Citation: Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221003. doi: 10.3866/PKU.WHXB202210036 shu

Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts

  • Corresponding author: Junjie Ge, gejj@ciac.ac.cn Wei Xing, xingwei@ciac.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 26 October 2022
    Revised Date: 1 December 2022
    Accepted Date: 5 December 2022
    Available Online: 9 December 2022

    Fund Project: the National Science and Technology Major Project 2018YFB1502700the National Natural Science Foundation of China 21633008the National Natural Science Foundation of China 21875243,the National Natural Science Foundation of China U1601211the Jilin Province Science and Technology Development Program 20200201001JCthe Jilin Province Science and Technology Development Program 20190201270JCthe Jilin Province Science and Technology Development Program 20180101030JC

  • Proton-exchange membrane fuel cells (PEMFCs) are an efficient and clean energy conversion technology with the advantage of zero pollution for transportation applications. The oxygen reduction reaction (ORR) is the key step in the energy conversion at the cathode, but the slow kinetics requires a high content of expensive platinum-group-metal (PGM) catalysts. Therefore, research on high-performance and inexpensive catalysts to replace PGM-based catalysts are essential to promote the commercialization of fuel cells. Single-atom catalysts (SACs) with highly active sites that are atomically dispersed on substrates exhibit unique advantages, such as maximum atomic utilization, abundant chemical structures, and extraordinary catalytic performances for multiple important reactions. Inspired by macrocyclic compounds with MN4 active centers, the application of pyrolyzed M-Nx/C type SACs (M = Fe, Co, Mn, Ru, Cr, Zn, etc.) in the ORR has significantly progressed within the last ten years. Particularly, single-atom Fe-N-C catalysts have been extensively investigated, demonstrating high ORR activity, which indicates that the initial electrochemistry and fuel cell performance are similar to that of conventional Pt/C catalysts. However, in the oxidizing and acidic PEMFC cathode, Fe-N-C catalysts are degraded rapidly, which hinders the application of these nonprecious metal M-Nx/C-type catalysts. Several degradation mechanisms have been proposed over the past few years, such as carbon oxidation, demetallation, and waterflooding. However, the degradation mechanisms remain unknown and require further investigation of the underlying causes of the mechanism, degradation process, and coping strategies. To achieve the future commercialization of high-performance M-Nx/C catalysts, several key challenges are summarized with potential research guidelines proposed to overcome bottlenecks. This review summarizes the development history and state-of-the-art research progress on nonprecious metal M-Nx/C-type catalysts in PEMFCs. First, we introduce the basic theory of the ORR and the methods of advanced characterization techniques for active site identification and reaction mechanism analysis to gain a comprehensive understanding of the structure–performance relationship. Subsequently, the representative studies and recent advancements in M-Nx/C-type catalysts by experimental and theoretical calculations are presented. Additionally, we analyze the root cause of the stability problems and propose the corresponding solution strategies to promote the intrinsic electrocatalytic ORR activity and durability, including regulating the electronic structure and coordination environment, as well as altering the central metal atoms and guest groups. Finally, we propose that the future direction of M-Nx/C-type catalysts is the rational design of catalysts with a high site density and high stability. Moreover, improving the lifetime of nonprecious metal catalysts remains essential for feasible applications in the future.
  • 加载中
    1. [1]

      Chatterjee, S.; Dutta, I.; Lum, Y.; Lai, Z.; Huang, K.-W. Energy Environ. Sci. 2021, 14, 1194. doi: 10.1039/d0ee03011b  doi: 10.1039/d0ee03011b

    2. [2]

      Cullen, D. A.; Neyerlin, K. C.; Ahluwalia, R. K.; Mukundan, R.; More, K. L.; Borup, R. L.; Weber, A. Z.; Myers, D. J.; Kusoglu, A. Nat. Energy 2021, 6, 462. doi: 10.1038/s41560-021-00775-z  doi: 10.1038/s41560-021-00775-z

    3. [3]

      Steele, B. C.; Heinzel, A. Nature 2001, 414, 345. doi: 10.1038/35104620  doi: 10.1038/35104620

    4. [4]

      Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. Energy Environ. Sci. 2019, 12, 463. doi: 10.1039/c8ee01157e  doi: 10.1039/c8ee01157e

