doi: 10.1021/ja5033259

    41. [41]

      Murtaza, G.; Ahmad, I.; Maqbool, M.; Aliabad, H. R.; Afaq, A. Chin. Phys. Lett. 2011, 28, 117803. doi: 10.1088/0256-307X/28/11/117803  doi: 10.1088/0256-307X/28/11/117803

    42. [42]

      Gong, M. G.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Z. ACS Nano 2019, 13, 1772. doi: 10.1021/acsnano.8b07850  doi: 10.1021/acsnano.8b07850

    43. [43]

      Seth, S.; Mondal, N.; Patra, S.; Samanta, A. J. Phys. Chem. Lett. 2016, 7, 266. doi: 10.1021/acs.jpclett.5b02639  doi: 10.1021/acs.jpclett.5b02639

    44. [44]

      Behara, S.; Poonawala, T.; Thomas, T. J. Comp. Mater. Sci. 2021, 188, 110191. doi: 10.1016/j.commatsci.2020.110191  doi: 10.1016/j.commatsci.2020.110191

    45. [45]

      Chen, J. Y.; He, Z. G.; Li, G. Y.; An, T. C.; Shi, H. X.; Li, Y. Z. Appl. Catal. B: Environ. 2017, 209, 146. doi: 10.1016/j.apcatb.2017.02.066  doi: 10.1016/j.apcatb.2017.02.066

    46. [46]

      Ahmed, I.; Shi, L.; Pasanen, H.; Vivo, P.; Maity, P.; Hatamvand, M.; Zhan, Y. Q. Light Sci. Appl. 2021, 10, 174. doi: 10.1038/s41377-021-00609-3  doi: 10.1038/s41377-021-00609-3

    47. [47]

      Zhao, J. J.; Kong, G. L.; Chen, S. L.; Li, Q.; Huang, B. Y.; Liu, Z. H.; San, X. Y.; Wang, Y. J.; Wang, C.; Zhen, Y. C.; et al. Sci. Bull. 2017, 62, 1173. doi: 10.1016/j.scib.2017.08.022  doi: 10.1016/j.scib.2017.08.022

    48. [48]

      Yang, B.; Mao, X.; Hong, F.; Meng, W. W.; Tang, Y. X.; Xia, X. S.; Yang, S. Q.; Deng, W. Q.; Han, K. L. J. Am. Chem. Soc. 2018, 140, 17001. doi: 10.1021/jacs.8b07424  doi: 10.1021/jacs.8b07424

    49. [49]

      Bi, E. B.; Chen, H.; Xie, F. X.; Wu, Y. Z.; Chen, W.; Su, Y. J.; Islam, A.; Grätzel, M.; Yang, X. D.; Han, L. Y. Nat. Commun. 2017, 8, 15330. doi: 10.1038/ncomms15330  doi: 10.1038/ncomms15330

    50. [50]

      Wang, H. L.; Chen, Y.; Lim, E.; Wang, X. D.; Yuan, S. J.; Zhang, X.; Lu, H. Z.; Wang, J.; Wu, G. J.; Lin, T. J. Mater. Chem. C 2018, 6, 12714. doi: 10.1039/C8TC04691C  doi: 10.1039/C8TC04691C

    51. [51]

      Liu, F. C.; Liu, K.; Rafique, S.; Xu, Z. Y.; Niu, W. Q.; Li, X. G.; Wang, Y. F.; Deng, L. L.; Wang, J.; Yue, X. F.; et al. Adv. Sci. 2022, 2205879. doi: 10.1002/advs.202205879  doi: 10.1002/advs.202205879

    52. [52]

      Zhao, Y.; Xu, Y.; Shi, L.; Fan, Y. Anal. Chem. 2021, 93, 11033. doi: 10.1021/acs.analchem.1c02425  doi: 10.1021/acs.analchem.1c02425

    53. [53]

      Kumawat, N. K.; Tress, W.; Gao, F. Nat. Commun. 2021, 12, 4899. doi: 10.1038/s41467-021-25016-5  doi: 10.1038/s41467-021-25016-5

    54. [54]

