Citation: Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221003. doi: 10.3866/PKU.WHXB202210039 shu

Atomic Co Clusters for Efficient Oxygen Reduction Reaction

  • Corresponding author: Peilin Deng, dengpeilin@hainanu.edu.cn Zhengpei Miao, zpmiao92@hainanu.edu.cn Xinlong Tian, tianxl@hainanu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 27 October 2022
    Revised Date: 12 November 2022
    Accepted Date: 14 November 2022
    Available Online: 21 November 2022

    Fund Project: the Hainan Provincial Natural Science Foundation of China 222RC548the National Natural Science Foundation of China 22109034the National Natural Science Foundation of China 22109035the National Natural Science Foundation of China 52164028the National Natural Science Foundation of China 62105083the Postdoctoral Science Foundation of Hainan Province RZ2100007123the Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea 海南大学the Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea MRUKF2021029the Start-up Research Foundation of Hainan University KYQD(ZR)-20008the Start-up Research Foundation of Hainan University 20082the Start-up Research Foundation of Hainan University 20083the Start-up Research Foundation of Hainan University 20084the Start-up Research Foundation of Hainan University 21065the Start-up Research Foundation of Hainan University 21124the Start-up Research Foundation of Hainan University 21125

  • Environment-friendly energy storage and conversion technologies, such as metal–air batteries and fuel cells, are considered promising approaches to address growing environmental concerns. The oxygen reduction reaction (ORR) is the core of renewable energy conversion technology and plays an irreplaceable role in this fundamental issue. However, the complex multi-reaction process of the ORR presents a bottleneck that limits efforts to accelerate its kinetics. Traditionally, Pt and Pt-based catalysts are regarded as a good choice to improve the sluggish kinetics of the ORR. However, because Pt-based catalysts are expensive and have low durability, their use to resolve the energy crisis and current environmental challenges is impractical. Hence, exploring low-cost, highly active, and durable ORR catalysts as potential alternatives to commercial Pt/C is an urgent undertaking. Atomic cluster catalysts (ACCs) may be suitable alternatives to commercial Pt/C catalysts owing to their ultra-high atomic utilization efficiency, unique electronic structure, and stable nanostructures. However, despite the significant progress achieved in recent years, ACCs remain unusable for practical applications. In this study, a facile plasma bombing method combined with an acid washing strategy is proposed to fabricate an atomic Co cluster-decorated porous carbon supports catalyst (CoAC/NC) showing improved ORR performance. The typical atomic cluster features of the resultant CoAC/NC catalyst are confirmed using comprehensive characterization techniques. The CoAC/NC catalyst exhibits considerable ORR activity with a half-wave potential of as high as 0.887 V (versus a reversible hydrogen electrode (RHE)), which is much higher than that of a commercial Pt/C catalyst. More importantly, the CoAC/NC catalyst displays excellent battery performance when applied to a Zn-air battery, showing a peak power density of 181.5 mW∙cm−2 and long discharge ability (over 67 h at a discharge current density of 5 mA∙cm−2). The desirable ORR performance of the fabricated CoAC/NC catalyst could be mainly attributed to the high atom utilization efficiency and stable active sites endowed by the unique Co atomic clusters, as well as synergistic effects between the neighboring Co atoms of these clusters. Moreover, the high specific surface area and wide pore distribution of the catalyst offer abundant accessible active sites for the ORR. This work not only provides an outstanding alternative to commercial Pt catalysts for the ORR but also offers new insights into the rational design and practical application of ACCs.
  • 加载中
    1. [1]

      Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W. Science 2019, 366, 850. doi: 10.1126/science.aaw7493  doi: 10.1126/science.aaw7493

    2. [2]

      Tian, X.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Joule 2020, 4, 45. doi: 10.1016/j.joule.2019.12.014  doi: 10.1016/j.joule.2019.12.014

    3. [3]

      Li, L.; Shen, S.; Wei, G.; Zhang, J. Acta Phys. -Chim. Sin. 2021, 37, 1911011.  doi: 10.3866/PKU.WHXB201911011

