Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries
- Corresponding author: Yuanyuan Li, liyynano@hust.edu.cn Jinping Liu, liujp@whut.edu.cn
Citation: Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221100. doi: 10.3866/PKU.WHXB202211005
Wang, L. N.; Menakath, A.; Han, F. D.; Wang, Y.; Zavalij, P. Y.; Gaskell, K. J.; Borodino, O.; Iuga, D.; Brown, S. P.; Wang, C. S.; et al. Nat. Chem. 2019, 11, 789. doi: 10.1038/s41557-019-0304-z
doi: 10.1038/s41557-019-0304-z
Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2021, 33, 2004959. doi: 10.1002/adma.202004959
doi: 10.1002/adma.202004959
Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Angew. Chem. Int. Ed. 2021, 60, 12931. doi: 10.1002/anie.202101537
doi: 10.1002/anie.202101537
Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/c9cs00131j
doi: 10.1039/c9cs00131j
Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L. M.; Wang, Y. G.; Wang, C. S.; Xia, Y. Y. Adv. Energy Mater. 2018, 8, 1703008. doi: 10.1002/aenm.201703008
doi: 10.1002/aenm.201703008
Chao, D. L.; Qiao, S. Z. Joule 2020, 4, 1846. doi: 10.1016/j.joule.2020.07.023
doi: 10.1016/j.joule.2020.07.023
Huang, J. D.; Zhu, Y. H.; Feng, Y.; Han, Y. H.; Gu, Z. Y.; Liu, R. X.; Yang, D. Y.; Chen, K.; Zhang, X. Y.; Sun, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2208008.
doi: 10.3866/PKU.WHXB202208008
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
doi: 10.1126/science.1212741
Liu, W. C.; Liu, W. Y.; Jiang, Y. Q.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Liu, J. P. Chin. Chem. Lett. 2021, 32, 1299. doi: 10.1016/j.cclet.2020.08.0321001-8417/
doi: 10.1016/j.cclet.2020.08.0321001-8417/
Liu, W. Y.; Li, L. P.; Gui, Q. Y.; Deng, B. H.; Li, Y. Y.; Liu, J. P. Acta Phys. -Chim. Sin. 2020, 36, 1904049.
doi: 10.3866/PKU.WHXB201904049
Smith, L.; Dunn, B. Science 2015, 350, 918. doi: 10.1126/science.aad5575
doi: 10.1126/science.aad5575
Eftekhari, A. Adv. Energy Mater. 2018, 8, 1801156. doi: 10.1002/aenm.201801156
doi: 10.1002/aenm.201801156
Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763
doi: 10.1038/nchem.763
Xie, J.; Guan, Y. P.; Huang, Y. Q.; Lu, Y. C. Chem. Mater. 2022, 34, 5176. doi: 10.1021/acs.chemmater.2c00722
doi: 10.1021/acs.chemmater.2c00722
Jabeen, N.; Hussain, A.; Xia, Q. Y.; Sun, S.; Zhu, J. W.; Xia, H. Adv. Mater. 2017, 29, 1700804. doi: 10.1002/adma.201700804
doi: 10.1002/adma.201700804
Zuo, W. H.; Xie, C. Y.; Xu, P.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2017, 29, 1703463. doi: 10.1002/adma.201703463
doi: 10.1002/adma.201703463
