Citation: Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221101. doi: 10.3866/PKU.WHXB202211010 shu

Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications

  • Corresponding author: Yingzhi Chen, chenyingzhi@ustb.edu.cn Lu-Ning Wang, luning.wang@ustb.edu.cn
  • Received Date: 4 November 2022
    Revised Date: 6 December 2022
    Accepted Date: 8 December 2022
    Available Online: 15 December 2022

    Fund Project: the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB, China BK19AE027the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB, China BK20BE022

  • Photocatalytic water splitting is a green technology for sustainable hydrogen evolution. To improve photon-to-electron conversion efficiency, the design and development of efficient, stable, and full-spectrum responsive photocatalysts has attracted increasing attention. Many different classes of materials can be used to harness solar photons for photocatalysis, each having their advantages and drawbacks. Compared to inorganic semiconductors, organic semiconductors are rich in π electrons and can be readily modified, allowing for facile control of the optic (absorption region and intensity) and electronic (energy structure) properties, as well as mechanistic pathways. However, photogenerated charge carriers cannot be effectively employed owing to subpar charge carrier transport properties, which arise from the low concentration and low mobility of free charge carriers in organic semiconductors. Appropriate changes in the molecular structure of the organic semiconductors can allow for sunlight utilization across the full visible region and even the infrared region. By controlling the nature of stacking, organic photocatalysts with different compositions, dimension (0, 1, 2, 3), size, and crystallographic orientation can be harnessed to increase sunlight utilization and charge separation efficiencies. By optimizing these properties, the overall photoelectric conversion efficiency and hydrogen production efficiency can be improved. However, the mechanisms of redox reactions in organic semiconductor photocatalytic systems remain unclear owing to the complex nature of the processes and difficulties in study design. Herein, the physical and chemical processes of organic semiconductors are discussed from the perspective of light harvesting, photoexcited charge separation, and surface reactions. The preparation methods of organic semiconductor nanostructures are summarized and the progressive development of organic nanostructures for photocatalytic hydrogen evolution is systematically reviewed. Typical organic semiconductor materials, including perylene diimide, porphyrin, phthalocyanine, fullerenes, graphitic carbon nitride (g-C3N4), and other conjugated polymers, are highlighted. Moreover, modification strategies for optimizing optical and electrical properties at the molecular or aggregate level are discussed. Element doping or substitution and group functionalization at the molecular level as well as control over morphologies, components, and dimensions at the aggregate level are reviewed to clarify structure/property relationships and further guide photocatalyst design. All the strategies discussed herein focus on enhancing hole and electron separation while suppressing their recombination, thereby improving the photocatalytic performance in evolution hydrogen. Finally, the key challenges and prospects of organic nanomaterials for photocatalytic evolution hydrogen are presented. We particularly focus on the construction of a system to evaluate the reasonable loading of co-catalysts, photocatalyst morphology regulation, and combined in situ characterization and density functional theory calculations in the context of photocatalytic hydrogen production.
  • 加载中
    1. [1]

      Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K. -H. Renew. Sust. Energ. Rev. 2018, 82, 894. doi: 10.1016/j.rser.2017.09.094  doi: 10.1016/j.rser.2017.09.094

    2. [2]

      Ngoh, S. K.; Njomo, D. Renew. Sust. Energ. Rev. 2012, 16 (9), 6782. doi: 10.1016/j.rser.2012.07.027  doi: 10.1016/j.rser.2012.07.027

    3. [3]

      Minggu, L. J.; Daud, W. R. W.; Kassim, M. B. Int. J. Hydrog. Energy 2010, 35 (11), 5233. doi: 10.1016/j.ijhydene.2010.02.133  doi: 10.1016/j.ijhydene.2010.02.133

    4. [4]

      Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C. T.; Sachs, M.; Anjum, D. H.; Gonzalez Lopez, S.; Zou, L. Y.; Wadsworth, A.; et al. Nat. Mater. 2020, 19 (5), 559. doi: 10.1038/s41563-019-0591-1  doi: 10.1038/s41563-019-0591-1

    5. [5]

      Zhao, C.; Chen, Z.; Shi, R.; Yang, X.; Zhang, T. Adv. Mater. 2020, 32 (28), e1907296. doi: 10.1002/adma.201907296  doi: 10.1002/adma.201907296

    6. [6]

      Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Nature 1985, 316 (6028), 495. doi: 10.1038/316495a0  doi: 10.1038/316495a0

    7. [7]

      Fu, C. F.; Wu, X. J.; Yang, J. L. Adv. Mater. 2018, 30 (48), 1802106. doi: 10.1002/adma.201802106  doi: 10.1002/adma.201802106

    8. [8]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38 (1), 253. doi: 10.1039/b800489g  doi: 10.1039/b800489g

    9. [9]

      Shentu, B.; Gan, T.; Weng, Z. J. Appl. Polym. Sci. 2009, 113 (5), 3202. doi: 10.1002/app.30054  doi: 10.1002/app.30054

    10. [10]

      Ghobadi, T. G. U.; Ghobadi, A.; Soydan, M. C.; Vishlaghi, M. B.; Kaya, S.; Karadas, F.; Ozbay, E. ChemSusChem 2020, 13 (10), 2577. doi: 10.1002/cssc.202000294  doi: 10.1002/cssc.202000294

    11. [11]

      Li, D.; Chen, R.; Wang, S.; Zhang, X.; Zhang, Y.; Liu, J.; Yin, H.; Fan, F.; Shi, J.; Li, C. J. Phys. Chem. Lett. 2020, 11 (2), 412. doi: 10.1021/acs.jpclett.9b03340  doi: 10.1021/acs.jpclett.9b03340

    12. [12]

      Hitoki, G.; Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. Chem. Lett. 2002, 31 (7), 736. doi: 10.1246/cl.2002.736  doi: 10.1246/cl.2002.736

    13. [13]

      Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. Cater. Today 2003, 78 (1–4), 555. doi: 10.1016/s0920-5861(02)00354-1  doi: 10.1016/s0920-5861(02)00354-1

    14. [14]

      Sun, B. T.; Qiu, P. Y.; Liang, Z. Q.; Xue, Y. J.; Zhang, X. L.; Yang, L.; Cui, H. Z.; Tian, J. Chem. Eur. J. 2021, 4061, 127177. doi: 10.1016/j.cej.2020.127177  doi: 10.1016/j.cej.2020.127177

    15. [15]

      Li, Z. Z.; Meng, X. C.; Zhang, Z. S. J. Photochem. Photobiol. C-Photochem. Rev. 2018, 35, 39. doi: 10.1016/j.jphotochemrev.2017.12.002  doi: 10.1016/j.jphotochemrev.2017.12.002