    4. [4]

      Ding, L.; Tang, T.; Hu, J. -S. Acta Phys. -Chim. Sin. 2021, 37, 2010048.  doi: 10.3866/PKU.WHXB202010048

    5. [5]

      Lin, Z.; Xiao, B.; Huang, M.; Yan, L.; Wang, Z.; Huang, Y.; Shen, S.; Zhang, Q.; Gu, L.; Zhong, W. Adv. Energy Mater. 2022, 12, 2200855. doi: 10.1002/aenm.202200855  doi: 10.1002/aenm.202200855

    6. [6]

      Nan, H.; Su, Y. Q.; Tang, C.; Cao, R.; Li, D.; Yu, J.; Liu, Q.; Deng, Y.; Tian, X. Sci. Bull. 2020, 65, 1396. doi: 10.1016/j.scib.2020.04.015  doi: 10.1016/j.scib.2020.04.015

    7. [7]

      Gu, J.; Zhao, Y.; Lin, S.; Huang, J.; Cabrera, C. R.; Sumpter, B. G.; Chen, Z. J. Energy Chem. 2021, 63, 285. doi: 10.1016/j.jechem.2021.08.004  doi: 10.1016/j.jechem.2021.08.004

    8. [8]

      Huang, B.; Hou, K.; Liu, Y.; Hu, R.; Guan, L. J. Energy Chem. 2021, 63, 521. doi: 10.1016/j.jechem.2021.08.024  doi: 10.1016/j.jechem.2021.08.024

    9. [9]

      Li, J.; Wang, Y.; Yin, Z.; He, R.; Wang, Y.; Qiao, J. J. Energy Chem. 2022, 66, 348. doi: 10.1016/j.jechem.2021.08.007  doi: 10.1016/j.jechem.2021.08.007

    10. [10]

      Liu, M.; Yang, M.; Shu, X.; Zhang, J. Acta Phys. -Chim. Sin. 2021, 37, 2007072.  doi: 10.3866/PKU.WHXB202007072

    11. [11]

      Yang, H.; Gao, S.; Rao, D.; Yan, X. Energy Storage Mater. 2022, 46, 553. doi: 10.1016/j.ensm.2022.01.040  doi: 10.1016/j.ensm.2022.01.040

    12. [12]

      Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; Tian, X. Adv. Energy Mater. 2021, 11, 2101222. doi: 10.1002/aenm.202101222  doi: 10.1002/aenm.202101222

    13. [13]

      Yang, Y.; Wu, D.; Li, R.; Rao, P.; Li, J.; Deng, P.; Luo, J.; Huang, W.; Chen, Q.; Kang, Z.; Tian, X. Appl. Catal. B: Environ. 2022, 317, 121796. doi: 10.1016/j.apcatb.2022.121796  doi: 10.1016/j.apcatb.2022.121796

    14. [14]

      Lou, Y.; Liu, J.; Liu, M.; Wang, F. ACS Catal. 2020, 10, 2443. doi: 10.1021/acscatal.9b03716  doi: 10.1021/acscatal.9b03716

    15. [15]

      Wang, Y.; Li, Z.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G.; Sun, X.; et al. Nano Energy 2021, 87, 106147. doi: 10.1016/j.nanoen.2021.106147  doi: 10.1016/j.nanoen.2021.106147

    16. [16]

      Xiao, Y.; Pei, Y.; Hu, Y.; Ma, R.; Wang, D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009051.  doi: 10.3866/PKU.WHXB202009051

    17. [17]

      Li, Y.; Zang, K.; Duan, X.; Luo, J.; Chen, D. J. Energy Chem. 2021, 55, 572. doi: 10.1016/j.jechem.2020.07.041  doi: 10.1016/j.jechem.2020.07.041

    18. [18]

      Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y.; Engelhard, M. H. Nat. Catal. 2020, 3, 1044. doi: 10.1038/s41929-020-00546-1  doi: 10.1038/s41929-020-00546-1