Panayotov, D. A.; Frenkel, A. I.; Morris, J. R. ACS Energy Lett. 2017, 2, 1223. doi: 10.1021/acsenergylett.7b00189
doi: 10.1021/acsenergylett.7b00189
Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. Science 2015, 350, 938. doi: 10.1126/science.aab1595
doi: 10.1126/science.aab1595
Pipolo, S.; Salanne, M.; Ferlat, G.; Klotz, S.; Saitta, A. M.; Pietrucci, F. Phys. Rev. Lett. 2017, 119, 245701. doi: 10.1103/PhysRevLett.119.245701
doi: 10.1103/PhysRevLett.119.245701
Chen, M. H.; Xie, S. A.; Zhao, X. Y.; Zhou, W. H.; Li, Y.; Zhang, J. W.; Chen, Z.; Chao, D. L. Energy Storage Mater. 2022, 51, 683. doi: 10.1016/j.ensm.2022.06.052
doi: 10.1016/j.ensm.2022.06.052
Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115. doi: 10.1126/science.264.5162.1115
doi: 10.1126/science.264.5162.1115
Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w
doi: 10.1021/cr500003w
Goodenough, J. B.; Park, K. -S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438
doi: 10.1021/ja3091438
Suo, L. M.; Borodin, O.; Wang, Y. S.; Rong, X. H.; Sun, W.; Fan, X. L.; Xu, S. Y.; Schroeder, M. A.; Cresce, A. V.; Wang, F.; et al. Adv. Energy Mater. 2017, 7, 1701189. doi: 10.1002/aenm.201701189
doi: 10.1002/aenm.201701189
Borodin, O.; Suo, L. M.; Gobet, M.; Ren, X. M.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M. S.; et al. ACS Nano 2017, 11, 10462. doi: 10.1021/acsnano.7b05664
doi: 10.1021/acsnano.7b05664
Dubouis, N.; Lemaire, P.; Mirvaux, B.; Salager, E.; Deschamps, M.; Grimaud, A. Energy Environ. Sci. 2018, 11, 3491. doi: 10.1039/c8ee02456a
doi: 10.1039/c8ee02456a
Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Zhu, Y. C.; Qian, Y. T. Adv. Energy Mater. 2020, 10, 1903665. doi: 10.1002/aenm.201903665
doi: 10.1002/aenm.201903665
Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; von Cresce, A.; et al. Angew. Chem. Int. Ed. 2016, 55, 7136. doi: 10.1002/anie.201602397
doi: 10.1002/anie.201602397
Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.129
doi: 10.1038/nenergy.2016.129
Ko, S.; Yamada, Y.; Miyazaki, K.; Shimada, T.; Watanabe, E.; Tateyama, Y.; Kamiya, T.; Honda, T.; Akikusa, J.; Yamadaa, A. Electrochem. Commun. 2019, 104, 106488. doi: 10.1016/j.elecom.2019.106488
doi: 10.1016/j.elecom.2019.106488
Deng, W. J.; Wang, X. S.; Liu, C. Y.; Li, C.; Chen, J. T.; Zhu, N.; Li, R.; Xue, M. Q. Energy Storage Mater. 2019, 20, 373. doi: 10.1016/j.ensm.2018.10.023
doi: 10.1016/j.ensm.2018.10.023
Chen, L.; Zhang, J. X.; Li, Q.; Vatamanu, J.; Ji, X.; Pollard, T. P.; Cui, C. Y.; Hou, S.; Chen, J.; Yang, C. Y.; et al. ACS Energy Lett. 2020, 5, 968. doi: 10.1021/acsenergylett.0c00348
doi: 10.1021/acsenergylett.0c00348
