Citation: Zhenzhong Liu, Siwen Wan, Yang Wu, Boyan Wang, Hongliang Ji. Highly Efficient Degradation of Sulfamethoxazole Using Activating Peracetic Acid with CoFe2O4/CuO[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221101. doi: 10.3866/PKU.WHXB202211019 shu

Highly Efficient Degradation of Sulfamethoxazole Using Activating Peracetic Acid with CoFe2O4/CuO

  • Corresponding author: Zhenzhong Liu, liuzz79@126.com
  • Received Date: 12 November 2022
    Revised Date: 13 December 2022
    Accepted Date: 14 December 2022
    Available Online: 23 December 2022

  • Advanced oxidation processes (AOPs), especially AOPs that use transition metals as catalyst activated oxidants, are extremely effective in removing organic pollutants; they can completely degrade pollutants into CO2 and H2O. Thus, they have been widely studied in the field of water treatment. However, owing to the low catalytic efficiency and metal leakage, their applicability is currently limited. In this paper, the composite catalyst CoFe2O4/CuO containing spinel cobalt ferrite and copper oxide was successfully prepared by the chemical precipitation and sol-gel methods with two steps. The prepared CoFe2O4/CuO was characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and its ability to remove sulfamethoxazole (SMX) with different AOPs was evaluated. Characterization results show that CoFe2O4 and CuO are well-complexed together, and the catalyst has good crystallinity. The effects of peracetic acid (PAA) concentration, catalyst dosage, common interfering substances (Cl, HCO3, SO42−, and HA) in water, and different radical scavengers on SMX removal were also investigated. The results show that CoFe2O4/CuO has the characteristics of both CoFe2O4 and CuO. Compared with CoFe2O4 or CuO alone, CoFe2O4/CuO exhibits an excellent activation performance for PAA. Under the optimal reaction conditions (catalyst dosage = 20 mg·L−1, c(PAA) = 200 μmol·L−1, c(SMX) = 10 μmol·L−1), the degradation rate of SMX reaches 92% within 90 s. The existence of Cu+/Cu2+ electron pairs can convert Co from the high valence to low valence state and accelerate the conversion of Co2+/Co3+, thereby improving the catalytic performance. An increase in the PAA concentration increases the removal efficiency of SMX; however, too high a concentration lowers removal efficiency. Compared to acidic or alkaline conditions, the CoFe2O4/CuO reaction system exhibits a better removal rate of SMX under neutral conditions. The common interfering substances in the environment have different effects on the CoFe2O4/CuO reaction system. Cl promotes the degradation of SMX by producing Cl•, HCO3 and HA inhibit the removal of SMX because of their quenching effect on free radicals, and SO42− has no significant effect on the progress of the reaction. The XPS characterization results before and after the reaction show that the valence state of Co changes, indicating that Co is the main element involved in the activation of PAA. Radical quenching experiments demonstrate that the organic radical (R―O•) plays a dominant role in the removal of SMX. Further, the removal rate of SMX decreases after the catalyst is subjected to 3 recycle; nevertheless, it achieves a relatively rapid degradation of SMX (85% within 10 min).
  • 加载中
    1. [1]

      Xie, Y.; Wan, J.; Yan, Z.; Wang, Y.; Xiao, T.; Hou, J.; Chen, H. Chem. Eng. J. 2022, 429, 132237. doi: 10.1016/j.cej.2021.132237  doi: 10.1016/j.cej.2021.132237

    2. [2]

      Fu, J.; Feng, L.; Liu, Y.; Zhang, L.; Li, S. Chemosphere 2022, 287, 132094. doi: 10.1016/j.chemosphere.2021.132094  doi: 10.1016/j.chemosphere.2021.132094

    3. [3]

      Zhu, W.; Sun, F.; Goei, R.; Zhou, Y. Appl. Catal. B 2017, 207, 93. doi: 10.1016/j.apcatb.2017.02.012  doi: 10.1016/j.apcatb.2017.02.012

    4. [4]

      Nguyen, T.-B.; Huang, C.; Doong, R.-A.; Chen, C.-W.; Dong, C.-D. Chem. Eng. J. 2020, 384, 123383. doi: 10.1016/j.cej.2019.123383  doi: 10.1016/j.cej.2019.123383

    5. [5]

      Wang, X.; Lu, W.; Zhao, Z.; Zhong, H.; Zhu, Z.; Chen, W. Chem. Eng. J. 2020, 400, 125872. doi: 10.1016/j.cej.2020.125872  doi: 10.1016/j.cej.2020.125872

    6. [6]

      Kim, J.; Du, P.; Liu, W.; Luo, C.; Zhao, H.; Huang, C.-H. Environ. Sci. Technol. 2020, 54, 5268. doi: 10.1021/acs.est.0c00356  doi: 10.1021/acs.est.0c00356

    7. [7]

      Luukkonen, T.; Heyninck, T.; Rämö, J.; Lassi, U. Water Res. 2015, 85, 275. doi: 10.1016/j.watres.2015.08.037  doi: 10.1016/j.watres.2015.08.037

    8. [8]