    16. [16]

      Du, W. M.; Zhu, J.; Li, S. X.; Qian, X. F. Cryst. Growth Des. 2008, 8 (7), 2130. doi: 10.1021/cg7009258  doi: 10.1021/cg7009258

    17. [17]

      Park, H.; Choi, W. J. Phys. Chem. B 2004, 108 (13), 4086. doi: 10.1021/jp036735i  doi: 10.1021/jp036735i

    18. [18]

      Liao, L. B.; Zhang, Q. H.; Su, Z. H.; Zhao, Z. Z.; Wang, Y. N.; Li, Y.; Lu, X. X.; Wei, D. G.; Feng, G. Y.; Yu, Q. K.; et al. Nat. Nanotechnol. 2014, 9 (1), 69. doi: 10.1038/nnano.2013.272  doi: 10.1038/nnano.2013.272

    19. [19]

      Yu, J. G.; Yu, Y. F.; Zhou, P.; Xiao, W.; Cheng, B. Appl. Catal. B-Environ. 2014, 156, 184. doi: 10.1016/j.apcatb.2014.03.013  doi: 10.1016/j.apcatb.2014.03.013

    20. [20]

      Lee, G. J.; Wu, J. J. Powder Technol. 2017, 318, 8. doi: 10.1016/j.powtec.2017.05.022  doi: 10.1016/j.powtec.2017.05.022

    21. [21]

      Harb, M.; Basset, J. M. J. Phys. Chem. C 2020, 124 (4), 2472. doi: 10.1021/acs.jpcc.9b09707  doi: 10.1021/acs.jpcc.9b09707

    22. [22]

      Zhang, Z. J.; Zhu, Y. F.; Chen, X. J.; Zhang, H. J.; Wang, J. Adv. Mater. 2019, 31 (7), 1806626. doi: 10.1002/adma.201806626  doi: 10.1002/adma.201806626

    23. [23]

      Mendori, D.; Hiroya, T.; Ueda, M.; Sanyoushi, M.; Nagai, K.; Abe, T. Appl. Catal. B-Environ. 2017, 205, 514. doi: 10.1016/j.apcatb.2016.12.071  doi: 10.1016/j.apcatb.2016.12.071

    24. [24]

      Chen, C. X.; Xiong, Y. Y.; Zhong, X.; Lan, P. C.; Wei, Z. W.; Pan, H.; Su, P. Y.; Song, Y.; Chen, Y. F.; Nafady, A.; et al. Angew. Chem. Int. Ed. 2022, 61 (3), e202114071. doi: 10.1002/anie.202114071  doi: 10.1002/anie.202114071

    25. [25]

      Li, Y.; Zhang, X.; Liu, D. J. Photochem. Photobiol. C 2021, 48, 100436. doi: 10.1016/j.jphotochemrev.2021.100436  doi: 10.1016/j.jphotochemrev.2021.100436

    26. [26]

      Lin, C.; Han, C.; Zhang, H.; Gong, L.; Gao, Y.; Wang, H.; Bian, Y.; Li, R.; Jiang, J. Inorg. Chem. 2021, 60 (6), 3988. doi: 10.1021/acs.inorgchem.1c00041  doi: 10.1021/acs.inorgchem.1c00041

    27. [27]

      Pan, Y.; Liu, X.; Zhang, W.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; He, Q.; Yuan, X.; Huang, D.; et al. Appl. Catal. B-Environ. 2020, 265, 129077. doi: 10.1016/j.apcatb.2019.118579  doi: 10.1016/j.apcatb.2019.118579

    28. [28]

      Kumar, A.; Kumar Vashistha, V.; Kumar Das, D. Coord. Chem. Rev. 2021, 431, 213678. doi: 10.1016/j.ccr.2020.213678  doi: 10.1016/j.ccr.2020.213678

    29. [29]

      Zhao, S.; Zhang, Y.; Zhou, Y.; Wang, Y.; Qiu, K.; Zhang, C.; Fang, J.; Sheng, X. Carbon 2018, 126, 247. doi: 10.1016/j.carbon.2017.10.033  doi: 10.1016/j.carbon.2017.10.033

    30. [30]

      Das, K. K.; Patnaik, S.; Mansingh, S.; Behera, A.; Mohanty, A.; Acharya, C.; Parida, K. M. J. Colloid Interface Sci. 2020, 561, 551. doi: 10.1016/j.jcis.2019.11.030  doi: 10.1016/j.jcis.2019.11.030

    31. [31]

      Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; et al. Nat. Mater. 2006, 5 (3), 197. doi: 10.1038/nmat1574  doi: 10.1038/nmat1574

    32. [32]

      Hosseini, M. G.; Yardani, P.; Mert, A. M.; Kinayyigit, S. J. Mater. Sci. Technol. 2020, 38, 7. doi: 10.1016/j.jmst.2019.08.020  doi: 10.1016/j.jmst.2019.08.020

    33. [33]

      Niu, J.; Song, Z. L.; Gao, X.; Ji, Y.; Zhang, Y. L. J. Alloy. Compd. 2021, 884, 161292. doi: 10.1016/j.jallcom.2021.161292  doi: 10.1016/j.jallcom.2021.161292

    34. [34]

      Liu, Y.; Li, B.; Xiang, Z. Small 2021, 17 (34), 2007576. doi: 10.1002/smll.202007576  doi: 10.1002/smll.202007576

    35. [35]

      Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Appl. Phys. Lett. 2007, 90 (10), 102120. doi: 10.1063/1.2711393  doi: 10.1063/1.2711393

    36. [36]

      Stingelin-Stutzmann, N.; Smits, E.; Wondergem, H.; Tanase, C.; Blom, P.; Smith, P.; De Leeuw, D. Nat. Mater. 2005, 4 (8), 601. doi: 10.1038/nmat1426  doi: 10.1038/nmat1426

    37. [37]

      Singh, T. B.; Sariciftci, N. S.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H. Appl. Phys. Lett. 2007, 90 (21), 213512. doi: 10.1063/1.2743386  doi: 10.1063/1.2743386

    38. [38]

      Yao, Y.; Dong, H.; Liu, F.; Russell, T. P.; Hu, W. Adv. Mater. 2017, 29 (29), 170251. doi: 10.1002/adma.201701251  doi: 10.1002/adma.201701251

    39. [39]

      Clarke, T. M.; Durrant, J. R. Chem. Rev. 2010, 110 (11), 6736. doi: 10.1021/cr900271s  doi: 10.1021/cr900271s