    5. [5]

      Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Joule 2018, 2, 1925. doi: 10.1016/j.joule.2018.08.016  doi: 10.1016/j.joule.2018.08.016

    6. [6]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    7. [7]

      Li, Q.; Wang, T.; Havas, D.; Zhang, H.; Xu, P.; Han, J.; Cho, J.; Wu, G. Adv. Sci. 2016, 3, 1600140. doi: 10.1002/advs.201600140  doi: 10.1002/advs.201600140

    8. [8]

      Xu, X.; Xia, Z.; Zhang, X.; Sun, R.; Sun, X.; Li, H.; Wu, C.; Wang, J.; Wang, S.; Sun, G. Appl. Catal. B 2019, 259, 118042. doi: 10.1016/j.apcatb.2019.118042  doi: 10.1016/j.apcatb.2019.118042

    9. [9]

      Wroblowa, H. S.; Yen Chi, P.; Razumney, G. J. Electroanal. Chem. 1976, 69, 195. doi: 10.1016/s0022-0728(76)80250-1  doi: 10.1016/s0022-0728(76)80250-1

    10. [10]

      Muthukrishnan, A.; Nabae, Y.; Chang, C. W.; Okajima, T.; Ohsaka, T. Catal. Sci. Technol. 2015, 5, 1764. doi: 10.1039/c4cy01429d  doi: 10.1039/c4cy01429d

    11. [11]

      Luo, E.; Chu, Y.; Liu, J.; Shi, Z.; Zhu, S.; Gong, L.; Ge, J.; Choi, C. H.; Liu, C.; Xing, W. Energy Environ. Sci. 2021, 14, 2158. doi: 10.1039/d1ee00142f  doi: 10.1039/d1ee00142f

    12. [12]

      Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Chem 2019, 5, 1486. doi: 10.1016/j.chempr.2019.03.002  doi: 10.1016/j.chempr.2019.03.002

    13. [13]

      Keith, J. A.; Jerkiewicz, G.; Jacob, T. ChemPhysChem 2010, 11, 2779. doi: 10.1002/cphc.201000286  doi: 10.1002/cphc.201000286

    14. [14]

      Singh, H.; Zhuang, S.; Ingis, B.; Nunna, B. B.; Lee, E. S. Carbon 2019, 151, 160. doi: 10.1016/j.carbon.2019.05.075  doi: 10.1016/j.carbon.2019.05.075

    15. [15]

      Duan, Z.; Wang, G. Phys. Chem. Chem. Phys. 2011, 13, 20178. doi: 10.1039/c1cp21687b  doi: 10.1039/c1cp21687b

    16. [16]

      Tao, X.; Lu, R.; Ni, L.; Gridin, V.; Al-Hilfi, S. H.; Qiu, Z.; Zhao, Y.; Kramm, U. I.; Zhou, Y.; Mullen, K. Mater. Horizons 2021, 9, 417. doi: 10.1039/d1mh01307f  doi: 10.1039/d1mh01307f

    17. [17]

      Li, X.; Xiang, Z. Nat. Commun. 2022, 13, 57. doi: 10.1038/s41467-021-27735-1  doi: 10.1038/s41467-021-27735-1

    18. [18]

      Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Science 2017, 357, 479. doi: 10.1126/science.aan2255  doi: 10.1126/science.aan2255

    19. [19]

      Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385  doi: 10.1021/jacs.7b10385

    20. [20]

      Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.-A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.; et al. Nat. Commun. 2021, 12, 1734. doi: 10.1038/s41467-021-21919-5  doi: 10.1038/s41467-021-21919-5

    21. [21]

      Zhang, X.; Xue, D.; Jiang, S.; Xia, H.; Yang, Y.; Yan, W.; Hu, J.; Zhang, J. InfoMat 2022, 4, 12257. doi: 10.1002/inf2.12257  doi: 10.1002/inf2.12257

    22. [22]

      Luo, E.; Zhang, H.; Wang, X.; Gao, L.; Gong, L.; Zhao, T.; Jin, Z.; Ge, J.; Jiang, Z.; Liu, C.; et al. Angew. Chem. Int. Ed. 2019, 58, 12469. doi: 10.1002/anie.201906289  doi: 10.1002/anie.201906289