      Henao, L. D.; Turolla, A.; Antonelli, M. Chemosphere 2018, 213, 25. doi: 10.1016/j.chemosphere.2018.09.005  doi: 10.1016/j.chemosphere.2018.09.005

    9. [9]

      Zhou, X.; Wu, H.; Zhang, L.; Liang, B.; Sun, X.; Chen, J. Molecules 2020, 25, 2725. doi: 10.3390/molecules25122725  doi: 10.3390/molecules25122725

    10. [10]

      Cai, M.; Sun, P.; Zhang, L.; Huang, C.-H. Environ. Sci. Technol. 2017, 51, 14217. doi: 10.1021/acs.est.7b04694  doi: 10.1021/acs.est.7b04694

    11. [11]

      Chen, S.; Cai, M.; Liu, Y.; Zhang, L.; Feng, L. Water Res. 2019, 150, 153. doi: 10.1016/j.watres.2018.11.044  doi: 10.1016/j.watres.2018.11.044

    12. [12]

      Li, W.; Li, Y.; Zhang, D.; Lan, Y.; Guo, J. J. Hazard. Mater. 2020, 381, 121209. doi: 10.1016/j.jhazmat.2019.121209  doi: 10.1016/j.jhazmat.2019.121209

    13. [13]

      Cruz, D. R.; de Jesus, G. K.; Santos, C. A.; Silva, W. R.; Wisniewski, A., Jr.; Cunha, G. C.; Romão, L. P. Chemosphere 2021, 280, 130675. doi: 10.1016/j.chemosphere.2021.130675  doi: 10.1016/j.chemosphere.2021.130675

    14. [14]

      Yu, J.; Qiu, W.; Xu, H.; Lu, X.; Ma, J.; Lu, D. Chem. Eng. J. 2021, 421, 129498. doi: 10.1016/j.cej.2021.129498  doi: 10.1016/j.cej.2021.129498

    15. [15]

      Ding, R.-R.; Li, W.-Q.; He, C.-S.; Wang, Y.-R.; Liu, X.-C.; Zhou, G.-N.; Mu, Y. Appl. Catal. B 2021, 291, 120069. doi: 10.1016/j.apcatb.2021.120069  doi: 10.1016/j.apcatb.2021.120069

    16. [16]

      Hasanvandian, F.; Shokri, A.; Moradi, M.; Kakavandi, B.; Setayesh, S. R. J. Hazard. Mater. 2022, 423, 127090. doi: 10.1016/j.jhazmat.2021.127090  doi: 10.1016/j.jhazmat.2021.127090

    17. [17]

      Xiong, W.-H.; Zhang, W.-C.; Yu, C.-P.; Shen, R.-Q.; Cheng, J.; Ye, J.-H.; Qin, Z.-C. Acta Phys. -Chim. Sin. 2016, 32, 2093.  doi: 10.3866/PKU.WHXB201605121

    18. [18]

      Ren, Y.; Lin, L.; Ma, J.; Yang, J.; Feng, J.; Fan, Z. Appl. Catal. B 2015, 165, 572. doi: 10.1016/j.apcatb.2014.10.051  doi: 10.1016/j.apcatb.2014.10.051

    19. [19]

      Guan, Y.-H.; Ma, J.; Ren, Y.-M.; Liu, Y.-L.; Xiao, J.-Y.; Lin, L.-Q.; Zhang, C. Water Res. 2013, 47, 5431. doi: 10.1016/j.watres.2013.06.023  doi: 10.1016/j.watres.2013.06.023

    20. [20]

      Chen, X.-L.; Li, F.; Zhang, M.; Liu, B.; Chen, H.; Wang, H. Sci. Total Environ. 2021, 777, 145794. doi: 10.1016/j.scitotenv.2021.145794  doi: 10.1016/j.scitotenv.2021.145794

    21. [21]

      Chu, S.; Li, X.; W. Robertson, A.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009023.  doi: 10.3866/PKU.WHXB202009023

    22. [22]

      Wang, M.; Jin, C.; Kang, J.; Liu, J.; Tang, Y.; Li, Z.; Li, S. Chem. Eng. J. 2021, 416, 128118. doi: 10.1016/j.cej.2020.128118  doi: 10.1016/j.cej.2020.128118

    23. [23]

      Kiani, R.; Mirzaei, F.; Ghanbari, F.; Feizi, R.; Mehdipour, F. J. Water Process Eng. 2020, 38, 101623. doi: 10.1016/j.jwpe.2020.101623  doi: 10.1016/j.jwpe.2020.101623

    24. [24]

      Zhou, J.-J.; Ji, W.; Xu, L.; Yang, Y.; Wang, W.; Ding, H.; Xu, X.; Wang, W.; Zhang, P.; Hua, Z. Chem. Eng. J. 2022, 428, 132123. doi: 10.1016/j.cej.2021.132123  doi: 10.1016/j.cej.2021.132123

    25. [25]

      Yu, R.; Zhao, J.; Zhao, Z.; Cui, F. J. Hazard. Mater. 2020, 390, 121998. doi: 10.1016/j.jhazmat.2019.121998  doi: 10.1016/j.jhazmat.2019.121998