    40. [40]

      Puschnig, P.; Ambrosch-Draxl, C. Comptes Rendus Phys. 2009, 10 (6), 504. doi: 10.1016/j.crhy.2008.08.003  doi: 10.1016/j.crhy.2008.08.003

    41. [41]

      Dong, Y. F.; Cha, H.; Bristow, H. L.; Lee, J.; Kumar, A.; Tuladhar, P. S.; McCulloch, I.; Bakulin, A. A.; Durrant, J. R. J. Am. Chem. Soc. 2021, 143 (20), 7599. doi: 10.1021/jacs.1c00584  doi: 10.1021/jacs.1c00584

    42. [42]

      Ball, J. M.; Petrozza, A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.149  doi: 10.1038/nenergy.2016.149

    43. [43]

      Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Nat. Rev. Mater. 2020, 6 (2), 168. doi: 10.1038/s41578-020-00254-z  doi: 10.1038/s41578-020-00254-z

    44. [44]

      Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Energy Environ. Sci. 2015, 8 (7), 1867. doi: 10.1039/c5ee00925a  doi: 10.1039/c5ee00925a

    45. [45]

      Godin, R.; Wang, Y.; Zwijnenburg, M. A.; Tang, J. W.; Durrant, J. R. J. Am. Chem. Soc. 2017, 139 (14), 5216. doi: 10.1021/jacs.7b01547  doi: 10.1021/jacs.7b01547

    46. [46]

      Bisquert, J.; Cendula, P.; Bertoluzzi, L.; Gimenez, S. J. Phys. Chem. Lett. 2014, 5 (1), 205. doi: 10.1021/jz402703d  doi: 10.1021/jz402703d

    47. [47]

      Chen, Y.; Yan, C.; Dong, J.; Zhou, W.; Rosei, F.; Feng, Y.; Wang, L. N. Adv. Funct. Mater. 2021, 31 (36), 2104099. doi: 10.1002/adfm.202104099  doi: 10.1002/adfm.202104099

    48. [48]

      Guo, L. J.; Li, R.; Liu, J. X.; Xi, Q.; Fan, C. M. Prog. Chem. 2020, 32 (1), 46. doi: 10.7536/pc190528  doi: 10.7536/pc190528

    49. [49]

      Chen, Y.; Li, W.; Jiang, D.; Men, K.; Li, Z.; Li, L.; Sun, S.; Li, J.; Huang, Z. -H.; Wang, L. -N. Sci. Bull. 2019, 64 (1), 44. doi: 10.1016/j.scib.2018.12.015  doi: 10.1016/j.scib.2018.12.015

    50. [50]

      Velázquez, J. J.; Fernández-González, R.; Díaz, L.; Pulido Melián, E.; Rodríguez, V. D.; Núñez, P. J. Alloy. Compd. 2017, 721, 405. doi: 10.1016/j.jallcom.2017.05.314  doi: 10.1016/j.jallcom.2017.05.314

    51. [51]

      Xu, J.; Wang, Z. P.; Zhu, Y. F. J. Mater. Sci. Technol. 2020, 49, 133. doi: 10.1016/j.jmst.2020.02.024  doi: 10.1016/j.jmst.2020.02.024

    52. [52]

      Bodedla, G. B.; Huang, J.; Wong, W. -Y.; Zhu, X. ACS Appl. Nano Mater. 2020, 3 (7), 7040. doi: 10.1021/acsanm.0c01353  doi: 10.1021/acsanm.0c01353

    53. [53]

      Zhang, N.; Wang, L.; Wang, H.; Cao, R.; Wang, J.; Bai, F.; Fan, H. Nano Lett. 2018, 18 (1), 560. doi: 10.1021/acs.nanolett.7b04701  doi: 10.1021/acs.nanolett.7b04701

    54. [54]

      Bhavani, B.; Chanda, N.; Kotha, V.; Reddy, G.; Basak, P.; Pal, U.; Giribabu, L.; Prasanthkumar, S. Nanoscale 2021, 14 (1), 140. doi: 10.1039/d1nr06961f  doi: 10.1039/d1nr06961f

    55. [55]

      Wang, J.; Shi, W.; Liu, D.; Zhang, Z. J.; Zhu, Y. F.; Wang, D. Appl. Catal. B 2017, 202, 289. doi: 10.1016/j.apcatb.2016.09.037  doi: 10.1016/j.apcatb.2016.09.037

    56. [56]

      Lin, H.; Wang, J.; Zhao, J.; Zhuang, Y.; Liu, B.; Zhu, Y.; Jia, H.; Wu, K.; Shen, J.; Fu, X.; et al. Angew. Chem. Int. Ed. 2022, 61 (12), e202117645. doi: 10.1002/anie.202117645  doi: 10.1002/anie.202117645

    57. [57]

      Gao, Q.; Xu, J.; Wang, Z.; Zhu, Y. Appl. Catal. B-Environ. 2020, 271, 118933. doi: 10.1016/j.apcatb.2020.118933  doi: 10.1016/j.apcatb.2020.118933

    58. [58]

      Guo, X. -X.; Jiang, J.; Han, Q.; Liu, X. -H.; Zhou, X. -T.; Ji, H. -B. Appl. Cater. A-Gen. 2020, 590, 117352. doi: 10.1016/j.apcata.2019.117352  doi: 10.1016/j.apcata.2019.117352

    59. [59]

      Shrestha, L. K.; Shrestha, R. G.; Yamauchi, Y.; Hill, J. P.; Nishimura, T.; Miyazawa, K.; Kawai, T.; Okada, S.; Wakabayashi, K.; Ariga, K. Angew. Chem. Int. Ed. 2015, 54 (3), 951. doi: 10.1002/anie.201408856  doi: 10.1002/anie.201408856

    60. [60]

      Shrestha, L. K.; Yamauchi, Y.; Hill, J. P.; Miyazawa, K.; Ariga, K. J. Am. Chem. Soc. 2013, 135 (2), 586. doi: 10.1021/ja3108752  doi: 10.1021/ja3108752

    61. [61]

      Hu, J. S.; Guo, Y. G.; Liang, H. P.; Wan, L. J.; Jiang, L. J. Am. Chem. Soc. 2005, 127 (48), 17090. doi: 10.1021/ja0553912  doi: 10.1021/ja0553912

    62. [62]

      Tashiro, K.; Murafuji, T.; Sumimoto, M.; Fujitsuka, M.; Yamazaki, S. New J. Chem. 2020, 44 (32), 13824. doi: 10.1039/d0nj02829k  doi: 10.1039/d0nj02829k

    63. [63]