    23. [23]

      Xiao, M.; Gao, L.; Wang, Y.; Wang, X.; Zhu, J.; Jin, Z.; Liu, C.; Chen, H.; Li, G.; Ge, J.; et al. J. Am. Chem. Soc. 2019, 141, 19800. doi: 10.1021/jacs.9b09234  doi: 10.1021/jacs.9b09234

    24. [24]

      Xiao, M.; Chen, Y.; Zhu, J.; Zhang, H.; Zhao, X.; Gao, L.; Wang, X.; Zhao, J.; Ge, J.; Jiang, Z.; et al. J. Am. Chem. Soc. 2019, 141, 17763. doi: 10.1021/jacs.9b08362  doi: 10.1021/jacs.9b08362

    25. [25]

      Zelenay, P.; Myers, D. Electrocatalysis Consortium 2.0. https://www.hydrogen.energy.gov/pdfs/review21/fc160_myers_zelenay_2021_o.pdf.

    26. [26]

      Xiao, M.; Zhu, J.; Ma, L.; Jin, Z.; Ge, J.; Deng, X.; Hou, Y.; He, Q.; Li, J.; Jia, Q.; et al. ACS Catal. 2018, 8, 2824. doi: 10.1021/acscatal.8b00138  doi: 10.1021/acscatal.8b00138

    27. [27]

      Fei, H.; Dong, J.; Chen, D.; Hu, T.; Duan, X.; Shakir, I.; Huang, Y.; Duan, X. Chem. Soc. Rev. 2019, 48, 5207. doi: 10.1039/c9cs00422j  doi: 10.1039/c9cs00422j

    28. [28]

      van Oversteeg, C. H.; Doan, H. Q.; de Groot, F. M.; Cuk, T. Chem. Soc. Rev. 2017, 46, 102. doi: 10.1039/c6cs00230g  doi: 10.1039/c6cs00230g

    29. [29]

      Luo, E.; Wang, C.; Li, Y.; Wang, X.; Gong, L.; Zhao, T.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Nano Res. 2020, 13, 2420. doi: 10.1007/s12274-020-2868-8  doi: 10.1007/s12274-020-2868-8

    30. [30]

      Yu, L.; Li, Y.; Ruan, Y. Angew. Chem. Int. Ed. 2021, 60, 25296. doi: 10.1002/anie.202111761  doi: 10.1002/anie.202111761

    31. [31]

      Tamenori, Y.; Morita, M.; Nakamura, T. J. Synchrotron Radiat. 2011, 18, 747. doi: 10.1107/S0909049511027531  doi: 10.1107/S0909049511027531

    32. [32]

      Toyoshima, R.; Kondoh, H. J. Phys. Condens. Matter 2015, 27, 083003. doi: 10.1088/0953-8984/27/8/083003  doi: 10.1088/0953-8984/27/8/083003

    33. [33]

      Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. J. Am. Chem. Soc. 2016, 138, 635. doi: 10.1021/jacs.5b11015  doi: 10.1021/jacs.5b11015

    34. [34]

      Li, J.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.; et al. Nat. Catal. 2020, 4, 10. doi: 10.1038/s41929-020-00545-2  doi: 10.1038/s41929-020-00545-2

    35. [35]

      Jia, Q.; Liu, E.; Jiao, L.; Pann, S.; Mukerjee, S. Adv Mater 2019, 31, e1805157. doi: 10.1002/adma.201805157  doi: 10.1002/adma.201805157

    36. [36]

      Saveleva, V. A.; Ebner, K.; Ni, L.; Smolentsev, G.; Klose, D.; Zitolo, A.; Marelli, E.; Li, J.; Medarde, M.; Safonova, O. V.; et al. Angew. Chem. Int. Ed. 2021, 60, 11707. doi: 10.1002/anie.202016951  doi: 10.1002/anie.202016951

    37. [37]

      Bandyopadhyay, D. Int. Mater. Rev. 2006, 51, 171. doi: 10.1179/174328006x79490  doi: 10.1179/174328006x79490

    38. [38]

      Malko, D.; Kucernak, A.; Lopes, T. Nat. Commun. 2016, 7, 13285. doi: 10.1038/ncomms13285  doi: 10.1038/ncomms13285

