Citation: Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221100. doi: 10.3866/PKU.WHXB202211005 shu

Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries

  • Corresponding author: Yuanyuan Li, liyynano@hust.edu.cn Jinping Liu, liujp@whut.edu.cn
  • Received Date: 3 November 2022
    Revised Date: 6 December 2022
    Accepted Date: 12 December 2022
    Available Online: 19 December 2022

    Fund Project: the National Natural Science Foundation of China 51972257the National Natural Science Foundation of China 52172229the National Natural Science Foundation of China 52072136the Fundamental Research Funds for the Central Universities 2022IVA197the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) 2022-KF-20

  • Aqueous electrochemical energy storage (EES) devices have inherent advantages, such as high safety, environmental-friendliness, and low cost, exhibiting significant potential for application in future smart grids, portable/wearable electronics, and other fields. However, the low thermodynamic decomposition voltage of water (1.23 V) results in a narrow electrochemical stability window (ESW) of the aqueous electrolyte, limiting the selection of electrode materials. Therefore, aqueous alkali metal-ion batteries (AABs) have a low operating voltage and energy density. Considering the diverse application of AABs, the operation of AABs under extreme temperature conditions faces critical challenges. At a low temperature, the electrolyte freezes easily owing to the high freezing point of water (0 ℃); the ionic conductivity of the electrolyte decreases significantly, and the charge/discharge polarization increases. Therefore, AABs generally have a low capacity, poor rate performance, and low energy/power densities, and are unable to operate normally. At a high temperature, the water activity improves, and the side reaction of water decomposition intensifies. Hence, the cycle performance of AABs deteriorates, and the battery exhibits safety issues, such as expansion and thermal runaway. In recent years, significant research has been conducted to overcome the shortcomings of the aqueous EES, inspiring further research and development of future high-performance aqueous EESs. Reducing the water activity and increasing the hydrogen evolution reaction (HER) or oxygen evolution reaction (OER) overpotential are effective strategies to widen the ESW of aqueous electrolytes, which are mostly realized by utilizing high concentration salts, additives, and co-solvents. Using salt additives or organic co-solvents to break the intermolecular hydrogen bonds of water and reduce the interfacial charge transfer resistance are effective strategies to improve the low-temperature performance of AABs. Additionally, salt additives/co-solvents with high thermal stability can form strong hydrogen bonds with water, effectively improving the water retention and reducing the water activity, which ensure the enhanced electrochemical performance of the AABs at high temperatures. This review systematically summarizes the research progress of electrolyte design for AABs with a high voltage/wide operating temperature range. From the perspective of thermodynamics and kinetics, various strategies to widen the ESW and operating temperature range of the electrolyte as well as the relevant mechanisms are introduced. Potential concepts for designing high-voltage aqueous electrolytes with operation ability at a wide temperature range are proposed, and the development direction of high-performance AABs is presented.
  • 加载中
    1. [1]

      Wang, L. N.; Menakath, A.; Han, F. D.; Wang, Y.; Zavalij, P. Y.; Gaskell, K. J.; Borodino, O.; Iuga, D.; Brown, S. P.; Wang, C. S.; et al. Nat. Chem. 2019, 11, 789. doi: 10.1038/s41557-019-0304-z  doi: 10.1038/s41557-019-0304-z

    2. [2]

      Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2021, 33, 2004959. doi: 10.1002/adma.202004959  doi: 10.1002/adma.202004959

    3. [3]

      Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Angew. Chem. Int. Ed. 2021, 60, 12931. doi: 10.1002/anie.202101537  doi: 10.1002/anie.202101537

    4. [4]

      Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/c9cs00131j  doi: 10.1039/c9cs00131j

    5. [5]

      Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L. M.; Wang, Y. G.; Wang, C. S.; Xia, Y. Y. Adv. Energy Mater. 2018, 8, 1703008. doi: 10.1002/aenm.201703008  doi: 10.1002/aenm.201703008

    6. [6]

      Chao, D. L.; Qiao, S. Z. Joule 2020, 4, 1846. doi: 10.1016/j.joule.2020.07.023  doi: 10.1016/j.joule.2020.07.023