      Hasobe, T.; Oki, H.; Sandanayaka, A. S. D.; Murata, H. Catal. Commun. 2008, No. 6, 724. doi: 10.1039/b713971c  doi: 10.1039/b713971c

    64. [64]

      Cho, E. -C.; Ciou, J. -H.; Zheng, J. -H.; Pan, J.; Hsiao, Y. -S.; Lee, K. -C.; Huang, J. -H. Appl. Surf. Sci. 2015, 355, 536. doi: 10.1016/j.apsusc.2015.07.062  doi: 10.1016/j.apsusc.2015.07.062

    65. [65]

      Liu, F. M.; Sun, J.; Xiao, S.; Huang, W. L.; Tao, S. H.; Zhang, Y.; Gao, Y. L.; Yang, J. L. Nanotechnology 2015, 26 (22), 225601. doi: 10.1088/0957-4484/26/22/225601  doi: 10.1088/0957-4484/26/22/225601

    66. [66]

      Bian, J.; Li, Q.; Huang, C.; Li, J.; Guo, Y.; Zaw, M.; Zhang, R. -Q. Nano Energy 2015, 15, 353. doi: 10.1016/j.nanoen.2015.04.012  doi: 10.1016/j.nanoen.2015.04.012

    67. [67]

      Chen, Y.; Zhang, C.; Zhang, X.; Ou, X.; Zhang, X. Chem. Commun. 2013, 49 (80), 9200. doi: 10.1039/c3cc45169k  doi: 10.1039/c3cc45169k

    68. [68]

      Yang, C.; Cheng, Z. H.; Divitini, G.; Qian, C.; Hou, B.; Liao, Y. Z. J. Mater. Chem. A 2021, 9 (35), 19894. doi: 10.1039/d1ta02547c  doi: 10.1039/d1ta02547c

    69. [69]

      Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault, S. J. Mater. Sci. 2000, 35 (10), 2547. doi: 10.1023/a:1004798509417  doi: 10.1023/a:1004798509417

    70. [70]

      Guo, Q.; Xie, Y.; Wang, X.; Lv, S.; Hou, T.; Liu, X. Chem. Phys. Lett. 2003, 380 (1–2), 84. doi: 10.1016/j.cplett.2003.09.009  doi: 10.1016/j.cplett.2003.09.009

    71. [71]

      Guo, Q.; Xie, Y.; Wang, X.; Zhang, S.; Hou, T.; Lv, S. Catal. Commun. 2004, No. 1, 26. doi: 10.1039/b311390f  doi: 10.1039/b311390f

    72. [72]

      Ximing, G.; Bin, G.; Yuanlin, W.; Shuanghong, G. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 80, 698. doi: 10.1016/j.msec.2017.07.027  doi: 10.1016/j.msec.2017.07.027

    73. [73]

      Li, B.; Wang, X.; Chen, L.; Zhou, Y.; Dang, W.; Chang, J.; Wu, C. Theranostics 2018, 8 (15), 4086. doi: 10.7150/thno.25433  doi: 10.7150/thno.25433

    74. [74]

      Navgire, M. E.; Lande, M. K. Inorg. Nano-Metal Chem. 2016, 47 (3), 320. doi: 10.1080/15533174.2016.1186055  doi: 10.1080/15533174.2016.1186055

    75. [75]

      Li, C.; Cao, C. -B.; Zhu, H. -S. Mater. Lett. 2004, 58 (12–13), 1903. doi: 10.1016/j.matlet.2003.11.024  doi: 10.1016/j.matlet.2003.11.024

    76. [76]

      Iqbal, W.; Dong, C.; Xing, M.; Tan, X.; Zhang, J. Catal. Sci. Technol. 2017, 7 (8), 1726. doi: 10.1039/c7cy00286f  doi: 10.1039/c7cy00286f

    77. [77]

      Cao, X. Q.; Wu, Y. S.; Fu, H. B.; Yao, J. N. J. Phys. Chem. Lett. 2011, 2 (17), 2163. doi: 10.1021/jz2009488  doi: 10.1021/jz2009488

    78. [78]

      Martell, M.; Ocheje, M. U.; Gelfand, B. S.; Rondeau-Gagné, S.; Welch, G. C. New J. Chem. 2021, 45 (45), 21001. doi: 10.1039/d1nj04423k  doi: 10.1039/d1nj04423k

    79. [79]

      Pu, Y.; Bao, F.; Wang, D.; Zhang, X.; Guo, Z.; Chen, X.; Wei, Y.; Wang, J.; Zhang, Q. J. Environ. Chem. Eng. 2022, 10 (1), 107123. doi: 10.1016/j.jece.2021.107123  doi: 10.1016/j.jece.2021.107123

    80. [80]

      Zhao, Q.; Zhang, S.; Liu, Y.; Mei, J.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J. Z.; Tang, B. Z. J. Mater. Chem. 2012, 22 (15), 7387. doi: 10.1039/c2jm16613e  doi: 10.1039/c2jm16613e

    81. [81]

      Kong, K.; Zhang, S.; Chu, Y.; Hu, Y.; Yu, F.; Ye, H.; Ding, H.; Hua, J. Chem. Commun. 2019, 55 (56), 8090. doi: 10.1039/c9cc03465j  doi: 10.1039/c9cc03465j

    82. [82]

      Miao, H.; Yang, J.; Sheng, Y.; Li, W.; Zhu, Y. Sol. RRL 2020, 5 (2), 2000453. doi: 10.1002/solr.202000453  doi: 10.1002/solr.202000453

    83. [83]

      Sheng, Y.; Li, W.; Zhu, Y.; Zhang, L. Appl. Catal. B-Environ. 2021, 298, 120585. doi: 10.1016/j.apcatb.2021.120585  doi: 10.1016/j.apcatb.2021.120585

    84. [84]

      Jing, J.; Yang, J.; Zhang, Z.; Zhu, Y. Adv. Energy Mater. 2021, 11 (29), 2101392. doi: 10.1002/aenm.202101392  doi: 10.1002/aenm.202101392

    85. [85]

      Liu, Y.; Wang, L.; Feng, H.; Ren, X.; Ji, J.; Bai, F.; Fan, H. Nano Lett. 2019, 19 (4), 2614. doi: 10.1021/acs.nanolett.9b00423  doi: 10.1021/acs.nanolett.9b00423

    86. [86]

      Genc, E.; Yüzer, A. C.; Yanalak, G.; Harputlu, E.; Aslan, E.; Ocakoglu, K.; Ince, M.; Patir, I. H. Renew. Energy 2020, 162, 1340. doi: 10.1016/j.renene.2020.08.063  doi: 10.1016/j.renene.2020.08.063