      Hao, L. S.; Zhou, M.; Song, Y. B.; Ma, X. X.; Wu, J.; Zhu, Q. Z.; Fu, Z. G.; Liu, Y. H.; Hou, G. Y.; Li, T. Sol. Energy 2021, 230, 345. doi: 10.1016/j.solener.2021.09.091  doi: 10.1016/j.solener.2021.09.091

    55. [55]

      Daboczi, M.; Ratnasingham, S. R.; Mohan, L.; Pu, C. F.; Hamilton, I.; Chin, Y. C.; McLachlan, M. A.; Kim, J. S. ACS Energy Lett. 2021, 6, 3970. doi: 10.1021/acsenergylett.1c02044  doi: 10.1021/acsenergylett.1c02044

    56. [56]

      Wang, B.; Li, H.; Dai, Q. Q.; Zhang, M.; Zou, Z. G.; Brédas, J. L.; Lin, Z. Q. Angew. Chem. 2021, 133, 17805. doi: 10.1002/ange.202105512  doi: 10.1002/ange.202105512

    57. [57]

      Zhao, X. S.; Dong, J.; Wu, D. F.; Zhou, J.; Feng, J. L.; Yao, Y. Q.; Xu, C. Y.; Zheng, S. H.; Tang, X. S.; Song, Q. L. J. Phys. Chem. C 2021, 125, 11524. doi: 10.1021/acs.jpcc.1c00554  doi: 10.1021/acs.jpcc.1c00554

    58. [58]

      Huang, Q. Q.; Yang, S. M.; Feng, S. W.; Zhen, H. Y.; Lin, Z. H.; Ling, Q. D. J. Phys. Chem. Lett. 2021, 12, 1040. doi: 10.1021/acs.jpclett.0c03538  doi: 10.1021/acs.jpclett.0c03538

    59. [59]

      Zhao, Q.; Hazarika, A.; Chen, X. H.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C. X.; Shaw, L.; et al. Nat. Commun. 2019, 10, 2842. doi: 10.1038/s41467-019-10856-z  doi: 10.1038/s41467-019-10856-z

    60. [60]

      Liu, X. M.; Ren, S. X.; Li, Z. H.; Guo, J. J.; Yi, S. H.; Yang, Z.; Hao, W. Z.; Li, R.; Zhao, J. J. Adv. Funct. Mater. 2022, 32, 2202951. doi: 10.1002/adfm.202202951  doi: 10.1002/adfm.202202951

    61. [61]

      Zhao, J. J.; Wei, L. Y.; Jia, C. M.; Tang, H.; Su, X.; Ou, Y.; Liu, Z. H.; Wang, C.; Zhao, X. Y.; Jin, H. Y.; et al. J. Mater. Chem. A 2018, 6, 20224. doi: 10.1039/C8TA05282D  doi: 10.1039/C8TA05282D

    62. [62]

      Pan, W. C.; Yang, B.; Niu, G. D.; Xue, K. H.; Du, X. Y.; Yin, L. X.; Zhang, M. Y.; Wu, H. D.; Miao, X. S.; Tang, J. Adv. Mater. 2019, 31, 1904405. doi: 10.1002/adma.201904405  doi: 10.1002/adma.201904405

    63. [63]

      Tuchinda, W.; Amratisha, K.; Naikaew, A.; Pansa-Ngat, P.; Srathongsian, L.; Wattanathana, W.; Thant, K. K. S.; Supruangnet, R.; Nakajima, H.; Ruankham, P.; et al. Sol. Energy 2022, 244, 65. doi: 10.1016/j.solener.2022.07.049  doi: 10.1016/j.solener.2022.07.049

    64. [64]

      Gkini, K.; Martinaiou, I.; Botzakaki, M.; Tsipas, P.; Theofylaktos, L.; Dimoulas, A.; Katsaros, F.; Stergiopoulos, T.; Krontiras, C.; Georga, S.; et al. Mater. Today Commun. 2022, 32, 103899. doi: 10.1016/j.mtcomm.2022.103899  doi: 10.1016/j.mtcomm.2022.103899