    7. [7]

      Huang, J. D.; Zhu, Y. H.; Feng, Y.; Han, Y. H.; Gu, Z. Y.; Liu, R. X.; Yang, D. Y.; Chen, K.; Zhang, X. Y.; Sun, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2208008.  doi: 10.3866/PKU.WHXB202208008

    8. [8]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    9. [9]

      Liu, W. C.; Liu, W. Y.; Jiang, Y. Q.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Liu, J. P. Chin. Chem. Lett. 2021, 32, 1299. doi: 10.1016/j.cclet.2020.08.0321001-8417/  doi: 10.1016/j.cclet.2020.08.0321001-8417/

    10. [10]

      Liu, W. Y.; Li, L. P.; Gui, Q. Y.; Deng, B. H.; Li, Y. Y.; Liu, J. P. Acta Phys. -Chim. Sin. 2020, 36, 1904049.  doi: 10.3866/PKU.WHXB201904049

    11. [11]

      Smith, L.; Dunn, B. Science 2015, 350, 918. doi: 10.1126/science.aad5575  doi: 10.1126/science.aad5575

    12. [12]

      Eftekhari, A. Adv. Energy Mater. 2018, 8, 1801156. doi: 10.1002/aenm.201801156  doi: 10.1002/aenm.201801156

    13. [13]

      Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763  doi: 10.1038/nchem.763

    14. [14]

      Xie, J.; Guan, Y. P.; Huang, Y. Q.; Lu, Y. C. Chem. Mater. 2022, 34, 5176. doi: 10.1021/acs.chemmater.2c00722  doi: 10.1021/acs.chemmater.2c00722

    15. [15]

      Jabeen, N.; Hussain, A.; Xia, Q. Y.; Sun, S.; Zhu, J. W.; Xia, H. Adv. Mater. 2017, 29, 1700804. doi: 10.1002/adma.201700804  doi: 10.1002/adma.201700804

    16. [16]

      Zuo, W. H.; Xie, C. Y.; Xu, P.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2017, 29, 1703463. doi: 10.1002/adma.201703463  doi: 10.1002/adma.201703463

    17. [17]

      Panayotov, D. A.; Frenkel, A. I.; Morris, J. R. ACS Energy Lett. 2017, 2, 1223. doi: 10.1021/acsenergylett.7b00189  doi: 10.1021/acsenergylett.7b00189

    18. [18]

      Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. Science 2015, 350, 938. doi: 10.1126/science.aab1595  doi: 10.1126/science.aab1595

    19. [19]

      Pipolo, S.; Salanne, M.; Ferlat, G.; Klotz, S.; Saitta, A. M.; Pietrucci, F. Phys. Rev. Lett. 2017, 119, 245701. doi: 10.1103/PhysRevLett.119.245701  doi: 10.1103/PhysRevLett.119.245701

    20. [20]

      Chen, M. H.; Xie, S. A.; Zhao, X. Y.; Zhou, W. H.; Li, Y.; Zhang, J. W.; Chen, Z.; Chao, D. L. Energy Storage Mater. 2022, 51, 683. doi: 10.1016/j.ensm.2022.06.052  doi: 10.1016/j.ensm.2022.06.052

    21. [21]

      Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115. doi: 10.1126/science.264.5162.1115  doi: 10.1126/science.264.5162.1115

    22. [22]

      Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w  doi: 10.1021/cr500003w

    23. [23]

      Goodenough, J. B.; Park, K. -S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438  doi: 10.1021/ja3091438

    24. [24]

      Suo, L. M.; Borodin, O.; Wang, Y. S.; Rong, X. H.; Sun, W.; Fan, X. L.; Xu, S. Y.; Schroeder, M. A.; Cresce, A. V.; Wang, F.; et al. Adv. Energy Mater. 2017, 7, 1701189. doi: 10.1002/aenm.201701189  doi: 10.1002/aenm.201701189

    25. [25]

      Borodin, O.; Suo, L. M.; Gobet, M.; Ren, X. M.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M. S.; et al. ACS Nano 2017, 11, 10462. doi: 10.1021/acsnano.7b05664  doi: 10.1021/acsnano.7b05664