    87. [87]

      Cai, Q.; Hu, Z.; Zhang, Q.; Li, B.; Shen, Z. Appl. Surf. Sci. 2017, 403, 151. doi: 10.1016/j.apsusc.2017.01.135  doi: 10.1016/j.apsusc.2017.01.135

    88. [88]

      Bilal Tahir, M.; Nabi, G.; Rafique, M.; Khalid, N. R. Int. J. Energy Res. 2018, 42 (15), 4783. doi: 10.1002/er.4231  doi: 10.1002/er.4231

    89. [89]

      Guan, J.; Wu, J.; Jiang, D.; Zhu, X.; Guan, R.; Lei, X.; Du, P.; Zeng, H.; Yang, S. Int. J. Hydrog. Energy 2018, 43 (18), 8698. doi: 10.1016/j.ijhydene.2018.03.148  doi: 10.1016/j.ijhydene.2018.03.148

    90. [90]

      Chen, X.; Chen, H.; Guan, J.; Zhen, J.; Sun, Z.; Du, P.; Lu, Y.; Yang, S. Nanoscale 2017, 9 (17), 5615. doi: 10.1039/c7nr01237c  doi: 10.1039/c7nr01237c

    91. [91]

      Chai, B.; Peng, T.; Zhang, X.; Mao, J.; Li, K.; Zhang, X. Dalton Trans. 2013, 42 (10), 3402. doi: 10.1039/c2dt32458j  doi: 10.1039/c2dt32458j

    92. [92]

      Wu, X.; Ma, H.; Zhong, W.; Fan, J.; Yu, H. Appl. Catal. B-Environ. 2020, 271, 118899. doi: 10.1016/j.apcatb.2020.118899  doi: 10.1016/j.apcatb.2020.118899

    93. [93]

      Tang, J.; Zhang, Q. T.; Liu, Y. T.; Liu, Y. B.; Wang, K. Q.; Xu, N. Z.; Yu, L.; Tong, Q.; Fan, Y. N. Micropor. Mesopor. Mater. 2020, 292, 109369. doi: 10.1016/j.micromeso.2019.109639  doi: 10.1016/j.micromeso.2019.109639

    94. [94]

      Wang, C.; Zhang, G.; Zhang, H.; Li, Z.; Wen, Y. Diam. Relat. Mater. 2021, 116, 108416. doi: 10.1016/j.diamond.2021.108416  doi: 10.1016/j.diamond.2021.108416

    95. [95]

      Liu, C.; Huang, H.; Cui, W.; Dong, F.; Zhang, Y. Appl. Catal. B-Environ. 2018, 230, 115. doi: 10.1016/j.apcatb.2018.02.038  doi: 10.1016/j.apcatb.2018.02.038

    96. [96]

      Huang, Y.; Li, D.; Fang, Z.; Chen, R.; Luo, B.; Shi, W. Appl. Catal. B-Environ. 2019, 254, 128. doi: 10.1016/j.apcatb.2019.04.082  doi: 10.1016/j.apcatb.2019.04.082

    97. [97]

      Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5 (7), 2789. doi: 10.1039/c4sc00016a  doi: 10.1039/c4sc00016a

    98. [98]

      Zuo, Q.; Liu, T.; Chen, C.; Ji, Y.; Gong, X.; Mai, Y.; Zhou, Y. Angew. Chem. Int. Ed. 2019, 58 (30), 10198. doi: 10.1002/anie.201904058  doi: 10.1002/anie.201904058

    99. [99]

      Han, C.; Xiang, S.; Ge, M.; Xie, P.; Zhang, C.; Jiang, J. X. Small 2022, 18 (28), e2202072. doi: 10.1002/smll.202202072  doi: 10.1002/smll.202202072

    100. [100]

      Vajiravelu, S.; Ramunas, L.; Juozas Vidas, G.; Valentas, G.; Vygintas, J.; Valiyaveettil, S. J. Mater. Chem. 2009, 19 (24), 4268. doi: 10.1039/b901847f  doi: 10.1039/b901847f

    101. [101]

      Zhang, M. X.; Zhao, G. J. ChemSusChem 2012, 5 (5), 879. doi: 10.1002/cssc.201100510  doi: 10.1002/cssc.201100510

    102. [102]

      Jones, B. A.; Ahrens, M. J.; Yoon, M. H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angew. Chem. Int. Ed. 2004, 43 (46), 6363. doi: 10.1002/anie.200461324  doi: 10.1002/anie.200461324

    103. [103]

      Guo, Y.; Han, G.; Duan, R.; Geng, H.; Yi, Y. J. Mater. Chem. A 2018, 6 (29), 14224. doi: 10.1039/c8ta04932g  doi: 10.1039/c8ta04932g

    104. [104]

      Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang, L. J. Am. Chem. Soc. 2006, 128 (22), 7390. doi: 10.1021/ja061810z  doi: 10.1021/ja061810z

    105. [105]

      Ghosh, S.; Li, X. Q.; Stepanenko, V.; Wurthner, F. Chemistry 2008, 14 (36), 11343. doi: 10.1002/chem.200801454  doi: 10.1002/chem.200801454

    106. [106]

      Wang, J.; Liu, D.; Zhu, Y.; Zhou, S.; Guan, S. Appl. Catal. B-Environ. 2018, 231, 251. doi: 10.1016/j.apcatb.2018.03.026  doi: 10.1016/j.apcatb.2018.03.026

    107. [107]

      Ding, H.; Wang, Z.; Kong, K.; Feng, S.; Xu, L.; Ye, H.; Wu, W.; Gong, X.; Hua, J. J. Mater. Chem. A 2021, 9 (12), 7675. doi: 10.1039/d1ta00464f  doi: 10.1039/d1ta00464f

    108. [108]

      Zhang, Z.; Wang, J.; Liu, D.; Luo, W.; Zhang, M.; Jiang, W.; Zhu, Y. ACS Appl. Mater. Interfaces 2016, 8 (44), 30225. doi: 10.1021/acsami.6b10186  doi: 10.1021/acsami.6b10186

    109. [109]

      Yang, J.; Jing, J.; Li, W.; Zhu, Y. Adv. Sci. 2022, 9 (17), e2201134. doi: 10.1002/advs.202201134  doi: 10.1002/advs.202201134

    110. [110]

      Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Adv. Mater. 2021, 33 (7), e2007479. doi: 10.1002/adma.202007479  doi: 10.1002/adma.202007479

    111. [111]