    65. [65]

      Nie, Z. Q.; Huang, L.; Ren, C. W.; Xiong, X. L.; Zhu, W. Q.; Yang, W. G.; Wang, L. J. Mater. Chem. Phys. 2022, 275, 125281. doi: 10.1016/j.matchemphys.2021.125281  doi: 10.1016/j.matchemphys.2021.125281

    66. [66]

      Solari, S. F.; Poon, L. N.; Wörle, M.; Krumeich, F.; Li, Y. T.; Chiu, Y. C.; Shih, C. J. J. Am. Chem. Soc. 2022, 144, 5864. doi: 10.1021/jacs.1c12294  doi: 10.1021/jacs.1c12294

    67. [67]

      Zhang, Z.; Gu, S. Q.; Ding, Y. p.; Jin, J. D. Anal. Chim. Acta 2012, 745, 112. doi: 10.1016/j.aca.2012.07.039  doi: 10.1016/j.aca.2012.07.039

    68. [68]

      Sivakumar, M.; Pandi, K.; Chen, S. M.; Cheng, Y. H.; Sakthivel, M. New J. Chem. 2017, 41, 11201. doi: 10.1039/C7NJ02156A  doi: 10.1039/C7NJ02156A

    69. [69]

      Atta, N. F.; Ali, S. M.; El-Ads, E. H.; Galal, A. Electrochim. Acta 2014, 128, 16. doi: 10.1016/j.electacta.2013.09.101  doi: 10.1016/j.electacta.2013.09.101

    70. [70]

      Shashank, M.; Naik, H. B.; Sumedha, H.; Nagaraju, G.; Viswanath, R. Mater. Chem. Phys. 2022, 282, 125990. doi: 10.1016/j.matchemphys.2022.125990  doi: 10.1016/j.matchemphys.2022.125990

    71. [71]

      He, J.; Sunarso, J.; Zhu, Y. L.; Zhong, Y. J.; Miao, J.; Zhou, W.; Shao, Z. P. Sensor. Actuat. B: Chem. 2017, 244, 482. doi: 10.1016/j.snb.2017.01.012  doi: 10.1016/j.snb.2017.01.012

    72. [72]

      Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; et al. Energy Environ. Sci. 2014, 7, 3061. doi: 10.1039/C4EE01076K  doi: 10.1039/C4EE01076K

    73. [73]

      Wang, N.; Zhou, Y. Y.; Ju, M. G.; Garces, H. F.; Ding, T.; Pang, S.; Zeng, X. C.; Padture, N. P.; Sun, X. W. Adv. Energy Mater. 2016, 6, 1601130. doi: 10.1002/aenm.201601130  doi: 10.1002/aenm.201601130

    74. [74]

      Lyu, M. Q.; Yun, J. H.; Chen, P.; Hao, M. M.; Wang, L. Z. Adv. Energy Mater. 2017, 7, 1602512. doi: 10.1002/aenm.201602512  doi: 10.1002/aenm.201602512

    75. [75]

      Li, M. L.; Tian, T.; Zeng, Y. J.; Zhu, S.; Li, C.; Yin, Y. M.; Li, G. X. Sensor. Actuat. B: Chem. 2021, 338, 129839. doi: 10.1016/j.snb.2021.129839  doi: 10.1016/j.snb.2021.129839

    76. [76]

      Luo, F.; Li, S. Q.; Cui, L. M.; Zu, Y. X.; Chen, Y. T.; Huang, D.; Weng, Z. Q.; Lin, Z. Y. Nanoscale 2021, 13, 14297. doi: 10.1039/D1NR02248B  doi: 10.1039/D1NR02248B

    77. [77]

      Yan, Q. B.; Bao, N.; Ding, S. N. J. Mater. Chem. B 2019, 7, 4153. doi: 10.1039/C9TB00568D  doi: 10.1039/C9TB00568D

    78. [78]

      Lu, L. Q.; Ma, M. Y.; Tan, T.; Tian, X. K.; Zhou, Z. X.; Yang, C.; Li, Y. Sensor. Actuat. B: Chem. 2018, 270, 291. doi: 10.1016/j.snb.2018.05.038  doi: 10.1016/j.snb.2018.05.038