    39. [39]

      Xu, X.; Zhang, X.; Kuang, Z.; Xia, Z.; Rykov, A. I.; Yu, S.; Wang, J.; Wang, S.; Sun, G. Appl. Catal. B 2022, 309, 121290. doi: 10.1016/j.apcatb.2022.121290  doi: 10.1016/j.apcatb.2022.121290

    40. [40]

      Bae, G.; Kim, H.; Choi, H.; Jeong, P.; Kim, D. H.; Kwon, H. C.; Lee, K. S.; Choi, M.; Oh, H. S.; Jaouen, F.; et al. JACS Au 2021, 1, 586. doi: 10.1021/jacsau.1c00074  doi: 10.1021/jacsau.1c00074

    41. [41]

      Primbs, M.; Sun, Y.; Roy, A.; Malko, D.; Mehmood, A.; Sougrati, M.-T.; Blanchard, P.-Y.; Granozzi, G.; Kosmala, T.; Daniel, G.; et al. Energy Environ. Sci. 2020, 13, 2480. doi: 10.1039/d0ee01013h  doi: 10.1039/d0ee01013h

    42. [42]

      Edgecomb, J.; Xie, X.; Shao, Y.; El-Khoury, P. Z.; Johnson, G. E.; Prabhakaran, V. Front. Chem. 2020, 8, 572563. doi: 10.3389/fchem.2020.572563  doi: 10.3389/fchem.2020.572563

    43. [43]

      Jiao, L.; Li, J.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E.; Sougrati, M. T.; Zhao, Z.; Yang, F.; Zhong, S.; et al. Nat. Mater. 2021, 20, 1385. doi: 10.1038/s41563-021-01030-2  doi: 10.1038/s41563-021-01030-2

    44. [44]

      Jin, Z.; Li, P.; Meng, Y.; Fang, Z.; Xiao, D.; Yu, G. Nat. Catal. 2021, 4, 615. doi: 10.1038/s41929-021-00650-w  doi: 10.1038/s41929-021-00650-w

    45. [45]

      Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; et al. Adv. Energy Mater. 2021, 11, 2101222. doi: 10.1002/aenm.202101222  doi: 10.1002/aenm.202101222

    46. [46]

      Dong, F.; Wu, M.; Chen, Z.; Liu, X.; Zhang, G.; Qiao, J.; Sun, S. Nanomicro Lett. 2022, 14, 36. doi: 10.1007/s40820-021-00768-3  doi: 10.1007/s40820-021-00768-3

    47. [47]

      Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0  doi: 10.1038/2011212a0

    48. [48]

      Jahnke, H.; Schonborn, M.; Zimmermann, G. Top. Curr. Chem. 1976, 61, 133. doi: 10.1007/BFb0046059  doi: 10.1007/BFb0046059

    49. [49]

      Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71. doi: 10.1126/science.1170051  doi: 10.1126/science.1170051

    50. [50]

      Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443. doi: 10.1126/science.1200832  doi: 10.1126/science.1200832

    51. [51]

      Zhang, H.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. Energy Environ. Sci. 2019, 12, 2548. doi: 10.1039/c9ee00877b  doi: 10.1039/c9ee00877b

    52. [52]

      He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G. Chem. Soc. Rev. 2020, 49, 3484. doi: 10.1039/c9cs00903e  doi: 10.1039/c9cs00903e

    53. [53]

      Li, X.; Li, J.; Wu, G.; Litster, S. Stationary Direct Methanol Fuel Cells Using Pure Methanol. https://www.hydrogen.energy.gov/pdfs/review21/fc317_Li_2021_o.pdf

    54. [54]

      Wan, X.; Liu, X.; Li, Y.; Yu, R.; Zheng, L.; Yan, W.; Wang, H.; Xu, M.; Shui, J. Nat. Catal. 2019, 2, 259. doi: 10.1038/s41929-019-0237-3  doi: 10.1038/s41929-019-0237-3

    55. [55]

      Xiao, M.; Zhu, J.; Li, G.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P.; Xu, P.; Jiang, G.; et al. Angew. Chem. Int. Ed. 2019, 58, 9640. doi: 10.1002/anie.201905241  doi: 10.1002/anie.201905241

    56. [56]

      Gong, L.; Zhang, H.; Wang, Y.; Luo, E.; Li, K.; Gao, L.; Wang, Y.; Wu, Z.; Jin, Z.; Ge, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 13923. doi: 10.1002/anie.202004534  doi: 10.1002/anie.202004534

    57. [57]

      Xu, H. Electrocat: Durable Mn-Based Pgm-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells. https://www.hydrogen.energy.gov/pdfs/review21/fc170_xu_2021_o.pdf.