    26. [26]

      Dubouis, N.; Lemaire, P.; Mirvaux, B.; Salager, E.; Deschamps, M.; Grimaud, A. Energy Environ. Sci. 2018, 11, 3491. doi: 10.1039/c8ee02456a  doi: 10.1039/c8ee02456a

    27. [27]

      Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Zhu, Y. C.; Qian, Y. T. Adv. Energy Mater. 2020, 10, 1903665. doi: 10.1002/aenm.201903665  doi: 10.1002/aenm.201903665

    28. [28]

      Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; von Cresce, A.; et al. Angew. Chem. Int. Ed. 2016, 55, 7136. doi: 10.1002/anie.201602397  doi: 10.1002/anie.201602397

    29. [29]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.129  doi: 10.1038/nenergy.2016.129

    30. [30]

      Ko, S.; Yamada, Y.; Miyazaki, K.; Shimada, T.; Watanabe, E.; Tateyama, Y.; Kamiya, T.; Honda, T.; Akikusa, J.; Yamadaa, A. Electrochem. Commun. 2019, 104, 106488. doi: 10.1016/j.elecom.2019.106488  doi: 10.1016/j.elecom.2019.106488

    31. [31]

      Deng, W. J.; Wang, X. S.; Liu, C. Y.; Li, C.; Chen, J. T.; Zhu, N.; Li, R.; Xue, M. Q. Energy Storage Mater. 2019, 20, 373. doi: 10.1016/j.ensm.2018.10.023  doi: 10.1016/j.ensm.2018.10.023

    32. [32]

      Chen, L.; Zhang, J. X.; Li, Q.; Vatamanu, J.; Ji, X.; Pollard, T. P.; Cui, C. Y.; Hou, S.; Chen, J.; Yang, C. Y.; et al. ACS Energy Lett. 2020, 5, 968. doi: 10.1021/acsenergylett.0c00348  doi: 10.1021/acsenergylett.0c00348

    33. [33]

      Zhou, A. X.; Liu, Y.; Zhu, X. Z.; Li, X. Y.; Yue, J. M.; Ma, X. G.; Gu, L.; Hu, Y. S.; Li, H.; Huang, X. J.; et al. Energy Storage Mater. 2021, 42, 438. doi: 10.1016/j.ensm.2021.07.046  doi: 10.1016/j.ensm.2021.07.046

    34. [34]

      Lee, M. H.; Kim, S. J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K. Y.; Seong, W. M.; Park, H.; Kwon, G.; et al. Mater. Today 2019, 29, 26. doi: 10.1016/j.mattod.2019.02.004  doi: 10.1016/j.mattod.2019.02.004

    35. [35]

      Jin, T.; Ji, X.; Wang, P. F.; Zhu, K. J.; Zhang, J. X.; Cao, L. S.; Chen, L.; Cui, C. Y.; Deng, T.; Liu, S. F.; et al. Angew. Chem. Int. Ed. 2021, 60, 11943. doi: 10.1002/anie.202017167  doi: 10.1002/anie.202017167

    36. [36]

      Chen, H.; Zhang, Z. Y.; Wei, Z. X.; Chen, G.; Yang, X.; Wang, C. Z.; Du, F. Sustain. Energy Fuels 2020, 4, 128. doi: 10.1039/c9se00545e  doi: 10.1039/c9se00545e

    37. [37]

      Han, J.; Mariani, A.; Zhang, H.; Zarrabeitia, M.; Gao, X. P.; Carvalho, D. V.; Varzi, A.; Passerini, S. Energy Storage Mater. 2020, 30, 196. doi: 10.1016/j.ensm.2020.04.028  doi: 10.1016/j.ensm.2020.04.028

    38. [38]

      Wang, F.; Lin, Y. X.; Suo, L. M.; Fan, X. L.; Gao, T.; Yang, C. Y.; Han, F. D.; Qi, Y.; Xu, K.; Wang, C. S. Energy Environ. Sci. 2016, 9, 3666. doi: 10.1039/c6ee02604d  doi: 10.1039/c6ee02604d

    39. [39]