    79. [79]

      Debnath, T.; Kim, E. K.; Lee, K. G.; Nath, N. C. D. Adv. Energy Sustain. Res. 2020, 1, 2000028. doi: 10.1002/aesr.202000028  doi: 10.1002/aesr.202000028

    80. [80]

      He, C. L.; Meng, Z. Q.; Ren, S. X.; Li, J.; Wang, Y.; Hao, W.; Bu, H.; Zhang, Y.; Hao, W.-Z.; Chen, S. L.; et al. Rare Met. 2023. doi: 10.1007/s12598-022-02222-8  doi: 10.1007/s12598-022-02222-8

    81. [81]

      Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G.; et al. Nature 2018, 561, 88. doi: 10.1038/s41586-018-0451-1  doi: 10.1038/s41586-018-0451-1

    82. [82]

      Long, Z.; Wang, Y.; Fu, Q.; Ouyang, J.; He, L. X.; Na, N. Nanoscale 2019, 11, 11093. doi: 10.1039/C9NR03647D  doi: 10.1039/C9NR03647D

    83. [83]

      Ruan, Y. F.; Zhang, N.; Zhu, Y. C.; Zhao, W. W.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2017, 89, 7869. doi: 10.1021/acs.analchem.6b05153  doi: 10.1021/acs.analchem.6b05153

    84. [84]

      Zhu, Y. S.; Tong, X. L.; Song, H. Z.; Wang, Y. H.; Qiao, Z. P.; Qiu, D. F.; Huang, J. S.; Lu, Z. W. Dalton Trans. 2018, 47, 10057. doi: 10.1039/C8DT01790E  doi: 10.1039/C8DT01790E

    85. [85]

      Kim, H. R.; Bong, J. H.; Park, J. H.; Song, Z. Q.; Kang, M. J.; Son, D. H.; Pyun, J. C. ACS Appl. Mater. Interfaces 2021, 13, 29392. doi: 10.1021/acsami.1c08128  doi: 10.1021/acsami.1c08128

    86. [86]

      Yang, X. Y.; Gao, Y.; Ji, Z. P.; Zhu, L. B.; Yang, C.; Zhao, Y.; Shu, Y.; Jin, D. Q.; Xu, Q.; Zhao, W. W. Anal. Chem. 2019, 91, 9356. doi: 10.1021/acs.analchem.9b01739  doi: 10.1021/acs.analchem.9b01739

    87. [87]

      Pang, X. H.; Qi, J. N.; Zhang, Y.; Ren, Y. Y.; Su, M. H.; Jia, B. X.; Wang, Y. G.; Wei, Q.; Du, B. Biosens. Bioelectron. 2016, 85, 142. doi: 10.1016/j.bios.2016.04.099  doi: 10.1016/j.bios.2016.04.099

    88. [88]

      Ding, J.; Zhou, Y. L.; Wang, Q.; Ai, S. Y. Biosens. Bioelectron. 2021, 194, 113580. doi: 10.1016/j.bios.2021.113580  doi: 10.1016/j.bios.2021.113580

    89. [89]

      Ge, L.; Xu, Y. H.; Ding, L. J.; You, F. H.; Liu, Q.; Wang, K. Biosens. Bioelectron. 2019, 124125, 33. doi: 10.1016/j.bios.2018.09.093  doi: 10.1016/j.bios.2018.09.093

    90. [90]

      Chen, Z. L.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X. P.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F.; Bakr, O. M. ACS Energy Lett. 2019, 4, 1258. doi: 10.1021/acsenergylett.9b00847  doi: 10.1021/acsenergylett.9b00847

    91. [91]

      Wu, Y. Z.; Xie, F. X.; Chen, H.; Yang, X. D.; Su, H. M.; Cai, M. L.; Zhou, Z. M.; Noda, T. S.; Han, L. Y. Adv. Mater. 2017, 29, 1701073. doi: 10.1002/adma.201701073  doi: 10.1002/adma.201701073

    92. [92]