      Tian, J.; Huang, B.; Nawaz, M. H.; Zhang, W. Coord. Chem. Rev. 2020, 420, 213410. doi: 10.1016/j.ccr.2020.213410  doi: 10.1016/j.ccr.2020.213410

    112. [112]

      Canimkurbey, B.; Taskan, M. C.; Demir, S.; Duygulu, E.; Atilla, D.; Yuksel, F. New J. Chem. 2020, 44 (18), 7424. doi: 10.1039/d0nj00678e  doi: 10.1039/d0nj00678e

    113. [113]

      Olijve, L. L. C.; How, E. N. W.; Bhadbhade, M.; Prasad, S.; Colbran, S. B.; Zhao, C.; Thordarson, P. J. Porphyr. Phthalocya. 2011, 15 (11–12), 1345. doi: 10.1142/s1088424611004312  doi: 10.1142/s1088424611004312

    114. [114]

      Odobel, F.; Zabri, H. Inorg. Chem. 2005, 44 (16), 5600. doi: 10.1021/ic050078m  doi: 10.1021/ic050078m

    115. [115]

      Pudi, R.; Rodríguez-Seco, C.; Vidal-Ferran, A.; Ballester, P.; Palomares, E. Europ. J. Org. Chem. 2018, 2018 (18), 2064. doi: 10.1002/ejoc.201800136  doi: 10.1002/ejoc.201800136

    116. [116]

      Wang, S. Q.; Li, Y.; Wang, B. B. J. Chem. Res. 2021, 45 (11–12), 934. doi: 10.1177/17475198211032835  doi: 10.1177/17475198211032835

    117. [117]

      Kesavan, P. E.; Pandey, V.; Ishida, M.; Furuta, H.; Mori, S.; Gupta, I. Chem. Asian J. 2020, 15 (13), 2015. doi: 10.1002/asia.202000463  doi: 10.1002/asia.202000463

    118. [118]

      de la Torre, G.; Vaquez, P.; Agullo-Lopez, F.; Torres, T. Chem. Rev. 2004, 104 (9), 3723. doi: 10.1021/cr030206t  doi: 10.1021/cr030206t

    119. [119]

      Shang, H.; Xue, Z.; Wang, K.; Liu, H.; Jiang, J. Chem. -Eur. J. 2017, 23 (36), 8644. doi: 10.1002/chem.201700291  doi: 10.1002/chem.201700291

    120. [120]

      Liang, Z.; Wang, H. Y.; Zheng, H.; Zhang, W.; Cao, R. Chem. Soc. Rev. 2021, 50 (4), 2540. doi: 10.1039/d0cs01482f  doi: 10.1039/d0cs01482f

    121. [121]

      Lopes, J. M. S.; Sampaio, R. N.; Ito, A. S.; Batista, A. A.; Machado, A. E. H.; Araujo, P. T.; Neto, N. M. B. Spectrochim. Acta A-Mol. Biomol. Spectro. 2019, 215, 327. doi: 10.1016/j.saa.2019.02.024  doi: 10.1016/j.saa.2019.02.024

    122. [122]

      Sehgal, P.; Narula, A. K. J. Photochem. Photobiol. A 2019, 375, 91. doi: 10.1016/j.jphotochem.2019.02.003  doi: 10.1016/j.jphotochem.2019.02.003

    123. [123]

      Jiang, H.; Hu, P.; Ye, J.; Ganguly, R.; Li, Y.; Long, Y.; Fichou, D.; Hu, W.; Kloc, C. Angew. Chem. Int. Ed. 2018, 57 (32), 10112. doi: 10.1002/anie.201803363  doi: 10.1002/anie.201803363

    124. [124]

      Cao, R.; Wang, J.; Li, Y.; Sun, J.; Bai, F. Nano Res. 2022, 15 (6), 5719. doi: 10.1007/s12274-022-4286-6  doi: 10.1007/s12274-022-4286-6

    125. [125]

      Zhong, Y.; Hu, Y.; Wang, J.; Wang, J.; Ren, X.; Sun, J.; Bai, F. MRS Adv. 2019, 4 (38–39), 2071. doi: 10.1557/adv.2019.210  doi: 10.1557/adv.2019.210

    126. [126]

      Yang, J.; Jing, J.; Zhu, Y. Adv. Mater. 2021, 33 (31), e2101026. doi: 10.1002/adma.202101026  doi: 10.1002/adma.202101026

    127. [127]

      Jing, J.; Yang, J.; Li, W.; Wu, Z.; Zhu, Y. Adv. Mater. 2022, 34 (3), e2106807. doi: 10.1002/adma.202106807  doi: 10.1002/adma.202106807

    128. [128]

      Xia, Z.; Yu, R.; Yang, H.; Luo, B.; Huang, Y.; Li, D.; Shi, J.; Xu, D. Int. J. Hydrog. Energy 2022, 47 (27), 13340. doi: 10.1016/j.ijhydene.2022.02.087  doi: 10.1016/j.ijhydene.2022.02.087

    129. [129]

      Pu, Z.; Xiao, B.; Mao, S.; Sun, Y.; Ma, D.; Wang, H.; Zhou, J.; Cheng, Y.; Shi, J. -W. J. Colloid Interface Sci. 2022, 628, 477. doi: 10.1016/j.jcis.2022.08.080  doi: 10.1016/j.jcis.2022.08.080

    130. [130]

      Koshiba, Y.; Nishimoto, M.; Misawa, A.; Misaki, M.; Ishida, K. Jpn. J. Appl. Phys. 2016, 55 (3S2), 03DD07. doi: 10.7567/jjap.55.03dd07  doi: 10.7567/jjap.55.03dd07

    131. [131]

      Liu, F.; Sun, J.; Xiao, S.; Huang, W.; Tao, S.; Zhang, Y.; Gao, Y.; Yang, J. Nanotechnology 2015, 26 (22), 225601. doi: 10.1088/0957-4484/26/22/225601  doi: 10.1088/0957-4484/26/22/225601

    132. [132]

      Meng, L.; Wang, K.; Han, Y.; Yao, Y.; Gao, P.; Huang, C.; Zhang, W.; Xu, F. Prog. Nat. Sci. 2017, 27 (3), 329. doi: 10.1016/j.pnsc.2017.04.010  doi: 10.1016/j.pnsc.2017.04.010

    133. [133]

      Moon, H. S.; Yong, K. Appl. Surf. Sci. 2020, 530, 147215. doi: 10.1016/j.apsusc.2020.147215  doi: 10.1016/j.apsusc.2020.147215

    134. [134]

