Citation: Ganchang Lei, Yong Zheng, Yanning Cao, Lijuan Shen, Shiping Wang, Shijing Liang, Yingying Zhan, Lilong Jiang. Deactivation Mechanism of COS Hydrolysis over Potassium Modified Alumina[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221003. doi: 10.3866/PKU.WHXB202210038 shu

Deactivation Mechanism of COS Hydrolysis over Potassium Modified Alumina

  • Corresponding author: Lijuan Shen, syhgslj@fzu.edu.cn Yingying Zhan, zhanyingying@fzu.edu.cn Lilong Jiang, jll@fzu.edu.cn
  • Received Date: 27 October 2022
    Revised Date: 9 November 2022
    Accepted Date: 11 November 2022
    Available Online: 16 November 2022

    Fund Project: the National Natural Science Foundation of China 21825801the National Natural Science Foundation of China 22208053the National Natural Science Foundation of China 22178057the National Natural Science Foundation of China 21878053the National Natural Science Foundation of China 22278073the National Natural Science Foundation of China 22208055the National Natural Science Foundation of China 22078063the Natural Science Foundation of Fujian Province 2020H6007the Natural Science Foundation of Fujian Province 2022J05131

  • Carbonyl sulfide (COS) is commonly found in conventional fossil fuels, such as nature gas, oil-associated gas, and blast-furnace gas, and its untreated emission not only corrodes pipelines and poisons catalysts but will also inevitably pollute the environment and endanger human health. Catalytic hydrolysis is recognized as the most promising strategy to eliminate COS because it can be performed under mild reaction conditions with a high removal efficiency. Notably, alkali metals promote catalytic COS hydrolysis over Al2O3 owing to their electron donor properties, basicity, and electrostatic adsorption. However, despite the significant attraction of using potassium-promoted Al2O3 (K2CO3/Al2O3) as conventional catalysts for COS hydrolysis, the mechanism of COS hydrolysis over K2CO3/Al2O3 remains unclear and is controversial owing to the complex composition of the K species. In this study, commercial Al2O3 modified with potassium and sodium salts were synthesized using the wet impregnation method and characterized by various techniques. Based on the results of the activity measurements, the K2CO3-, K2C2O4-, NaHCO3-, Na2CO3-, and NaC2O4-modified catalysts had a positive effect on COS hydrolysis. Among them, the K2CO3/Al2O3 catalyst exhibited the highest COS conversion. Notably, the K2CO3/Al2O3 catalyst exhibited an excellent catalytic performance (~93%, 20 h), which is significantly better than that of pristine Al2O3 (~58%). Furthermore, this study provides strong evidence for the role of H2O during catalytic hydrolysis over K2CO3/Al2O3 using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and X-ray photoelectron spectroscopy (XPS). The in situ DRIFTS analysis revealed that hydrogen thiocarbonate formed as an intermediate during COS hydrolysis over K2CO3/Al2O3. Meanwhile, the XPS findings suggested that sulfates and elemental sulfur accumulated on the catalyst surface, which may have contributed to catalyst poisoning. Additionally, the effect of water vapor content in the reaction pathway of COS hydrolysis over K2CO3/Al2O3 was investigated. The presence of excess water resulted in a reduction in catalytic activity owing to competitive adsorption between H2O and COS molecules on the catalyst surface. The enhancement in the catalytic activity over K2CO3/Al2O3 may be attributed to the formation of HO-Al-O-K interfacial sites. More importantly, all the catalysts were used under industrially relevant conditions, which provides valuable theoretical guidance for practical applications in the future. Thus, this detailed mechanistic study reveals new insights into the roles of the interfacial K co-catalyst, which provides a new opportunity for the rational design of stable and efficient catalysts for COS hydrolysis.
  • 加载中
    1. [1]

      Ferm, R. J. Chem. Rev. 1957, 57, 621. doi: 10.1021/cr50016a002  doi: 10.1021/cr50016a002

    2. [2]

      Andersen, W. C.; Bruno, T. J. Ind. Eng. Chem. Res. 2002, 41, 5321. doi: 10.1021/ie020365n  doi: 10.1021/ie020365n

    3. [3]

      Zhang, Y.; Xiao, Z.; Ma, J. Appl. Catal. B: Environ. 2004, 48, 57. doi: 10.1016/japcatb.2003.09.015  doi: 10.1016/japcatb.2003.09.015

    4. [4]

      Jiang, X. -F.; Huang, H.; Chai, Y. -F.; Lohr, T. L.; Yu, S. -Y.; Lai, W.; Pan, Y. -J.; Delferro, M.; Marks, T. J. Nat. Chem. 2017, 9, 188. doi: 10.1038/nchem.2637  doi: 10.1038/nchem.2637