      Wang, F. Y.; Yang, M. F.; Zhang, Y. H.; Du, J. Y.; Yang, S.; Yang, L. L.; Fan, L.; Sui, Y. R.; Sun, Y. F.; Yang, J. H. Nano Res. 2021, 14, 2783. doi: 10.1007/s12274-021-3286-2  doi: 10.1007/s12274-021-3286-2

    93. [93]

      Guo, E.; Yin, L. W. J. Mater. Chem. A 2015, 3, 13390. doi: 10.1039/C5TA02556G  doi: 10.1039/C5TA02556G

    94. [94]

      Okamoto, Y.; Suzuki, Y. J. Ceram. Soc. Jpn. 2015, 123, 967. doi: 10.2109/jcersj2.123.967  doi: 10.2109/jcersj2.123.967

    95. [95]

      Gholamrezaei, S.; Salavati-Niasari, M. J. Mol. Liq. 2017, 243, 227. doi: 10.1016/j.molliq.2017.08.031  doi: 10.1016/j.molliq.2017.08.031

    96. [96]

      Zhang, X. S.; Jin, Z. W.; Zhang, J. R.; Bai, D. L.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. Z.; Liu, F. ACS Appl. Mater. Interfaces 2018, 10, 7145. doi: 10.1021/acsami.7b18902  doi: 10.1021/acsami.7b18902

    97. [97]

      Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Nat. Commun. 2018, 9, 2225. doi: 10.1038/s41467-018-04636-4  doi: 10.1038/s41467-018-04636-4

    98. [98]

      Li, H.; Tong, G. Q.; Chen, T. T.; Zhu, H. W.; Li, G. P.; Chang, Y. J.; Wang, L.; Jiang, Y. J. Mater. Chem. A 2018, 6, 14255. doi: 10.1039/C8TA03811B  doi: 10.1039/C8TA03811B

    99. [99]

      An, J.; Chen, M. Z.; Liu, G. Y.; Hu, Y. Q.; Chen, R. B.; Lyu, Y.; Sharma, S.; Liu, Y. F. Anal. Bioanal. Chem. 2021, 413, 1739. doi: 10.1007/s00216-020-03144-z  doi: 10.1007/s00216-020-03144-z

    100. [100]

      Wang, W.; Deng, P. Y.; Liu, X. Q.; Ma, Y. Q.; Yan, Y. S. Microchem. J. 2021, 162, 105876. doi: 10.1016/j.microc.2020.105876  doi: 10.1016/j.microc.2020.105876

    101. [101]

      Xiang, X. X.; Ouyang, H.; Li, J. Z.; Fu, Z. F. Sensor. Actuat. B: Chem. 2021, 346, 130547. doi: 10.1016/j.snb.2021.130547  doi: 10.1016/j.snb.2021.130547

    102. [102]

      Tan, X. H.; Huang, G. B.; Cai, Z. X.; Li, F. M.; Zhou, Y. M.; Zhang, M. S. J. Anal. Test. 2021, 5, 40. doi: 10.1007/s41664-021-00164-1  doi: 10.1007/s41664-021-00164-1

    103. [103]

      Huang, S. Y.; Guo, M. L.; Tan, J. A.; Geng, Y. Y.; Wu, J. Y.; Tang, Y. W.; Su, C. C.; Lin, C. C.; Liang, Y. ACS Appl. Mater. Interfaces 2018, 10, 39056. doi: 10.1021/acsami.8b14472  doi: 10.1021/acsami.8b14472

    104. [104]

      Chen, L. Y.; Yang, J.; Chen, W.; Sun, S. G.; Tang, H.; Li, Y. C. Sensor. Actuat. B: Chem. 2020, 321, 128642. doi: 10.1016/j.snb.2020.128642  doi: 10.1016/j.snb.2020.128642

    105. [105]

      Anancia Grace, A.; Dharuman, V.; Hahn, J. H. J. Alloys Compd. 2021, 886, 161256. doi: 10.1016/j.jallcom.2021.161256  doi: 10.1016/j.jallcom.2021.161256

    106. [106]