      Yi, Y.; Wang, S.; Zhang, H.; Liu, J.; Lu, X.; Jiang, L.; Sui, C.; Fan, H.; Ai, S.; Sun, J. J. Mater. Chem. C 2020, 8 (48), 17157. doi: 10.1039/d0tc05123c  doi: 10.1039/d0tc05123c

    135. [135]

      Song, L. M.; Guo, C. P.; Li, T. T.; Zhang, S. J. Ceram. Int. 2017, 43 (10), 7901. doi: 10.1016/j.ceramint.2017.03.115  doi: 10.1016/j.ceramint.2017.03.115

    136. [136]

      Sepahvand, S.; Farhadi, S. RSC Adv. 2018, 8 (18), 10124. doi: 10.1039/c8ra00069g  doi: 10.1039/c8ra00069g

    137. [137]

      Heath, J. R.; Obrien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Tittel, F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107 (25), 7779. doi: 10.1021/ja00311a102  doi: 10.1021/ja00311a102

    138. [138]

      Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; et al. Nature 1999, 402 (6764), 898. doi: 10.1038/47282  doi: 10.1038/47282

    139. [139]

      Wang, T. S.; Feng, L.; Wu, J. Y.; Xu, W.; Xiang, J. F.; Tan, K.; Ma, Y. H.; Zheng, J. P.; Jiang, L.; Lu, X.; et al. J. Am. Chem. Soc. 2010, 132 (46), 16362. doi: 10.1021/ja107843b  doi: 10.1021/ja107843b

    140. [140]

      Brettreich, M.; Hirsch, A. Tetrahedron Lett. 1998, 39 (18), 2731. doi: 10.1016/s0040-4039(98)00491-2  doi: 10.1016/s0040-4039(98)00491-2

    141. [141]

      Wang, Y. C.; Li, X. D.; Zhu, L. P.; Liu, X. H.; Zhang, W. J.; Fang, J. F. Adv. Energy Mater. 2017, 7 (21), 1701144. doi: 10.1002/aenm.201701144  doi: 10.1002/aenm.201701144

    142. [142]

      Tian, C.; Zhang, S.; Mei, A.; Rong, Y.; Hu, Y.; Du, K.; Duan, M.; Sheng, Y.; Jiang, P.; Xu, G.; et al. ACS Appl. Mater. Interfaces 2018, 10 (13), 10835. doi: 10.1021/acsami.7b18945  doi: 10.1021/acsami.7b18945

    143. [143]

      Pal, A.; Wen, L. K.; Jun, C. Y.; Jeon, I.; Matsuo, Y.; Manzhos, S. Phys. Chem. Chem. Phys. 2017, 19 (41), 28330. doi: 10.1039/c7cp05290a  doi: 10.1039/c7cp05290a

    144. [144]

      Hou, J. H.; Lan, X. F.; Shi, J. S.; Yu, S. G.; Zhang, Y. C.; Wang, H.; Ren, C. Y. Int. J. Hydrog. Energy 2020, 45 (4), 2852. doi: 10.1016/j.ijhydene.2019.11.180  doi: 10.1016/j.ijhydene.2019.11.180

    145. [145]

      Wang, Y. -Q.; Yu, C. -P.; Zhang, Z. -L.; Gan, L. -H. Int. J. Hydrog. Energy 2022, 47 (28), 13503. doi: 10.1016/j.ijhydene.2022.02.101  doi: 10.1016/j.ijhydene.2022.02.101

    146. [146]

      Wang, S.; Liu, C.; Dai, K.; Cai, P.; Chen, H.; Yang, C.; Huang, Q. J. Mater. Chem. A 2015, 3 (42), 21090. doi: 10.1039/c5ta03229f  doi: 10.1039/c5ta03229f

    147. [147]

      Liu, L.; Chen, X.; Chai, Y.; Zhang, W.; Liu, X.; Zhao, F.; Wang, Z.; Weng, Y.; Wu, B.; Geng, H.; et al. Chem. Eur. J. 2022, 444, 136621. doi: 10.1016/j.cej.2022.136621  doi: 10.1016/j.cej.2022.136621

    148. [148]

      Wei, Y.; Ma, M.; Li, W.; Yang, J.; Miao, H.; Zhang, Z.; Zhu, Y. Appl. Catal. B-Environ. 2018, 238, 302. doi: 10.1016/j.apcatb.2018.07.043  doi: 10.1016/j.apcatb.2018.07.043

    149. [149]

      Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B.; et al. Nat. Energy 2022, 7 (4), 340. doi: 10.1038/s41560-022-00990-2  doi: 10.1038/s41560-022-00990-2

    150. [150]

      Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. New J. Chem. 2002, 26 (5), 508. doi: 10.1039/b111062b  doi: 10.1039/b111062b

    151. [151]

      Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. J. Am. Chem. Soc. 2009, 131 (5), 1680. doi: 10.1021/ja809307s  doi: 10.1021/ja809307s

    152. [152]

      Zhou, G.; Shan, Y.; Hu, Y. Y.; Xu, X. Y.; Long, L. Y.; Zhang, J. L.; Dai, J.; Guo, J. H.; Shen, J. C.; Li, S.; et al. Nat. Commun. 2018, 9, 3366. doi: 10.1038/s41467-018-05590-x  doi: 10.1038/s41467-018-05590-x

    153. [153]

      Yan, B.; Du, C.; Yang, G. Small 2020, 16 (4), e1905700. doi: 10.1002/smll.201905700  doi: 10.1002/smll.201905700

    154. [154]

      Deng, P.; Xiong, J.; Lei, S.; Wang, W.; Ou, X.; Xu, Y.; Xiao, Y.; Cheng, B. J. Mater. Chem. A 2019, 7 (39), 22385. doi: 10.1039/c9ta04559g  doi: 10.1039/c9ta04559g

    155. [155]

      Cao, Y.; Chen, S.; Luo, Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L.; Lu, J.; Yang, J.; Yao, T.; et al. Angew. Chem. Int. Ed. 2017, 56 (40), 12191. doi: 10.1002/anie.201706467  doi: 10.1002/anie.201706467

    156. [156]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. -M. Adv. Funct. Mater. 2012, 22 (22), 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    157. [157]

      Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. J. Mater. Chem. A 2013, 1 (46), 1715. doi: 10.1039/c3ta13188b  doi: 10.1039/c3ta13188b

    158. [158]

      Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.; Wang, L.; Chen, J. Int. J. Hydrog. Energy 2019, 44 (14), 7194. doi: 10.1016/j.ijhydene.2019.01.274  doi: 10.1016/j.ijhydene.2019.01.274

    159. [159]