Zhou, A. X.; Liu, Y.; Zhu, X. Z.; Li, X. Y.; Yue, J. M.; Ma, X. G.; Gu, L.; Hu, Y. S.; Li, H.; Huang, X. J.; et al. Energy Storage Mater. 2021, 42, 438. doi: 10.1016/j.ensm.2021.07.046
doi: 10.1016/j.ensm.2021.07.046
Lee, M. H.; Kim, S. J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K. Y.; Seong, W. M.; Park, H.; Kwon, G.; et al. Mater. Today 2019, 29, 26. doi: 10.1016/j.mattod.2019.02.004
doi: 10.1016/j.mattod.2019.02.004
Jin, T.; Ji, X.; Wang, P. F.; Zhu, K. J.; Zhang, J. X.; Cao, L. S.; Chen, L.; Cui, C. Y.; Deng, T.; Liu, S. F.; et al. Angew. Chem. Int. Ed. 2021, 60, 11943. doi: 10.1002/anie.202017167
doi: 10.1002/anie.202017167
Chen, H.; Zhang, Z. Y.; Wei, Z. X.; Chen, G.; Yang, X.; Wang, C. Z.; Du, F. Sustain. Energy Fuels 2020, 4, 128. doi: 10.1039/c9se00545e
doi: 10.1039/c9se00545e
Han, J.; Mariani, A.; Zhang, H.; Zarrabeitia, M.; Gao, X. P.; Carvalho, D. V.; Varzi, A.; Passerini, S. Energy Storage Mater. 2020, 30, 196. doi: 10.1016/j.ensm.2020.04.028
doi: 10.1016/j.ensm.2020.04.028
Wang, F.; Lin, Y. X.; Suo, L. M.; Fan, X. L.; Gao, T.; Yang, C. Y.; Han, F. D.; Qi, Y.; Xu, K.; Wang, C. S. Energy Environ. Sci. 2016, 9, 3666. doi: 10.1039/c6ee02604d
doi: 10.1039/c6ee02604d
Kidanu, W. G.; Vo, T. N.; So, S.; Hur, J.; Kim, I. Appl. Surf. Sci. 2021, 553, 149496. doi: 10.1016/j.apsusc.2021.149496
doi: 10.1016/j.apsusc.2021.149496
Yang, C. Y.; Chen, J.; Qing, T. T.; Fan, X. L.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A.; et al. Joule 2017, 1, 122. doi: 10.1016/j.joule.2017.08.009
doi: 10.1016/j.joule.2017.08.009
Hou, X.; Wang, R.; He, X.; Pollard, T. P.; Ju, X. K.; Du, L. L.; Paillard, E.; Frielinghaus, H.; Barnsley, L. C.; Borodin, O.; et al. Angew. Chem. Int. Ed. 2021, 60, 22812. doi: 10.1002/anie.202107252
doi: 10.1002/anie.202107252
Hou, X.; Pollard, T. P.; Zhao, W. G.; He, X.; Ju, X. K.; Wang, J.; Du, L. L.; Paillard, E.; Lin, H.; Xu, K.; et al. Small 2022, 18, 2104986. doi: 10.1002/smll.202104986
doi: 10.1002/smll.202104986
Ao, H. S.; Chen, C. Y.; Hou, Z. G.; Cai, W. L.; Liu, M. K.; Jin, Y. A.; Zhang, X.; Zhu, Y. C.; Qian, Y. T. J. Mater. Chem. A 2020, 8, 14190. doi: 10.1039/d0ta04800c
doi: 10.1039/d0ta04800c
Xu, J. J.; Ji, X.; Zhang, J. X.; Yang, C. Y.; Wang, P. F.; Liu, S. F.; Ludwig, K.; Chen, F.; Kofinas, P.; Wang, C. S. Nat. Energy 2022, 7, 186. doi: 10.1038/s41560-021-00977-5
doi: 10.1038/s41560-021-00977-5
Vedhanarayanan, B.; Ji, X. B.; Lakshmi, K. C. S.; Lin, T. W. Chem. Eng. J. 2022, 427, 130966. doi: 10.1016/j.cej.2021.130966
doi: 10.1016/j.cej.2021.130966