      Kidanu, W. G.; Vo, T. N.; So, S.; Hur, J.; Kim, I. Appl. Surf. Sci. 2021, 553, 149496. doi: 10.1016/j.apsusc.2021.149496  doi: 10.1016/j.apsusc.2021.149496

    40. [40]

      Yang, C. Y.; Chen, J.; Qing, T. T.; Fan, X. L.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A.; et al. Joule 2017, 1, 122. doi: 10.1016/j.joule.2017.08.009  doi: 10.1016/j.joule.2017.08.009

    41. [41]

      Hou, X.; Wang, R.; He, X.; Pollard, T. P.; Ju, X. K.; Du, L. L.; Paillard, E.; Frielinghaus, H.; Barnsley, L. C.; Borodin, O.; et al. Angew. Chem. Int. Ed. 2021, 60, 22812. doi: 10.1002/anie.202107252  doi: 10.1002/anie.202107252

    42. [42]

      Hou, X.; Pollard, T. P.; Zhao, W. G.; He, X.; Ju, X. K.; Wang, J.; Du, L. L.; Paillard, E.; Lin, H.; Xu, K.; et al. Small 2022, 18, 2104986. doi: 10.1002/smll.202104986  doi: 10.1002/smll.202104986

    43. [43]

      Ao, H. S.; Chen, C. Y.; Hou, Z. G.; Cai, W. L.; Liu, M. K.; Jin, Y. A.; Zhang, X.; Zhu, Y. C.; Qian, Y. T. J. Mater. Chem. A 2020, 8, 14190. doi: 10.1039/d0ta04800c  doi: 10.1039/d0ta04800c

    44. [44]

      Xu, J. J.; Ji, X.; Zhang, J. X.; Yang, C. Y.; Wang, P. F.; Liu, S. F.; Ludwig, K.; Chen, F.; Kofinas, P.; Wang, C. S. Nat. Energy 2022, 7, 186. doi: 10.1038/s41560-021-00977-5  doi: 10.1038/s41560-021-00977-5

    45. [45]

      Vedhanarayanan, B.; Ji, X. B.; Lakshmi, K. C. S.; Lin, T. W. Chem. Eng. J. 2022, 427, 130966. doi: 10.1016/j.cej.2021.130966  doi: 10.1016/j.cej.2021.130966

    46. [46]

      Yue, J. M.; Zhang, J. K.; Tong, Y. X.; Chen, M.; Liu, L. L.; Jiang, L. W.; Lv, T. S.; Hu, Y. S.; Li, H.; Huang, X. J.; et al. Nat. Chem. 2021, 13, 1061. doi: 10.1038/s41557-021-00787-y  doi: 10.1038/s41557-021-00787-y

    47. [47]

      Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X. L.; Gao, T.; Edison, N.; Liang, Y. J.; Sun, W.; et al. Joule 2018, 2, 927. doi: 10.1016/j.joule.2018.02.011  doi: 10.1016/j.joule.2018.02.011

    48. [48]

      Chen, J. W.; Vatamanu, J.; Xing, L. D.; Borodin, O.; Chen, H. Y.; Guan, X. C.; Liu, X.; Xu, K.; Li, W. S. Adv. Energy Mater. 2020, 10, 1902654. doi: 10.1002/aenm.201902654  doi: 10.1002/aenm.201902654

    49. [49]

      Shang, Y. X.; Chen, N.; Li, Y. J.; Chen, S.; Lai, J. N.; Huang, Y. X.; Qu, W. J.; Wu, F.; Chen, R. J. Adv. Mater. 2020, 32, 2004017. doi: 10.1002/adma.202004017  doi: 10.1002/adma.202004017

    50. [50]

      Xiao, D. W.; Dou, Q. Y.; Zhang, L.; Ma, Y. L.; Shi, S. Q.; Lei, S. L.; Yu, H. Y.; Yan, X. B. Adv. Funct. Mater. 2019, 29, 1904136. doi: 10.1002/adfm.201904136  doi: 10.1002/adfm.201904136

    51. [51]