    58. [58]

      Wang, Q.; Yang, Y.; Sun, F.; Chen, G.; Wang, J.; Peng, L.; Chen, W. T.; Shang, L.; Zhao, J.; Sun-Waterhouse, D.; et al. Adv. Energy Mater. 2021, 11, 2100219. doi: 10.1002/aenm.202100219  doi: 10.1002/aenm.202100219

    59. [59]

      Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. Nat. Catal. 2018, 1, 781. doi: 10.1038/s41929-018-0146-x  doi: 10.1038/s41929-018-0146-x

    60. [60]

      Zhu, M.; Zhao, C.; Liu, X.; Wang, X.; Zhou, F.; Wang, J.; Hu, Y.; Zhao, Y.; Yao, T.; Yang, L.-M.; et al. ACS Catal. 2021, 11, 3923. doi: 10.1021/acscatal.0c05503  doi: 10.1021/acscatal.0c05503

    61. [61]

      Li, J.; Chen, S.; Yang, N.; Deng, M.; Ibraheem, S.; Deng, J.; Li, J.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2019, 58, 7035. doi: 10.1002/anie.201902109  doi: 10.1002/anie.201902109

    62. [62]

      Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y.; Engelhard, M. H.; et al. Nat. Catal. 2020, 3, 1044. doi: 10.1038/s41929-020-00546-1  doi: 10.1038/s41929-020-00546-1

    63. [63]

      Yin, S.; Yang, S.; Li, G.; Li, G.; Zhang, B.; Wang, C.; Chen, M.; Liao, H.-G.; Yang, J.; Jiang, Y.; et al. Energy Environ. Sci. 2022, 15, 3033. doi: 10.1039/d2ee00061j  doi: 10.1039/d2ee00061j

    64. [64]

      Mehmood, A.; Gong, M.; Jaouen, F.; Roy, A.; Zitolo, A.; Khan, A.; Sougrati, M.-T.; Primbs, M.; Bonastres, A. M.; Fongalland, D. ; et al. Nat. Catal. 2022, 5, 311. doi: 10.1038/s41929-022-00772-9  doi: 10.1038/s41929-022-00772-9

    65. [65]

      Wei, X.; Song, S.; Cai, W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X.; Wu, N.; Luo, Z.; Wang, H.; et al. Chem 2022, 9, 1. doi: 10.1016/j.chempr.2022.10.001  doi: 10.1016/j.chempr.2022.10.001

    66. [66]

      Xie, H.; Xie, X.; Hu, G.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M.; Shahbazian-Yassar, R.; et al. Nat. Energy 2022, 7, 281. doi: 10.1038/s41560-022-00988-w  doi: 10.1038/s41560-022-00988-w

    67. [67]

      Ramaswamy, N.; Mukerjee, S. J. Phys. Chem. C 2011, 115, 18015. doi: 10.1021/jp204680p  doi: 10.1021/jp204680p

    68. [68]

      Ramaswamy, N.; Mukerjee, S. Adv. Phys 2012, 2012, 1. doi: 10.1155/2012/491604  doi: 10.1155/2012/491604

    69. [69]

      Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. Angew. Chem. Int. Ed. 2018, 57, 1204. doi: 10.1002/anie.201709597  doi: 10.1002/anie.201709597

    70. [70]

      Shao, Y.; Dodelet, J.-P.; Wu, G.; Zelenay, P. Adv. Mater. 2019, 31, 1807615. doi: 10.1002/adma.201807615  doi: 10.1002/adma.201807615

    71. [71]

      Miao, Z.; Li, S.; Priest, C.; Wang, T.; Wu, G.; Li, Q. Adv. Mater. 2022, 2200595. doi: 10.1002/adma.202200595  doi: 10.1002/adma.202200595