Yue, J. M.; Zhang, J. K.; Tong, Y. X.; Chen, M.; Liu, L. L.; Jiang, L. W.; Lv, T. S.; Hu, Y. S.; Li, H.; Huang, X. J.; et al. Nat. Chem. 2021, 13, 1061. doi: 10.1038/s41557-021-00787-y
doi: 10.1038/s41557-021-00787-y
Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X. L.; Gao, T.; Edison, N.; Liang, Y. J.; Sun, W.; et al. Joule 2018, 2, 927. doi: 10.1016/j.joule.2018.02.011
doi: 10.1016/j.joule.2018.02.011
Chen, J. W.; Vatamanu, J.; Xing, L. D.; Borodin, O.; Chen, H. Y.; Guan, X. C.; Liu, X.; Xu, K.; Li, W. S. Adv. Energy Mater. 2020, 10, 1902654. doi: 10.1002/aenm.201902654
doi: 10.1002/aenm.201902654
Shang, Y. X.; Chen, N.; Li, Y. J.; Chen, S.; Lai, J. N.; Huang, Y. X.; Qu, W. J.; Wu, F.; Chen, R. J. Adv. Mater. 2020, 32, 2004017. doi: 10.1002/adma.202004017
doi: 10.1002/adma.202004017
Xiao, D. W.; Dou, Q. Y.; Zhang, L.; Ma, Y. L.; Shi, S. Q.; Lei, S. L.; Yu, H. Y.; Yan, X. B. Adv. Funct. Mater. 2019, 29, 1904136. doi: 10.1002/adfm.201904136
doi: 10.1002/adfm.201904136
Xie, J.; Liang, Z. J.; Lu, Y. C. Nat. Mater. 2020, 19, 1006. doi: 10.1038/s41563-020-0667-y
doi: 10.1038/s41563-020-0667-y
Dong, D. J.; Xie, J.; Liang, Z. J.; Lu, Y. C. ACS Energy Lett. 2022, 7, 123. doi: 10.1021/acsenergylett.1c02064
doi: 10.1021/acsenergylett.1c02064
Bi, H. B.; Wang, X. S.; Liu, H. L.; He, Y. L.; Wang, W. J.; Deng, W. J.; Ma, X. L.; Wang, Y. S.; Rao, W.; Chai, Y. Q.; et al. Adv. Mater. 2020, 32, 2000074. doi: 10.1002/adma.202000074
doi: 10.1002/adma.202000074
Jaumaux, P.; Yang, X.; Zhang, B.; Safaei, J.; Tang, X.; Zhou, D.; Wang, C. S.; Wang, G. X. Angew. Chem. Int. Ed. 2021, 60, 19965. doi: 10.1002/anie.202107389
doi: 10.1002/anie.202107389
Wu, S. L.; Su, B. Z.; Sun, M. Z.; Gu, S.; Lu, Z. G.; Zhang, K. L.; Yu, D. Y. W.; Huang, B. L.; Wang, P. F.; Lee, C. S.; et al. Adv. Mater. 2021, 33, 2102390. doi: 10.1002/adma.202102390
doi: 10.1002/adma.202102390
Jiang, P.; Chen, L.; Shao, H. Z.; Huang, S. H.; Wang, Q. S.; Su, Y. B.; Yan, X. S.; Liang, X. M.; Zhang, J. J.; Feng, J. W.; et al. ACS Energy Lett. 2019, 4, 1419. doi: 10.1021/acsenergylett.9b00968
doi: 10.1021/acsenergylett.9b00968
Wang, Y.; Wang, T. R.; Dong, D. J.; Xie, J.; Guan, Y. P.; Huang, Y. Q.; Fan, J.; Lu, Y. C. Matter 2022, 5, 162. doi: 10.1016/j.matt.2021.10.021
doi: 10.1016/j.matt.2021.10.021
Shang, Y. X.; Chen, S.; Chen, N.; Li, Y. J.; Lai, J. N.; Ma, Y.; Chen, J.; Wu, F.; Chen, R. J. Energy Environ. Sci. 2022, 15, 2653. doi: 10.1039/d2ee00417h
doi: 10.1039/d2ee00417h
Lin, R.; Ke, C. M.; Chen, J.; Liu, S.; Wang, J. H. Joule 2022, 6, 399. doi: 10.1016/j.joule.2022.01.002
doi: 10.1016/j.joule.2022.01.002