      Xie, J.; Liang, Z. J.; Lu, Y. C. Nat. Mater. 2020, 19, 1006. doi: 10.1038/s41563-020-0667-y  doi: 10.1038/s41563-020-0667-y

    52. [52]

      Dong, D. J.; Xie, J.; Liang, Z. J.; Lu, Y. C. ACS Energy Lett. 2022, 7, 123. doi: 10.1021/acsenergylett.1c02064  doi: 10.1021/acsenergylett.1c02064

    53. [53]

      Bi, H. B.; Wang, X. S.; Liu, H. L.; He, Y. L.; Wang, W. J.; Deng, W. J.; Ma, X. L.; Wang, Y. S.; Rao, W.; Chai, Y. Q.; et al. Adv. Mater. 2020, 32, 2000074. doi: 10.1002/adma.202000074  doi: 10.1002/adma.202000074

    54. [54]

      Jaumaux, P.; Yang, X.; Zhang, B.; Safaei, J.; Tang, X.; Zhou, D.; Wang, C. S.; Wang, G. X. Angew. Chem. Int. Ed. 2021, 60, 19965. doi: 10.1002/anie.202107389  doi: 10.1002/anie.202107389

    55. [55]

      Wu, S. L.; Su, B. Z.; Sun, M. Z.; Gu, S.; Lu, Z. G.; Zhang, K. L.; Yu, D. Y. W.; Huang, B. L.; Wang, P. F.; Lee, C. S.; et al. Adv. Mater. 2021, 33, 2102390. doi: 10.1002/adma.202102390  doi: 10.1002/adma.202102390

    56. [56]

      Jiang, P.; Chen, L.; Shao, H. Z.; Huang, S. H.; Wang, Q. S.; Su, Y. B.; Yan, X. S.; Liang, X. M.; Zhang, J. J.; Feng, J. W.; et al. ACS Energy Lett. 2019, 4, 1419. doi: 10.1021/acsenergylett.9b00968  doi: 10.1021/acsenergylett.9b00968

    57. [57]

      Wang, Y.; Wang, T. R.; Dong, D. J.; Xie, J.; Guan, Y. P.; Huang, Y. Q.; Fan, J.; Lu, Y. C. Matter 2022, 5, 162. doi: 10.1016/j.matt.2021.10.021  doi: 10.1016/j.matt.2021.10.021

    58. [58]

      Shang, Y. X.; Chen, S.; Chen, N.; Li, Y. J.; Lai, J. N.; Ma, Y.; Chen, J.; Wu, F.; Chen, R. J. Energy Environ. Sci. 2022, 15, 2653. doi: 10.1039/d2ee00417h  doi: 10.1039/d2ee00417h

    59. [59]

      Lin, R.; Ke, C. M.; Chen, J.; Liu, S.; Wang, J. H. Joule 2022, 6, 399. doi: 10.1016/j.joule.2022.01.002  doi: 10.1016/j.joule.2022.01.002

    60. [60]

      Han, J.; Zarrabeitia, M.; Mariani, A.; Jusys, Z.; Hekmatfar, M.; Zhang, H.; Geiger, D.; Kaiser, U.; Behm, R. J.; Varzi, A.; et al. Nano Energy 2020, 77, 105176. doi: 10.1016/j.nanoen.2020.105176  doi: 10.1016/j.nanoen.2020.105176

    61. [61]

      Jiang, L. W.; Liu, L. L.; Yue, J. M.; Zhang, Q. Q.; Zhou, A. X.; Borodin, O.; Suo, L. M.; Li, H.; Chen, L. Q.; Xu, K.; et al. Adv. Mater. 2020, 32, 1904427. doi: 10.1002/adma.201904427  doi: 10.1002/adma.201904427

    62. [62]

      Zheng, Q. F.; Miura, S.; Miyazaki, K.; Ko, S.; Watanabe, E.; Okoshi, M.; Chou, C. P.; Nishimura, Y.; Nakai, H.; Kamiya, T.; et al. Angew. Chem. Int. Ed. 2019, 58, 14202. doi: 10.1002/anie.201908830  doi: 10.1002/anie.201908830

    63. [63]