    72. [72]

      Miao, Z.; Wang, X.; Zhao, Z.; Zuo, W.; Chen, S.; Li, Z.; He, Y.; Liang, J.; Ma, F.; Wang, H.-L.; et al. Adv. Mater. 2021, 33, 2006613. doi: 10.1002/adma.202006613  doi: 10.1002/adma.202006613

    73. [73]

      Li, L.; Wen, Y.; Han, G.; Liu, Y.; Song, Y.; Zhang, W.; Sun, J.; Du, L.; Kong, F.; Ma, Y.; et al. Chem. Eng. J. 2022, 437, 135320. doi: 10.1016/j.cej.2022.135320  doi: 10.1016/j.cej.2022.135320

    74. [74]

      Wan, X.; Shui, J. ACS Energy Lett. 2022, 7, 1696. doi: 10.1021/acsenergylett.2c00473  doi: 10.1021/acsenergylett.2c00473

    75. [75]

      Ahluwalia, R. K.; Wang, X.; Osmieri, L.; Peng, J. K.; Cetinbas, C. F.; Park, J.; Myers, D. J.; Chung, H. T.; Neyerlin, K. C. J. Electrochem. Soc. 2021, 168, 024513. doi: 10.1149/1945-7111/abe34c  doi: 10.1149/1945-7111/abe34c

    76. [76]

      Du, L.; Prabhakaran, V.; Xie, X.; Park, S.; Wang, Y.; Shao, Y. Adv. Mater. 2021, 33, 1908232. doi: 10.1002/adma.201908232  doi: 10.1002/adma.201908232

    77. [77]

      Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1906174. doi: 10.1002/adfm.201906174  doi: 10.1002/adfm.201906174

    78. [78]

      Ma, Q.; Jin, H.; Zhu, J.; Li, Z.; Xu, H.; Liu, B.; Zhang, Z.; Ma, J.; Mu, S. Adv. Sci. 2021, 8, 2102209. doi: 10.1002/advs.202102209  doi: 10.1002/advs.202102209

    79. [79]

      Li, J.; Zhang, H.; Samarakoon, W.; Shan, W.; Cullen, D. A.; Karakalos, S.; Chen, M.; Gu, D.; More, K. L.; Wang, G.; et al. Angew. Chem. Int. Ed. 2019, 58, 18971. doi: 10.1002/anie.201909312  doi: 10.1002/anie.201909312

    80. [80]

      Wei, H.; Su, X.; Liu, J.; Tian, J.; Wang, Z.; Sun, K.; Rui, Z.; Yang, W.; Zou, Z. Electrochem. Commun. 2018, 88, 19. doi: 10.1016/j.elecom.2018.01.011  doi: 10.1016/j.elecom.2018.01.011

    81. [81]

      Wang, Z.; Tang, H.; Zhang, H.; Lei, M.; Chen, R.; Xiao, P.; Pan, M. J. Membr. Sci. 2012, 421, 201. doi: 10.1016/j.memsci.2012.07.014  doi: 10.1016/j.memsci.2012.07.014

    82. [82]

      Yoon, K. R.; Lee, K. A.; Jo, S.; Yook, S. H.; Lee, K. Y.; Kim, I.-D.; Kim, J. Y. Adv. Funct. Mater. 2019, 29, 1806929. doi: 10.1002/adfm.201806929  doi: 10.1002/adfm.201806929

    83. [83]

      Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2021, 15, 3082. doi: 10.1007/s12274-021-3966-y  doi: 10.1007/s12274-021-3966-y

    84. [84]

      Liu, S.; Li, C.; Zachman, M. J.; Zeng, Y.; Yu, H.; Li, B.; Wang, M.; Braaten, J.; Liu, J.; Meyer, H. M.; et al. Nat. Energy 2022, 7, 652. doi: 10.1038/s41560-022-01062-1  doi: 10.1038/s41560-022-01062-1

    85. [85]

      Yang, N.; Peng, L.; Li, L.; Li, J.; Liao, Q.; Shao, M.; Wei, Z. Chem. Sci. 2021, 12, 12476. doi: 10.1039/d1sc02901k  doi: 10.1039/d1sc02901k