Han, J.; Zarrabeitia, M.; Mariani, A.; Jusys, Z.; Hekmatfar, M.; Zhang, H.; Geiger, D.; Kaiser, U.; Behm, R. J.; Varzi, A.; et al. Nano Energy 2020, 77, 105176. doi: 10.1016/j.nanoen.2020.105176
doi: 10.1016/j.nanoen.2020.105176
Jiang, L. W.; Liu, L. L.; Yue, J. M.; Zhang, Q. Q.; Zhou, A. X.; Borodin, O.; Suo, L. M.; Li, H.; Chen, L. Q.; Xu, K.; et al. Adv. Mater. 2020, 32, 1904427. doi: 10.1002/adma.201904427
doi: 10.1002/adma.201904427
Zheng, Q. F.; Miura, S.; Miyazaki, K.; Ko, S.; Watanabe, E.; Okoshi, M.; Chou, C. P.; Nishimura, Y.; Nakai, H.; Kamiya, T.; et al. Angew. Chem. Int. Ed. 2019, 58, 14202. doi: 10.1002/anie.201908830
doi: 10.1002/anie.201908830
Kuhnel, R. S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2017, 2, 2005. doi: 10.1021/acsenergylett.7b00623
doi: 10.1021/acsenergylett.7b00623
Ko, S.; Yamada, Y.; Yamada, A. Electrochem. Commun. 2020, 116, 106764. doi: 10.1016/j.elecom.2020.106764
doi: 10.1016/j.elecom.2020.106764
Zhang, M.; Wang, W. J.; Liang, X. H.; Li, C.; Deng, W. J.; Chen, H. B.; Li, R. Chin. Chem. Lett. 2021, 32, 2217. doi: 10.1016/j.cclet.2020.12.0171001-8417/
doi: 10.1016/j.cclet.2020.12.0171001-8417/
Zhang, X. Q.; Chen, J. W.; Xu, Z. B.; Dong, Q.; Ao, H. S.; Hou, Z. G.; Qian, Y. T. Energy Storage Mater. 2022, 46, 147. doi: 10.1016/j.ensm.2022.01.009
doi: 10.1016/j.ensm.2022.01.009
Ma, Z. K.; Chen, J. W.; Vatamanu, J.; Borodin, O.; Bedrov, D.; Zhou, X. G.; Zhang, W. G.; Li, W. S.; Xu, K.; Xing, L. D. Energy Storage Mater. 2022, 45, 903. doi: 10.1016/j.ensm.2021.12.045
doi: 10.1016/j.ensm.2021.12.045
Liu, J. H.; Yang, C.; Chi, X. W.; Wen, B.; Wang, W. K.; Liu, Y. Adv. Funct. Mater. 2022, 32, 2106811. doi: 10.1002/adfm.202106811
doi: 10.1002/adfm.202106811
Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Angew. Chem. Int. Ed. 2019, 58, 16994. doi: 10.1002/anie.201908913
doi: 10.1002/anie.201908913
Sui, Y. M.; Yu, M. L.; Xu, Y. K.; Ji, X. L. J. Electrochem. Soc. 2022, 169, 030537. doi: 10.1149/1945-7111/ac53cd
doi: 10.1149/1945-7111/ac53cd
Abraham, D. P.; Heaton, J. R.; Kang, S. -H.; Dees, D. W.; Jansen, A. N. J. Electrochem. Soc. 2008, 155, A41. doi: 10.1149/1.2801366
doi: 10.1149/1.2801366
Sun, T. J.; Zheng, S. B.; Du, H. H.; Tao, Z. L. Nano-Micro Lett. 2021, 13, 204. doi: 10.1007/s40820-021-00733-0
doi: 10.1007/s40820-021-00733-0
Jiang, L.; Dong, D.; Lu, Y. C. Nano Res. Energy 2022, 1, e9120003. doi: 10.26599/NRE.2022.9120003
doi: 10.26599/NRE.2022.9120003
Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. Nat. Energy 2017, 2, 17108. doi: 10.1038/nenergy.2017.108
doi: 10.1038/nenergy.2017.108