      Kuhnel, R. S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2017, 2, 2005. doi: 10.1021/acsenergylett.7b00623  doi: 10.1021/acsenergylett.7b00623

    64. [64]

      Ko, S.; Yamada, Y.; Yamada, A. Electrochem. Commun. 2020, 116, 106764. doi: 10.1016/j.elecom.2020.106764  doi: 10.1016/j.elecom.2020.106764

    65. [65]

      Zhang, M.; Wang, W. J.; Liang, X. H.; Li, C.; Deng, W. J.; Chen, H. B.; Li, R. Chin. Chem. Lett. 2021, 32, 2217. doi: 10.1016/j.cclet.2020.12.0171001-8417/  doi: 10.1016/j.cclet.2020.12.0171001-8417/

    66. [66]

      Zhang, X. Q.; Chen, J. W.; Xu, Z. B.; Dong, Q.; Ao, H. S.; Hou, Z. G.; Qian, Y. T. Energy Storage Mater. 2022, 46, 147. doi: 10.1016/j.ensm.2022.01.009  doi: 10.1016/j.ensm.2022.01.009

    67. [67]

      Ma, Z. K.; Chen, J. W.; Vatamanu, J.; Borodin, O.; Bedrov, D.; Zhou, X. G.; Zhang, W. G.; Li, W. S.; Xu, K.; Xing, L. D. Energy Storage Mater. 2022, 45, 903. doi: 10.1016/j.ensm.2021.12.045  doi: 10.1016/j.ensm.2021.12.045

    68. [68]

      Liu, J. H.; Yang, C.; Chi, X. W.; Wen, B.; Wang, W. K.; Liu, Y. Adv. Funct. Mater. 2022, 32, 2106811. doi: 10.1002/adfm.202106811  doi: 10.1002/adfm.202106811

    69. [69]

      Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Angew. Chem. Int. Ed. 2019, 58, 16994. doi: 10.1002/anie.201908913  doi: 10.1002/anie.201908913

    70. [70]

      Sui, Y. M.; Yu, M. L.; Xu, Y. K.; Ji, X. L. J. Electrochem. Soc. 2022, 169, 030537. doi: 10.1149/1945-7111/ac53cd  doi: 10.1149/1945-7111/ac53cd

    71. [71]

      Abraham, D. P.; Heaton, J. R.; Kang, S. -H.; Dees, D. W.; Jansen, A. N. J. Electrochem. Soc. 2008, 155, A41. doi: 10.1149/1.2801366  doi: 10.1149/1.2801366

    72. [72]

      Sun, T. J.; Zheng, S. B.; Du, H. H.; Tao, Z. L. Nano-Micro Lett. 2021, 13, 204. doi: 10.1007/s40820-021-00733-0  doi: 10.1007/s40820-021-00733-0

    73. [73]

      Jiang, L.; Dong, D.; Lu, Y. C. Nano Res. Energy 2022, 1, e9120003. doi: 10.26599/NRE.2022.9120003  doi: 10.26599/NRE.2022.9120003

    74. [74]

      Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. Nat. Energy 2017, 2, 17108. doi: 10.1038/nenergy.2017.108  doi: 10.1038/nenergy.2017.108

    75. [75]

      Feng, Y.; Zhou, L. M.; Ma, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Energy Environ. Sci. 2022, 15, 1711. doi: 10.1039/d1ee03292e  doi: 10.1039/d1ee03292e

    76. [76]

      Wang, H.; Chen, Z.; Ji, Z.; Wang, P.; Wang, J.; Ling, W.; Huang, Y. Mater. Today Energy 2021, 19, 100577 doi: 10.1016/j.mtener.2020.100577  doi: 10.1016/j.mtener.2020.100577

    77. [77]

      Ramanujapuram, A.; Yushin, G. Adv. Energy Mater. 2018, 8, 1802624. doi: 10.1002/aenm.201802624  doi: 10.1002/aenm.201802624

    78. [78]

      Wang, H. Q.; Zhang, H. Z.; Cheng, Y.; Feng, K.; Li, X. F.; Zhang, H. M. Electrochim. Acta 2018, 278, 279. doi: 10.1016/j.electacta.2018.05.047  doi: 10.1016/j.electacta.2018.05.047