    26. [26]

      Lin, J.-Y.; Chen, P.-Y.; Kwon, E.; Da Oh, W.; You, S.; Huang, C.-W.; Ghanbari, F.; Wi-Afedzi, T.; Lin, K.-Y. A. J. Water Process Eng. 2021, 40, 101933. doi: 10.1016/j.jwpe.2021.101933  doi: 10.1016/j.jwpe.2021.101933

    27. [27]

      Li, Y.; Zhu, W.; Guo, Q.; Wang, X.; Zhang, L.; Gao, X.; Luo, Y. Sep. Purif. Technol. 2021, 276. doi: 10.1016/j.seppur.2021.119403  doi: 10.1016/j.seppur.2021.119403

    28. [28]

      Wang, J.; Xiong, B.; Miao, L.; Wang, S.; Xie, P.; Wang, Z.; Ma, J. Appl. Catal. B 2021, 280, 119422. doi: 10.1016/j.apcatb.2020.119422  doi: 10.1016/j.apcatb.2020.119422

    29. [29]

      Zhang, P.; Zhang, X.; Zhao, X.; Jing, G.; Zhou, Z. J. Hazard. Mater. 2022, 424, 127653. doi: 10.1016/j.jhazmat.2021.127653  doi: 10.1016/j.jhazmat.2021.127653

    30. [30]

      Chen, C.; Liu, L.; Guo, J.; Zhou, L.; Lan, Y. Chem. Eng. J. 2019, 361, 1304. doi: 10.1016/j.cej.2018.12.156  doi: 10.1016/j.cej.2018.12.156

    31. [31]

      Li, R.; Manoli, K.; Kim, J.; Feng, M.; Huang, C. H.; Sharma, V. K. Environ. Sci. Technol. 2021, 55, 9150. doi: 10.1021/acs.est.0c06676  doi: 10.1021/acs.est.0c06676

    32. [32]

      Zhang, L.; Chen, J.; Zheng, T.; Xu, Y.; Liu, T.; Yin, W.; Zhang, Y.; Zhou, X. Water Res. 2022, 229, 119462. doi: 10.1016/j.watres.2022.119462  doi: 10.1016/j.watres.2022.119462

    33. [33]

      Kim, J.; Zhang, T.; Liu, W.; Du, P.; Dobson, J. T.; Huang, C.-H. Environ. Sci. Technol. 2019, 53, 13312. doi: 10.1021/acs.est.9b02991  doi: 10.1021/acs.est.9b02991

    34. [34]

      Wu, W.; Tian, D.; Liu, T.; Chen, J.; Huang, T.; Zhou, X.; Zhang, Y. Chem. Eng. J. 2020, 394, 124938. doi: 10.1016/j.cej.2020.124938  doi: 10.1016/j.cej.2020.124938

    35. [35]

      Dong, J.; Xu, W.; Liu, S.; Gong, Y.; Yang, T.; Du, L.; Chen, Q.; Tan, X.; Liu, Y. Chem. Eng. J. 2022, 430, 132868. doi: 10.1016/j.cej.2021.132868  doi: 10.1016/j.cej.2021.132868

    36. [36]

      Liu, Y.; He, X.; Duan, X.; Fu, Y.; Dionysiou, D. D. Chem. Eng. J. 2015, 276, 113. doi: 10.1016/j.cej.2015.04.048  doi: 10.1016/j.cej.2015.04.048

    37. [37]

      Hu, J.; Li, T.; Zhang, X.; Ren, H.; Huang, H. Chemosphere 2022, 287, 132261. doi: 10.1016/j.chemosphere.2021.132261  doi: 10.1016/j.chemosphere.2021.132261

    38. [38]

      Wang, L.; Yan, T.; Tang, R.; Ping, Q.; Li, Y.; Wang, J. Water Res. 2021, 205, 117684. doi: 10.1016/j.watres.2021.117684  doi: 10.1016/j.watres.2021.117684

    39. [39]

      Zhang, L.; Fu, Y.; Wang, Z.; Zhou, G.; Zhou, R.; Liu, Y. Sep. Purif. Technol. 2021, 276, 119319. doi: 10.1016/j.seppur.2021.119319  doi: 10.1016/j.seppur.2021.119319

    40. [40]

      Hu, P.; Long, M. Appl. Catal. B 2016, 181, 103. doi: 10.1016/j.apcatb.2015.07.024  doi: 10.1016/j.apcatb.2015.07.024

    41. [41]

      Chen, Y.; Liu, Y.; Zhang, L.; Xie, P.; Wang, Z.; Zhou, A.; Fang, Z.; Ma, J. J. Hazard. Mater. 2018, 353, 18. doi: 10.1016/j.jhazmat.2018.03.050  doi: 10.1016/j.jhazmat.2018.03.050

  • 加载中
    1. [1]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    4. [4]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    5. [5]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    6. [6]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    7. [7]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    8. [8]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    9. [9]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    10. [10]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    11. [11]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    14. [14]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    17. [17]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    18. [18]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    19. [19]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    20. [20]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

Metrics
  • PDF Downloads(4)
  • Abstract views(410)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return