Feng, Y.; Zhou, L. M.; Ma, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Energy Environ. Sci. 2022, 15, 1711. doi: 10.1039/d1ee03292e
doi: 10.1039/d1ee03292e
Wang, H.; Chen, Z.; Ji, Z.; Wang, P.; Wang, J.; Ling, W.; Huang, Y. Mater. Today Energy 2021, 19, 100577 doi: 10.1016/j.mtener.2020.100577
doi: 10.1016/j.mtener.2020.100577
Ramanujapuram, A.; Yushin, G. Adv. Energy Mater. 2018, 8, 1802624. doi: 10.1002/aenm.201802624
doi: 10.1002/aenm.201802624
Wang, H. Q.; Zhang, H. Z.; Cheng, Y.; Feng, K.; Li, X. F.; Zhang, H. M. Electrochim. Acta 2018, 278, 279. doi: 10.1016/j.electacta.2018.05.047
doi: 10.1016/j.electacta.2018.05.047
Suo, L. M.; Han, F. D.; Fan, X. L.; Liu, H. L.; Xu, K.; Wang, C. S. J. Mater. Chem. A 2016, 4, 6639. doi: 10.1039/c6ta00451b
doi: 10.1039/c6ta00451b
Kim, H. I.; Shin, E.; Kim, S. H.; Lee, K. M.; Park, J.; Kang, S. J.; So, S.; Roh, K. C.; Kwak, S. K.; Lee, S. Y. Energy Storage Mater. 2021, 36, 222. doi: 10.1016/j.ensm.2020.12.024
doi: 10.1016/j.ensm.2020.12.024
Nian, Q. S.; Liu, S.; Liu, J.; Zhang, Q.; Shi, J. Q.; Liu, C.; Wang, R.; Tao, Z. L.; Chen, J. ACS Appl. Energ. Mater. 2019, 2, 4370. doi: 10.1021/acsaem.9b00566
doi: 10.1021/acsaem.9b00566
Zhu, K. J.; Li, Z. P.; Sun, Z. Q.; Liu, P.; Jin, T.; Chen, X. C.; Li, H. X.; Lu, W. B.; Jiao, L. F. Small 2022, 18, 2107662. doi: 10.1002/smll.202107662
doi: 10.1002/smll.202107662
Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H.; et al. Nat. Energy 2019, 4, 495. doi: 10.1038/s41560-019-0388-0
doi: 10.1038/s41560-019-0388-0
Sun, T. J.; Yuan, X. M.; Wang, K.; Zheng, S. B.; Shi, J. Q.; Zhang, Q.; Cai, W. S.; Liang, J.; Tao, Z. L. J. Mater. Chem. A 2021, 9, 7042. doi: 10.1039/d0ta12409e
doi: 10.1039/d0ta12409e
Sun, T. J.; Du, H. H.; Zheng, S. B.; Shi, J. Q.; Tao, Z. L. Adv. Funct. Mater. 2021, 31, 2010127. doi: 10.1002/adfm.202010127
doi: 10.1002/adfm.202010127
Tron, A.; Jeong, S.; Park, Y. D.; Mun, J. ACS Sustain. Chem. Eng. 2019, 7, 14531. doi: 10.1021/acssuschemeng.9b02042
doi: 10.1021/acssuschemeng.9b02042
Jiang, Y. Q.; Ma, K.; Sun, M. L.; Li, Y. Y.; Liu, J. P. Energy Environ. Mater. 2022, 0, 1. doi: 10.1002/eem2.12357
doi: 10.1002/eem2.12357
Han, L.; Liu, K. Z.; Wang, M. H.; Wang, K. F.; Fang, L. M.; Chen, H. T.; Zhou, J.; Lu, X. Adv. Funct. Mater. 2018, 28, 1704195. doi: 10.1002/adfm.201704195
doi: 10.1002/adfm.201704195
Sun, Y. L.; Wang, Y.; Liu, L. Y.; Liu, B.; Zhang, Q. N.; Wu, D. D.; Zhang, H. Z.; Yan, X. B. J. Mater. Chem. A 2020, 8, 17998. doi: 10.1039/d0ta04538a
doi: 10.1039/d0ta04538a
Pei, Z. X.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Fei, J. Y.; Wei, L.; Chen, J. S.; Wang, C.; Qi, R. J.; Liu, Z. W.; et al. Angew. Chem. Int. Ed. 2020, 59, 4793. doi: 10.1002/anie.201915836