    79. [79]

      Suo, L. M.; Han, F. D.; Fan, X. L.; Liu, H. L.; Xu, K.; Wang, C. S. J. Mater. Chem. A 2016, 4, 6639. doi: 10.1039/c6ta00451b  doi: 10.1039/c6ta00451b

    80. [80]

      Kim, H. I.; Shin, E.; Kim, S. H.; Lee, K. M.; Park, J.; Kang, S. J.; So, S.; Roh, K. C.; Kwak, S. K.; Lee, S. Y. Energy Storage Mater. 2021, 36, 222. doi: 10.1016/j.ensm.2020.12.024  doi: 10.1016/j.ensm.2020.12.024

    81. [81]

      Nian, Q. S.; Liu, S.; Liu, J.; Zhang, Q.; Shi, J. Q.; Liu, C.; Wang, R.; Tao, Z. L.; Chen, J. ACS Appl. Energ. Mater. 2019, 2, 4370. doi: 10.1021/acsaem.9b00566  doi: 10.1021/acsaem.9b00566

    82. [82]

      Zhu, K. J.; Li, Z. P.; Sun, Z. Q.; Liu, P.; Jin, T.; Chen, X. C.; Li, H. X.; Lu, W. B.; Jiao, L. F. Small 2022, 18, 2107662. doi: 10.1002/smll.202107662  doi: 10.1002/smll.202107662

    83. [83]

      Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H.; et al. Nat. Energy 2019, 4, 495. doi: 10.1038/s41560-019-0388-0  doi: 10.1038/s41560-019-0388-0

    84. [84]

      Sun, T. J.; Yuan, X. M.; Wang, K.; Zheng, S. B.; Shi, J. Q.; Zhang, Q.; Cai, W. S.; Liang, J.; Tao, Z. L. J. Mater. Chem. A 2021, 9, 7042. doi: 10.1039/d0ta12409e  doi: 10.1039/d0ta12409e

    85. [85]

      Sun, T. J.; Du, H. H.; Zheng, S. B.; Shi, J. Q.; Tao, Z. L. Adv. Funct. Mater. 2021, 31, 2010127. doi: 10.1002/adfm.202010127  doi: 10.1002/adfm.202010127

    86. [86]

      Tron, A.; Jeong, S.; Park, Y. D.; Mun, J. ACS Sustain. Chem. Eng. 2019, 7, 14531. doi: 10.1021/acssuschemeng.9b02042  doi: 10.1021/acssuschemeng.9b02042

    87. [87]

      Jiang, Y. Q.; Ma, K.; Sun, M. L.; Li, Y. Y.; Liu, J. P. Energy Environ. Mater. 2022, 0, 1. doi: 10.1002/eem2.12357  doi: 10.1002/eem2.12357

    88. [88]

      Han, L.; Liu, K. Z.; Wang, M. H.; Wang, K. F.; Fang, L. M.; Chen, H. T.; Zhou, J.; Lu, X. Adv. Funct. Mater. 2018, 28, 1704195. doi: 10.1002/adfm.201704195  doi: 10.1002/adfm.201704195

    89. [89]

      Sun, Y. L.; Wang, Y.; Liu, L. Y.; Liu, B.; Zhang, Q. N.; Wu, D. D.; Zhang, H. Z.; Yan, X. B. J. Mater. Chem. A 2020, 8, 17998. doi: 10.1039/d0ta04538a  doi: 10.1039/d0ta04538a

    90. [90]

      Pei, Z. X.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Fei, J. Y.; Wei, L.; Chen, J. S.; Wang, C.; Qi, R. J.; Liu, Z. W.; et al. Angew. Chem. Int. Ed. 2020, 59, 4793. doi: 10.1002/anie.201915836  doi: 10.1002/anie.201915836

    91. [91]

      Sui, X. J.; Guo, H. S.; Chen, P. G.; Zhu, Y. N.; Wen, C. Y.; Gao, Y. H.; Yang, J.; Zhang, X. Y.; Zhang, L. Adv. Funct. Mater. 2020, 30, 1907986. doi: 10.1002/adfm.201907986  doi: 10.1002/adfm.201907986