      Atta, N. F.; El-Ads, E. H.; Galal, A.; Galal, A. E. Electroanalysis 2019, 31, 448. doi: 10.1002/elan.201800577  doi: 10.1002/elan.201800577

    107. [107]

      Atta, N. F.; Galal, A.; Ekram, H. E.-A. J. Electroanal. Chem. 2019, 852, 113523. doi: 10.1016/j.jelechem.2019.113523  doi: 10.1016/j.jelechem.2019.113523

    108. [108]

      Caglar, B.; İçer, F.; Özdokur, K. V.; Caglar, S.; Özdemir, A. O.; Guner, E. K.; Beşer, B. M.; Altay, A.; Çırak, Ç.; Doğan, B.; et al. Mater. Chem. Phys. 2021, 262, 124287. doi: 10.1016/j.matchemphys.2021.124287  doi: 10.1016/j.matchemphys.2021.124287

    109. [109]

      Wang, Y. L.; Luo, L. Q.; Ding, Y. P.; Zhang, X.; Xu, Y. H.; Liu, X. J. Electroanal. Chem. 2012, 667, 54. doi: 10.1016/j.jelechem.2011.12.021  doi: 10.1016/j.jelechem.2011.12.021

    110. [110]

      Tamilalagan, E.; Muthumariappan, A.; Chen, T. W.; Chen, S. M.; Maheshwaran, S.; Huang, P. J. J. Electrochem. Soc. 2021, 168, 086501. doi: 10.1149/1945-7111/ac1972  doi: 10.1149/1945-7111/ac1972

    111. [111]

      Jia, F. F.; Zhong, H.; Zhang, W. G.; Li, X. R.; Wang, G. Y.; Song, J.; Cheng, Z. P.; Yin, J. Z.; Guo, L. P. Sensor. Actuat. B: Chem. 2015, 212, 174. doi: 10.1016/j.snb.2015.02.011  doi: 10.1016/j.snb.2015.02.011

    112. [112]

      Dai, H.; Zhong, Y. H.; Wu, X. Y.; Hu, R. X.; Wang, L.; Zhang, Y. C.; Fan, G. K.; Hu, X. Y.; Li, J.; Yang, Z. J. J. Electroanal. Chem. 2018, 810, 95. doi: 10.1016/j.jelechem.2017.12.077  doi: 10.1016/j.jelechem.2017.12.077

    113. [113]

      Wang, Y. Z.; Zhong, H.; Li, X. M.; Jia, F. F.; Shi, Y. X.; Zhang, W. G.; Cheng, Z. P.; Zhang, L. L.; Wang, J. K. Biosens. Bioelectron. 2013, 48, 56. doi: 10.1016/j.bios.2013.03.081  doi: 10.1016/j.bios.2013.03.081

    114. [114]

      Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Analyst 2012, 137, 49. doi: 10.1039/C1AN15738H  doi: 10.1039/C1AN15738H

    115. [115]

      Durai, L.; Badhulika, S. Sensor. Actuat. B: Chem. 2020, 325, 128792. doi: 10.1016/j.snb.2020.128792  doi: 10.1016/j.snb.2020.128792

    116. [116]

      Zhu, S. C.; Yang, Y.; Chen, K. X.; Su, Z. L.; Wang, J. J.; Li, S. J.; Song, N. N.; Luo, S. P.; Xie, A. J. J. Alloys Compd. 2022, 903, 163946. doi: 10.1016/j.jallcom.2022.163946  doi: 10.1016/j.jallcom.2022.163946

    117. [117]

      Thomas, J.; P. K, A.; Thomas, T.; Thomas, N. Sensor. Actuat. B: Chem. 2021, 332, 129362. doi: 10.1016/j.snb.2020.129362  doi: 10.1016/j.snb.2020.129362

    118. [118]

      Atta, N. F.; Ali, S. M.; El-Ads, E. H.; Galal, A. J. Electrochem. Soc. 2013, 160, G3144. doi: 10.1149/2.022307jes  doi: 10.1149/2.022307jes

    119. [119]