      Zhang, Y. Z.; Chen, Z. W.; Li, J. L.; Lu, Z. Y.; Wang, X. J. Energy Chem. 2021, 54, 36. doi: 10.1016/j.jechem.2020.05.043  doi: 10.1016/j.jechem.2020.05.043

    160. [160]

      Li, X. -H.; Zhang, J.; Chen, X.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. Chem. Mat. 2011, 23 (19), 4344. doi: 10.1021/cm201688v  doi: 10.1021/cm201688v

    161. [161]

      Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Nat. Commun. 2012, 3 (1), 1057. doi: 10.1038/ncomms2152  doi: 10.1038/ncomms2152

    162. [162]

      Huang, H.; Xiao, K.; Tian, N.; Dong, F.; Zhang, T.; Du, X.; Zhang, Y. J. Mater. Chem. A 2017, 5 (33), 17452. doi: 10.1039/c7ta04639a  doi: 10.1039/c7ta04639a

    163. [163]

      Liu, Q.; Wang, X.; Yang, Q.; Zhang, Z.; Fang, X. Appl. Surf. Sci. 2018, 450, 46. doi: 10.1016/j.apsusc.2018.04.175  doi: 10.1016/j.apsusc.2018.04.175

    164. [164]

      Lin, B.; Yang, G.; Yang, B.; Zhao, Y. Appl. Catal. B-Environ. 2016, 198, 276. doi: 10.1016/j.apcatb.2016.05.069  doi: 10.1016/j.apcatb.2016.05.069

    165. [165]

      Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6 (24), 1601273. doi: 10.1002/aenm.201601273  doi: 10.1002/aenm.201601273

    166. [166]

      Ji, C.; Yin, S. -N.; Sun, S.; Yang, S. Appl. Surf. Sci. 2018, 434, 1224. doi: 10.1016/j.apsusc.2017.11.233  doi: 10.1016/j.apsusc.2017.11.233

    167. [167]

      Zhu, Y.; Cui, Y.; Xiao, B.; Ou-yang, J.; Li, H.; Chen, Z. Mater. Sci. Semicond. Process. 2021, 129, 10567. doi: 10.1016/j.mssp.2021.105767  doi: 10.1016/j.mssp.2021.105767

    168. [168]

      Lin, B.; Li, J.; Xu, B.; Yan, X.; Yang, B.; Wei, J.; Yang, G. Appl. Catal. B-Environ. 2019, 243, 94. doi: 10.1016/j.apcatb.2018.10.029  doi: 10.1016/j.apcatb.2018.10.029

    169. [169]

      Zhang, X. -H.; Wang, X. -P.; Xiao, J.; Wang, S. -Y.; Huang, D. -K.; Ding, X.; Xiang, Y. -G.; Chen, H. J. Catal. 2017, 350, 64. doi: 10.1016/j.jcat.2017.02.026  doi: 10.1016/j.jcat.2017.02.026

    170. [170]

      Wu, Y.; Zhang, X.; Xing, Y.; Hu, Z.; Tang, H.; Luo, W.; Huang, F.; Cao, Y. ACS Mater. Lett. 2019, 1 (6), 620. doi: 10.1021/acsmaterialslett.9b00325  doi: 10.1021/acsmaterialslett.9b00325

    171. [171]

      Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2016, 55 (5), 1792. doi: 10.1002/anie.201510542  doi: 10.1002/anie.201510542

    172. [172]

      Hu, Z.; Wang, Z.; Zhang, X.; Tang, H.; Liu, X.; Huang, F.; Cao, Y. Iscience 2019, 13, 33. doi: 10.1016/j.isci.2019.02.007  doi: 10.1016/j.isci.2019.02.007

    173. [173]

      Yu, K.; Bi, S.; Ming, W.; Wei, W.; Zhang, Y.; Xu, J.; Qiang, P.; Qiu, F.; Wu, D.; Zhang, F. Polym. Chem. 2019, 10 (27), 3758. doi: 10.1039/c9py00512a  doi: 10.1039/c9py00512a

    174. [174]

      Chu, S.; Wang, Y.; Wang, C.; Yang, J.; Zou, Z. Int. J. Hydrog. Energy 2013, 38 (25), 10768. doi: 10.1016/j.ijhydene.2013.02.035  doi: 10.1016/j.ijhydene.2013.02.035

    175. [175]

      Mohamed Samy, M.; Mekhemer, I. M. A.; Mohamed, M. G.; Hammad Elsayed, M.; Lin, K. -H.; Chen, Y. -K.; Wu, T. -L.; Chou, H. -H.; Kuo, S. -W. Chem. Eur. J. 2022, 446, 137158. doi: 10.1016/j.cej.2022.137158  doi: 10.1016/j.cej.2022.137158

    176. [176]

      Wang, L.; Fernandez-Teran, R.; Zhang, L.; Fernandes, D. L.; Tian, L.; Chen, H.; Tian, H. Angew. Chem. Int. Ed. 2016, 55 (40), 12306. doi: 10.1002/anie.201607018  doi: 10.1002/anie.201607018

    177. [177]

      Zhang, C.; Pan, H.; Chen, C.; Zhou, Y. ACS Macro Lett. 2022, 11 (4), 434. doi: 10.1021/acsmacrolett.2c00035  doi: 10.1021/acsmacrolett.2c00035

    178. [178]

      Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Ed. 2020, 59 (15), 6007. doi: 10.1002/anie.201914424  doi: 10.1002/anie.201914424

    179. [179]

      Wang, X.; Zhang, X.; Zhou, W.; Liu, L.; Ye, J.; Wang, D. Nano Energy 2019, 62, 250. doi: 10.1016/j.nanoen.2019.05.023  doi: 10.1016/j.nanoen.2019.05.023

    180. [180]

      Wang, Y.; Silveri, F.; Bayazit, M. K.; Ruan, Q.; Li, Y.; Xie, J.; Catlow, C. R. A.; Tang, J. Adv. Energy Mater. 2018, 8 (24), 1801084. doi: 10.1002/aenm.201801084  doi: 10.1002/aenm.201801084

    181. [181]

      Xu, S. M.; Sun, W. J.; Meng, X. Y.; Dong, Y. J.; Ding, Y. J. Phys. Chem. C 2021, 125 (44), 24413. doi: 10.1021/acs.jpcc.1c07491  doi: 10.1021/acs.jpcc.1c07491

    182. [182]

      Kisch, H.; Bahnemann, D. J. Phys. Chem. Lett. 2015, 6 (10), 1907. doi: 10.1021/acs.jpclett.5b00521  doi: 10.1021/acs.jpclett.5b00521

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(8)
  • Abstract views(569)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return