doi: 10.1002/anie.201915836
Sui, X. J.; Guo, H. S.; Chen, P. G.; Zhu, Y. N.; Wen, C. Y.; Gao, Y. H.; Yang, J.; Zhang, X. Y.; Zhang, L. Adv. Funct. Mater. 2020, 30, 1907986. doi: 10.1002/adfm.201907986
doi: 10.1002/adfm.201907986
Mo, F. N.; Chen, Z.; Liang, G. J.; Wang, D. H.; Zhao, Y. W.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Adv. Energy Mater. 2020, 10, 2000035. doi: 10.1002/aenm.202000035
doi: 10.1002/aenm.202000035
Yang, J. B.; Xu, Z.; Wang, J. J.; Gai, L. G.; Ji, X. X.; Jiang, H. H.; Liu, L. B. Adv. Funct. Mater. 2021, 31, 2009438. doi: 10.1002/adfm.202009438
doi: 10.1002/adfm.202009438
Li, X. L.; Lou, D. Y.; Wang, H. Y.; Sun, X. Y.; Li, J.; Liu, Y. N. Adv. Funct. Mater. 2020, 30, 2007291. doi: 10.1002/adfm.202007291
doi: 10.1002/adfm.202007291
Lu, N.; Na, R. Q.; Li, L. B.; Zhang, C. Y.; Chen, Z. Q.; Zhang, S. L.; Luan, J. S.; Wang, G. B. ACS Appl. Energ. Mater. 2020, 3, 1944. doi: 10.1021/acsaem.9b02379
doi: 10.1021/acsaem.9b02379
Peng, H.; Gao, X. J.; Sun, K. J.; Xie, X.; Ma, G. F.; Zhou, X. Z.; Lei, Z. Q. Chem. Eng. J. 2021, 422, 130353. doi: 10.1016/j.cej.2021.130353
doi: 10.1016/j.cej.2021.130353
Wu, S.; Lou, D. Y.; Wang, H. Y.; Jiang, D. Q.; Fang, X.; Meng, J. Q.; Sun, X. Y.; Li, J. Chem. Eng. J. 2022, 435, 135057. doi: 10.1016/j.cej.2022.135057
doi: 10.1016/j.cej.2022.135057
Song, L.; Dai, C. L.; Jin, X. T.; Xiao, Y. K.; Han, Y. Y.; Wang, Y.; Zhang, X. Q.; Li, X. Y.; Zhang, S. H.; Zhang, J. T.; et al. Adv. Funct. Mater. 2022, 32, 2203270. doi: 10.1002/adfm.202203270
doi: 10.1002/adfm.202203270
Peng, J. B.; Zhou, M. H.; Gao, Y. F.; Wang, J. F.; Cao, Y. X.; Wang, W. J.; Wu, D. C.; Yang, Y. Y. J. Mater. Chem. A 2021, 9, 25073. doi: 10.1039/d1ta06617j
doi: 10.1039/d1ta06617j
Chen, M. N.; Shi, X. Y.; Wang, X. L.; Liu, H. Q.; Wang, S.; Meng, C. X.; Liu, Y.; Zhang, L. Z.; Zhu, Y. Y.; Wu, Z. S. J. Energy Chem. 2022, 72, 195. doi: 10.1016/j.jechem.2022.04.0292095-4956
doi: 10.1016/j.jechem.2022.04.0292095-4956
Jin, X. T.; Song, L.; Dai, C. L.; Xiao, Y. K.; Han, Y. Y.; Zhang, X. Q.; Li, X. Y.; Bai, C. C.; Zhang, J. T.; Zhao, Y.; et al. Adv. Energy Mater. 2021, 11, 2101523. doi: 10.1002/aenm.202101523
doi: 10.1002/aenm.202101523
Cheng, Y. B.; Chi, X. W.; Yang, J. H.; Liu, Y. J. Energy Storage 2021, 40, 102701. doi: 10.1016/j.est.2021.10270
doi: 10.1016/j.est.2021.10270
Lu, C.; Chen, X. Nano Lett. 2020, 20, 1907. doi: 10.1021/acs.nanolett.9b05148
doi: 10.1021/acs.nanolett.9b05148
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009