      Weng, Z. H.; Qin, J. J.; Umar, A. A.; Wang, J.; Zhang, X.; Wang, H. L.; Cui, X. L.; Li, X. G.; Zheng, L. R.; Zhan, Y. Q. Adv. Funct. Mater. 2019, 29, 1902234. doi: 10.1002/adfm.201902234  doi: 10.1002/adfm.201902234

    120. [120]

      Wu, Z. L.; Yang, J.; Sun, X.; Wu, Y. J.; Wang, L.; Meng, G.; Kuang, D. L.; Guo, X. Z.; Qu, W. J.; Du, B. S.; et al. Sensor. Actuat. B: Chem. 2021, 337, 129772. doi: 10.1016/j.snb.2021.129772  doi: 10.1016/j.snb.2021.129772

    121. [121]

      Hakami, J.; Abassi, A.; Dhibi, A. Opt. Quant. Electron. 2021, 53, 164. doi: 10.1007/s11082-021-02822-1  doi: 10.1007/s11082-021-02822-1

    122. [122]

      Chen, T.; Zhou, Z. L.; Wang, Y. D. Sensor. Actuat. B: Chem. 2009, 143, 124. doi: 10.1016/j.snb.2009.09.031  doi: 10.1016/j.snb.2009.09.031

    123. [123]

      Tomoda, M.; Okano, S.; Itagaki, Y.; Aono, H.; Sadaoka, Y. Sensor. Actuat. B: Chem. 2004, 97, 190. doi: 10.1016/j.snb.2003.08.013  doi: 10.1016/j.snb.2003.08.013

    124. [124]

      Jayanthi, G.; Sumathi, S.; Andal, V. Mater. Today Proc. 2022, 55, 201. doi: 10.1016/j.matpr.2021.06.147  doi: 10.1016/j.matpr.2021.06.147

    125. [125]

      Wang, W. H.; Wang, Q. Q.; Xie, H. Z.; Wu, D. Z.; Gan, N. Talanta 2021, 222, 121456. doi: 10.1016/j.talanta.2020.121456  doi: 10.1016/j.talanta.2020.121456

    126. [126]

      Gaiardo, A.; Zonta, G.; Gherardi, S.; Malagu, C.; Fabbri, B.; Valt, M.; Vanzetti, L.; Landini, N.; Casotti, D.; Cruciani, G.; et al. Sensors-Basel 2020, 20, 5910. doi: 10.3390/s20205910  doi: 10.3390/s20205910

    127. [127]

      Untereiner, A. A.; Pavlidou, A.; Druzhyna, N.; Papapetropoulos, A.; Hellmich, M. R.; Szabo, C. Biochem. Pharmacol. 2018, 149, 174. doi: 10.1016/j.bcp.2017.10.007  doi: 10.1016/j.bcp.2017.10.007

    128. [128]

      Jiao, Y. N.; Qin, S. J.; Li, B.; Hao, W. Z.; Wang, Y.; Li, H.; Yang, Z. P.; Dong, D. J.; Li, X. Y.; Zhao, J. J. Adv. Electron. Mater. 2022, 8, 2200415. doi: 10.1002/aelm.202200415  doi: 10.1002/aelm.202200415

    129. [129]

      Liu, A.; Zhu, H. H.; Bai, S.; Reo, Y. J.; Zou, T. Y.; Kim, M. G.; Noh, Y. Y. Nat. Electron. 2022, 5, 78. doi: 10.1038/s41928-022-00712-2  doi: 10.1038/s41928-022-00712-2

    130. [130]

      Cao, J.; Yan, F. Energy Environ. Sci. 2021, 14, 1286. doi: 10.1039/D0EE04007J  doi: 10.1039/D0EE04007J

    131. [131]

      Yu, S. H.; Xu, J.; Shang, X. Y.; Ma, E.; Lin, F. L.; Zheng, W.; Tu, D. T.; Li, R. F.; Chen, X. Y. Adv. Sci. 2021, 8, 2100084. doi: 10.1002/advs.202100084  doi: 10.1002/advs.202100084

    132. [132]