    19. [19]

      Rao, P.; Deng, Y.; Fan, W.; Luo, J.; Deng, P.; Li, J.; Shen, Y.; Tian, X. Nat. Commun. 2022, 13, 5071. doi: 10.1038/s41467-022-32850-8  doi: 10.1038/s41467-022-32850-8

    20. [20]

      Wang, H. Y.; Weng, C. C.; Yuan, Z. Y. J. Energy Chem. 2021, 56, 470. doi: 10.1016/j.jechem.2020.08.030  doi: 10.1016/j.jechem.2020.08.030

    21. [21]

      Yang, J.; Liu, W.; Xu, M.; Liu, X.; Qi, H.; Zhang, L.; Yang, X.; Niu, S.; Zhou, D.; Liu, Y. J. Am. Chem. Soc. 2021, 143, 14530. doi: 10.1021/jacs.1c03788  doi: 10.1021/jacs.1c03788

    22. [22]

      Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L.; Jadhav, A. R.; Liu, X.; Shao, X.; Liu, Y.; Yu, J.; Hwang, Y. Nat. Commun. 2021, 12, 6766. doi: 10.1038/s41467-021-27145-3  doi: 10.1038/s41467-021-27145-3

    23. [23]

      Lei, Z.; Cai, W.; Rao, Y.; Wang, K.; Jiang, Y.; Liu, Y.; Jin, X.; Li, J.; Lv, Z.; Jiao, S. Nat. Commun. 2022, 13, 24. doi: 10.1038/s41467-021-27664-z  doi: 10.1038/s41467-021-27664-z

    24. [24]

      Zhang, M.; Zhang, J.; Ran, S.; Qiu, L.; Sun, W.; Yu, Y.; Chen, J.; Zhu, Z. Nano Res. 2020, 14, 1175. doi: 10.1007/s12274-020-3168-z  doi: 10.1007/s12274-020-3168-z

    25. [25]

      Lei, Z.; Tan, Y.; Zhang, Z.; Wu, W.; Cheng, N.; Chen, R.; Mu, S.; Sun, X. Nano Res. 2020, 14, 868. doi: 10.1007/s12274-020-3127-8  doi: 10.1007/s12274-020-3127-8

    26. [26]

      Yang, J.; Qi, H.; Li, A.; Liu, X.; Yang, X.; Zhang, S.; Zhao, Q.; Jiang, Q.; Su, Y.; Zhang, L. J. Am. Chem. Soc. 2022, 144, 12062. doi: 10.1021/jacs.2c02262  doi: 10.1021/jacs.2c02262

    27. [27]

      Xing, G.; Tong, M.; Yu, P.; Wang, L.; Zhang, G.; Tian, C.; Fu, H. Angew. Chem. Int. Ed. 2022, 61, e202211098. doi: 10.1002/anie.202211098  doi: 10.1002/anie.202211098

    28. [28]

      Bai, X.; Zhao, X.; Zhang, Y.; Ling, C.; Zhou, Y.; Wang, J.; Liu, Y. J. Am. Chem. Soc. 2022, 144, 17140. doi: 10.1021/jacs.2c07178  doi: 10.1021/jacs.2c07178

    29. [29]

      Shen, S.; Hu, Z.; Zhang, H.; Song, K.; Wang, Z.; Lin, Z.; Zhang, Q.; Gu, L.; Zhong, W. Angew. Chem. Int. Ed. 2022, 61, e202206460. doi: 10.1002/anie.202206460  doi: 10.1002/anie.202206460

    30. [30]

      Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Nat. Commun. 2018, 9, 1610. doi: 10.1038/s41467-018-03795-8  doi: 10.1038/s41467-018-03795-8

    31. [31]

      Huang, H.; Yu, D.; Hu, F.; Huang, S. C.; Song, J.; Chen, H. Y.; Li, L. L.; Peng, S. Angew. Chem. Int. Ed. 2022, 61, e202116068. doi: 10.1002/anie.202116068  doi: 10.1002/anie.202116068