    92. [92]

      Mo, F. N.; Chen, Z.; Liang, G. J.; Wang, D. H.; Zhao, Y. W.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Adv. Energy Mater. 2020, 10, 2000035. doi: 10.1002/aenm.202000035  doi: 10.1002/aenm.202000035

    93. [93]

      Yang, J. B.; Xu, Z.; Wang, J. J.; Gai, L. G.; Ji, X. X.; Jiang, H. H.; Liu, L. B. Adv. Funct. Mater. 2021, 31, 2009438. doi: 10.1002/adfm.202009438  doi: 10.1002/adfm.202009438

    94. [94]

      Li, X. L.; Lou, D. Y.; Wang, H. Y.; Sun, X. Y.; Li, J.; Liu, Y. N. Adv. Funct. Mater. 2020, 30, 2007291. doi: 10.1002/adfm.202007291  doi: 10.1002/adfm.202007291

    95. [95]

      Lu, N.; Na, R. Q.; Li, L. B.; Zhang, C. Y.; Chen, Z. Q.; Zhang, S. L.; Luan, J. S.; Wang, G. B. ACS Appl. Energ. Mater. 2020, 3, 1944. doi: 10.1021/acsaem.9b02379  doi: 10.1021/acsaem.9b02379

    96. [96]

      Peng, H.; Gao, X. J.; Sun, K. J.; Xie, X.; Ma, G. F.; Zhou, X. Z.; Lei, Z. Q. Chem. Eng. J. 2021, 422, 130353. doi: 10.1016/j.cej.2021.130353  doi: 10.1016/j.cej.2021.130353

    97. [97]

      Wu, S.; Lou, D. Y.; Wang, H. Y.; Jiang, D. Q.; Fang, X.; Meng, J. Q.; Sun, X. Y.; Li, J. Chem. Eng. J. 2022, 435, 135057. doi: 10.1016/j.cej.2022.135057  doi: 10.1016/j.cej.2022.135057

    98. [98]

      Song, L.; Dai, C. L.; Jin, X. T.; Xiao, Y. K.; Han, Y. Y.; Wang, Y.; Zhang, X. Q.; Li, X. Y.; Zhang, S. H.; Zhang, J. T.; et al. Adv. Funct. Mater. 2022, 32, 2203270. doi: 10.1002/adfm.202203270  doi: 10.1002/adfm.202203270

    99. [99]

      Peng, J. B.; Zhou, M. H.; Gao, Y. F.; Wang, J. F.; Cao, Y. X.; Wang, W. J.; Wu, D. C.; Yang, Y. Y. J. Mater. Chem. A 2021, 9, 25073. doi: 10.1039/d1ta06617j  doi: 10.1039/d1ta06617j

    100. [100]

      Chen, M. N.; Shi, X. Y.; Wang, X. L.; Liu, H. Q.; Wang, S.; Meng, C. X.; Liu, Y.; Zhang, L. Z.; Zhu, Y. Y.; Wu, Z. S. J. Energy Chem. 2022, 72, 195. doi: 10.1016/j.jechem.2022.04.0292095-4956  doi: 10.1016/j.jechem.2022.04.0292095-4956

    101. [101]

      Jin, X. T.; Song, L.; Dai, C. L.; Xiao, Y. K.; Han, Y. Y.; Zhang, X. Q.; Li, X. Y.; Bai, C. C.; Zhang, J. T.; Zhao, Y.; et al. Adv. Energy Mater. 2021, 11, 2101523. doi: 10.1002/aenm.202101523  doi: 10.1002/aenm.202101523

    102. [102]

      Cheng, Y. B.; Chi, X. W.; Yang, J. H.; Liu, Y. J. Energy Storage 2021, 40, 102701. doi: 10.1016/j.est.2021.10270  doi: 10.1016/j.est.2021.10270

    103. [103]

      Lu, C.; Chen, X. Nano Lett. 2020, 20, 1907. doi: 10.1021/acs.nanolett.9b05148  doi: 10.1021/acs.nanolett.9b05148

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(14)
  • Abstract views(632)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return