      Zhang, K.; Zhao, J.; Hu, Q. S.; Yang, S. J.; Zhu, X. X.; Zhang, Y. Q.; Huang, R. Q.; Ma, Y. F.; Wang, Z. X.; Ouyang, Z. W.; et al. Adv. Mater. 2021, 33, 2008225. doi: 10.1002/adma.202008225  doi: 10.1002/adma.202008225

    133. [133]

      Wang, B. N.; Li, N.; Yang, L.; Dall'Agnese, C. X.; Jena, A. K.; Miyasaka, T.; Wang, X. F. J. Am. Chem. Soc. 2021, 143, 14877. doi: 10.1021/jacs.1c07200  doi: 10.1021/jacs.1c07200

    134. [134]

      Hou, F. H.; Li, Y. C.; Yan, L. L.; Shi, B.; Ren, N. Y.; Wang, P. Y.; Zhang, D. K.; Ren, H. Z.; Ding, Y.; Huang, Q.; et al. Sol. RRL 2021, 5, 2100357. doi: 10.1002/solr.202100357  doi: 10.1002/solr.202100357

    135. [135]

      Agha, D. N. Q.; Algwari, Q. T. Coll. Basic Educ. Res. J. 2022, 18, 1127. doi: 10.33899/berj.2022.174577  doi: 10.33899/berj.2022.174577

    136. [136]

      Luo, J. Q.; Zhang, W. W.; Yang, H. B.; Fan, Q. W.; Xiong, F. Q.; Liu, S. J.; Li, D. S.; Liu, B. EcoMat 2021, 3, e12079. doi: 10.1002/eom2.12079  doi: 10.1002/eom2.12079

    137. [137]

      Kim, H.-J.; Oh, H.; Kim, T.; Kim, D.; Park, M. ACS Appl. Nano Mater. 2022, 5, 1308. doi: 10.1021/acsanm.1c03875  doi: 10.1021/acsanm.1c03875

    138. [138]

      Guo, X.; Huang, X. P.; Su, J.; Lin, Z. H.; Ma, J.; Chang, J. J.; Hao, Y. Chem. Eng. J. 2021, 417, 129184. doi: 10.1016/j.cej.2021.129184  doi: 10.1016/j.cej.2021.129184

    139. [139]

      Hong, X. T.; Huang, Y. L.; Tian, Q. L.; Zhang, S.; Liu, C.; Wang, L. M.; Zhang, K.; Sun, J.; Liao, L.; Zou, X. M. Adv. Sci. 2022, 9, 2202019. doi: 10.1002/advs.202202019  doi: 10.1002/advs.202202019

    140. [140]

      Yang, S.; Zhang, X. D.; Cao, A.; Luo, W. Y.; Zhang, G. L.; Peng, B.; Zhao, J. J. J. Cent. South Univ. 2021, 28, 3694. doi: 10.1007/s11771-021-4887-3  doi: 10.1007/s11771-021-4887-3

    141. [141]

      Zhao, J. J.; Hua, Z. L.; Liu, Z. C.; Li, Y. S.; Guo, L. M.; Bu, W. B.; Cui, X. Z.; Ruan, M. L.; Chen, H. R.; Shi, J. L. Chem. Commun. 2009, 7578. doi: 10.1039/B913920F  doi: 10.1039/B913920F

    142. [142]

      Seeker, L. A.; Williams, A. Acta Neuropathol. 2021, 143, 143. doi: 10.1007/s00401-021-02390-4  doi: 10.1007/s00401-021-02390-4

    143. [143]

      Kumar, V.; Kumar, P.; Pournara, A.; Vellingiri, K.; Kim, K. H. Trac. Trend. Anal. Chem. 2018, 106, 84. doi: 10.1016/j.trac.2018.07.003  doi: 10.1016/j.trac.2018.07.003

    144. [144]

      Ali, M.; Gilani, S. O.; Waris, A.; Zafar, K.; Jamil, M. IEEE Access 2020, 8, 153589. doi: 10.1109/ACCESS.2020.301816  doi: 10.1109/ACCESS.2020.301816

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(12)
  • Abstract views(614)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return