    5. [5]

      Mi, J.; Chen, X.; Zhang, Q.; Zheng, Y.; Xiao, Y.; Liu, F.; Au, C. -T.; Jiang, L. Chem. Comm. 2019, 55, 9375. doi: 10.1039/C9CC03637G  doi: 10.1039/C9CC03637G

    6. [6]

      Rhodes, C.; Riddel, S. A.; West, J.; Williams, B. P.; Hutchings, G. J. Catal. Today 2000, 59, 443. doi: 10.1016/s0920-5861(00)00309-6  doi: 10.1016/s0920-5861(00)00309-6

    7. [7]

      Zhao, S.; Yi, H. H.; Tang, X. L.; Song, C. Chem. Eng. J. 2013, 230, 220. doi: 10.1016/j.cej.2013.04.039  doi: 10.1016/j.cej.2013.04.039

    8. [8]

      Sun, X.; Ruan, H.; Song, X.; Sun, L.; Li, K.; Ning, P.; Wang, C. RSC Adv. 2018, 8, 6996. doi: 10.1039/c7ra12086a  doi: 10.1039/c7ra12086a

    9. [9]

      Hoggan, P. E.; Aboulayt, A.; Pieplu, A.; Nortier, P.; Lavalley, J. C. J. Catal. 1994, 149, 300. doi: 10.1006/jcat.1994.1298  doi: 10.1006/jcat.1994.1298

    10. [10]

      Laperdrix, E.; Justin, I.; Costentin, G.; Saur, O.; Lavalley, J. C.; Aboulayt, A.; Ray, J. L.; Nedez, C. Appl. Catal. B: Environ. 1998, 17, 167. doi: 10.1016/s0926-3373(00)00272-1  doi: 10.1016/s0926-3373(00)00272-1

    11. [11]

      Huang, H.; Young, N.; Williams, B. P.; Taylor, S. H.; Hutchings, G. Catal. Lett. 2006, 110, 300. doi: 10.1007/s10562-006-0115-x  doi: 10.1007/s10562-006-0115-x

    12. [12]

      Williams, B. P.; Young, N. C.; West, J.; Rhodes, C.; Hutchings, G. J. Catal. Today 2000, 49, 99. doi: 10.1016/s0920-5961(98)00413-1  doi: 10.1016/s0920-5961(98)00413-1

    13. [13]

      Huang, H.; Young, N.; Williams, B. P.; Taylor, S. H.; Hutchings, G. Green Chem. 2008, 10, 571. doi: 10.1039/b717031a  doi: 10.1039/b717031a

    14. [14]

      West, J.; Williams, B. P.; Young, N.; Rhodes, C.; Hutchings, G. J. Catal. Commun. 2001, 2, 135. doi: 10.1016/s1566-7367(01)00021-8  doi: 10.1016/s1566-7367(01)00021-8

    15. [15]

      Thomas, B.; Williams, B. P.; Young, N.; Rhodes, C.; Hutchings, G. J. Catal. Lett. 2003, 86, 201. doi: 10.1023/A:1022611901253  doi: 10.1023/A:1022611901253

    16. [16]

      Li, J. -B.; Ma, H. -F.; Zhang, H. -T.; Sun, Q. -W.; Ying, W. -Y.; Fang, D. -Y. Acta Phys. -Chim. Sin. 2014, 30, 1932.  doi: 10.3866/PKU.WHXB201408051

    17. [17]

      Sun, X.; Ning, P.; Tang, X.; Yi, H.; Li, K.; He, D.; Xu, X.; Huang, B.; Lai, R. J. Energy Chem. 2014, 23, 221. doi: 10.1016/s2095-4956(14)60139-x  doi: 10.1016/s2095-4956(14)60139-x

    18. [18]

      Shen, L.; Zheng, X.; Lei, G.; Li, X.; Cao, Y.; Jiang, L. Chem. Eng. J. 2018, 346, 238. doi: 10.1016/j.cej.2018.03.157  doi: 10.1016/j.cej.2018.03.157

    19. [19]

      Zhao, W.; Zheng, X.; Liang, S.; Zheng, X.; Shen, L.; Liu, F.; Cao, Y.; Wei, Z.; Jiang, L. Green Chem. 2018, 20, 4645. doi: 10.1039/c8gc02184h  doi: 10.1039/c8gc02184h

    20. [20]

      Liu, Y.; Lin, X.; Xia, L.; Huang, C.; Wu, Z.; Wang, H.; Sun, Y. Acta Phys. -Chim. Sin. 2022, 38, 2002017.  doi: 10.3866/PKU.WHXB202002017