    32. [32]

      Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M.; Xiang, B.; Li, J.; Feng, Z.; Xu, H.; Gu, M. J. Am. Chem. Soc. 2020, 142, 7425. doi: 10.1021/jacs.9b12642  doi: 10.1021/jacs.9b12642

    33. [33]

      Cai, C.; Wang, M.; Han, S.; Wang, Q.; Zhang, Q.; Zhu, Y.; Yang, X.; Wu, D.; Zu, X.; Sterbinsky, G. E. ACS Catal. 2020, 11, 123. doi: 10.1021/acscatal.0c04656  doi: 10.1021/acscatal.0c04656

    34. [34]

      Chen, Z. W.; Yan, J. M.; Jiang, Q. Small Methods 2018, 3, 1800291. doi: 10.1002/smtd.201800291  doi: 10.1002/smtd.201800291

    35. [35]

      Zhang, X.; Chen, A.; Zhang, Z.; Zhou, Z. J. Mater. Chem. A 2018, 6, 18599. doi: 10.1039/c8ta07683a  doi: 10.1039/c8ta07683a

    36. [36]

      Yu, P.; Wang, L.; Sun, F.; Xie, Y.; Liu, X.; Ma, J.; Wang, X.; Tian, C.; Li, J.; Fu, H. Adv. Mater. 2019, 31, e1901666. doi: 10.1002/adma.201901666  doi: 10.1002/adma.201901666

    37. [37]

      Yang, Z.; Zhao, C.; Qu, Y.; Zhou, H.; Zhou, F.; Wang, J.; Wu, Y.; Li, Y. Adv. Mater. 2019, 31, e1808043. doi: 10.1002/adma.201808043  doi: 10.1002/adma.201808043

    38. [38]

      Han, X.; Ling, X.; Yu, D.; Xie, D.; Li, L.; Peng, S.; Zhong, C.; Zhao, N.; Deng, Y.; Hu, W. Adv. Mater. 2019, 31, e1905622. doi: 10.1002/adma.201905622  doi: 10.1002/adma.201905622

    39. [39]

      Rao, P.; Wu, D.; Wang, T. -J.; Li, J.; Deng, P.; Chen, Q.; Shen, Y.; Chen, Y.; Tian, X. eScience 2022, 2, 399. doi: 10.1016/j.esci.2022.05.004  doi: 10.1016/j.esci.2022.05.004

    40. [40]

      Gao, J.; Hu, Y.; Wang, Y.; Lin, X.; Hu, K.; Lin, X.; Xie, G.; Liu, X.; Reddy, K. M.; Yuan, Q. Small 2021, 17, e2104684. doi: 10.1002/smll.202104684  doi: 10.1002/smll.202104684

    41. [41]

      Yang, Z.; Chen, B.; Chen, W.; Qu, Y.; Zhou, F.; Zhao, C.; Xu, Q.; Zhang, Q.; Duan, X.; Wu, Y. Nat. Commun. 2019, 10, 3734. doi: 10.1038/s41467-019-11796-4  doi: 10.1038/s41467-019-11796-4

    42. [42]

      Zhong, H.; Shi, C.; Li, J.; Yu, R.; Yu, Q.; Liu, H.; Yao, Y.; Wu, J.; Zhou, L.; Mai, L. Chem. Commun. 2020, 56, 4488. doi: 10.1039/c9cc10036a  doi: 10.1039/c9cc10036a

    43. [43]

      Ren, W.; Tan, X.; Yang, W.; Jia, C.; Xu, S.; Wang, K.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2019, 58, 6972. doi: 10.1002/anie.201901575  doi: 10.1002/anie.201901575

  • 加载中
    1. [1]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    2. [2]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    7. [7]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    8. [8]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    13. [13]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    15. [15]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    16. [16]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    17. [17]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    18. [18]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    19. [19]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(12)
  • Abstract views(413)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return