    21. [21]

      Kitta, M.; Kataoka, R.; Kojima, T.; Tada, K.; Tanaka, S. J. Alloy. Compd. 2021, 853, 157211. doi: 10.1016/j.jallcom.2020.157211  doi: 10.1016/j.jallcom.2020.157211

    22. [22]

      Torres, C.; Quispe, R.; Calderon, N. Z.; Eggert, L.; Hopfeld, M.; Rojas, C.; Camargo, M. K.; Bund, A.; Schaaf, P.; Grieseler, R. Appl. Surf. Sci. 2021, 537, 147864. doi: 10.1016/j.apsusc.2020.147864  doi: 10.1016/j.apsusc.2020.147864

    23. [23]

      Gálvez, M. E.; Ascaso, S.; Stelmachowski, P.; Legutko, P.; Kotarba, A.; Moliner, R.; Lázaro, M. J. Appl. Catal. B: Environ. 2014, 152153, 88. doi: 10.1016/j.apctb.2014.01.041  doi: 10.1016/j.apctb.2014.01.041

    24. [24]

      Zhu, X.; Chen, C.; Wang, Q.; Shi, Y.; O'Hare, D.; Cai, N. Chem. Eng. J. 2019, 366, 181. doi: 10.1016/j.cej.2019.01.192  doi: 10.1016/j.cej.2019.01.192

    25. [25]

      Lei, G.; Cao, Y.; Zhao, W.; Dai, Z.; Shen, L.; Xiao, Y.; Jiang, L. ACS Sustain. Chem. Eng. 2019, 7, 4941. doi: 10.1021/acssuschemeng.8b05553  doi: 10.1021/acssuschemeng.8b05553

    26. [26]

      Zhao, S.; Yi, H.; Tang, X.; Kang, D.; Wang, H.; Li, K.; Duan, K. Appl. Clay Sci. 2012, 56, 84. doi: 10.1016/j.clay.2011.11.026  doi: 10.1016/j.clay.2011.11.026

    27. [27]

      Li, M.; Wiame, F.; Seyur, A.; Marcus, P.; Swiatowska, J. Appl. Surf. Sci. 2020, 534, 147633. doi: 10.1016/j.apsusc.2020.147633  doi: 10.1016/j.apsusc.2020.147633

    28. [28]

      Cano, A.; Monroy, I.; Avila, M.; Velasco-Arias, D.; Rodriguez-Hernandez, J.; Regnera, E. New J. Chem., 2019, 43, 18384. doi: 10.1039/c9nj04173g  doi: 10.1039/c9nj04173g

    29. [29]

      Lei, G.; Zhao, W.; Shen, L.; Liang, S.; Au, C. -T.; Jiang, L. Appl. Catal. B: Environ 2020, 267, 118663. doi: 10.1016/j.apcatb.2020.118663  doi: 10.1016/j.apcatb.2020.118663

    30. [30]

      Fiedorow, R.; Léauté, R.; Lana Dalla, I. G. J. Catal. 1984, 85, 339. doi: 10.1016/0021-9517(84)90223-9  doi: 10.1016/0021-9517(84)90223-9

    31. [31]

      Aboulayt, A.; Mauge, F.; Hoggan, P. E.; Lavally, J. C. Catal. Lett. 1996, 39, 213. doi: 10.1007/bf00805586  doi: 10.1007/bf00805586

    32. [32]

      Shen, L.; Lei, G.; Fang, Y.; Cao, Y.; Wang, X.; Jiang, L. Chem. Commun. 2018, 54, 2475. doi: 10.1039/c7cc09211c  doi: 10.1039/c7cc09211c

    33. [33]

      Zheng, X.; Li, Y.; Zheng, Y.; Shen, L.; Xiao, Y.; Cao, Y.; Zhang, Y.; Au, C. -T.; Jiang, L. ACS Catal. 2020, 10, 1968. doi: 10.1021/acscatal.9b05486  doi: 10.1021/acscatal.9b05486

    34. [34]

      Shen, L.; Wang, G.; Zheng, X.; Cao, Y.; Guo, Y.; Lin, K.; Jiang, L. Chin. J. Catal. 2017, 38, 1373.  doi: 10.1016/S1872-2067(17)62874-2

  • 加载中
    1. [1]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    2. [2]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    3. [3]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    4. [4]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    5. [5]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    6. [6]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    7. [7]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    8. [8]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    9. [9]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    10. [10]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    13. [13]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    14. [14]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    15. [15]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    16. [16]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    17. [17]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    18. [18]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

Metrics
  • PDF Downloads(24)
  • Abstract views(1202)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return