    86. [86]

      Herranz, J.; Jaouen, F.; Lefevre, M.; Kramm, U. I.; Proietti, E.; Dodelet, J. P.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Bertrand, P.; et al. J. Phys. Chem. C 2011, 115, 16087. doi: 10.1021/jp2042526  doi: 10.1021/jp2042526

    87. [87]

      Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. J. Power Sources 2008, 178, 103. doi: 10.1016/j.jpowsour.2007.12.068  doi: 10.1016/j.jpowsour.2007.12.068

    88. [88]

      Fu, X.; Zamani, P.; Choi, J.-Y.; Hassan, F. M.; Jiang, G.; Higgins, D. C.; Zhang, Y.; Hoque, M. A.; Chen, Z. Adv. Mater. 2017, 29, 1604456. doi: 10.1002/adma.201604456  doi: 10.1002/adma.201604456

    89. [89]

      Chenitz, R.; Kramm, U. I.; Lefèvre, M.; Glibin, V.; Zhang, G.; Sun, S.; Dodelet, J.-P. Energy Environ. Sci. 2018, 11, 365. doi: 10.1039/c7ee02302b  doi: 10.1039/c7ee02302b

    90. [90]

      Zhang, X.; Xia, Z.; Li, H.; Yu, S.; Wang, S.; Sun, G. RSC Adv. 2019, 9, 7086. doi: 10.1039/c9ra00167k  doi: 10.1039/c9ra00167k

    91. [91]

      Choi, J.-Y.; Yang, L.; Kishimoto, T.; Fu, X.; Ye, S.; Chen, Z.; Banham, D. Energy Environ. Sci. 2017, 10, 296. doi: 10.1039/c6ee03005j  doi: 10.1039/c6ee03005j

    92. [92]

      Wang, Y.-C.; Zhu, P.-F.; Yang, H.; Huang, L.; Wu, Q.-H.; Rauf, M.; Zhang, J.-Y.; Dong, J.; Wang, K.; Zhou, Z.-Y.; et al. ChemElectroChem 2018, 5, 1914. doi: 10.1002/celc.201700939  doi: 10.1002/celc.201700939

    93. [93]

      Hao, Y.-C.; Guo, Y.; Chen, L.-W.; Shu, M.; Wang, X.-Y.; Bu, T.-A.; Gao, W.-Y.; Zhang, N.; Su, X.; Feng, X.; et al. Nat. Catal. 2019, 2, 467. doi: 10.1038/s41929-019-0267-x  doi: 10.1038/s41929-019-0267-x

    94. [94]

      Mun, Y.; Kim, M. J.; Park, S.-A.; Lee, E.; Ye, Y.; Lee, S.; Kim, Y.-T.; Kim, S.; Kim, O.-H.; Cho, Y.-H.; et al. Appl. Catal. B 2018, 222, 191. doi: 10.1016/j.apcatb.2017.10.015  doi: 10.1016/j.apcatb.2017.10.015

    95. [95]

      Cheng, Q.; Han, S.; Mao, K.; Chen, C.; Yang, L.; Zou, Z.; Gu, M.; Hu, Z.; Yang, H. Nano Energy 2018, 52, 485. doi: 10.1016/j.nanoen.2018.08.005  doi: 10.1016/j.nanoen.2018.08.005

    96. [96]

      Slack, J.; Halevi, B.; McCool, G.; Li, J.; Paylicek, R.; Wycisk, R.; Mukerjee, S.; Pintauro, P. ChemElectroChem 2018, 5, 1537. doi: 10.1002/celc.201800283  doi: 10.1002/celc.201800283

    97. [97]

      Yin, H.; Yuan, P.; Lu, B.-A.; Xia, H.; Guo, K.; Yang, G.; Qu, G.; Xue, D.; Hu, Y.; Cheng, J.; et al. ACS Catal. 2021, 11, 12754. doi: 10.1021/acscatal.1c02259  doi: 10.1021/acscatal.1c02259

    98. [98]

      Wan, X.; Liu, Q.; Liu, J.; Liu, S.; Liu, X.; Zheng, L.; Shang, J.; Yu, R.; Shui, J. Nat. Commun. 2022, 13, 2963. doi: 10.1038/s41467-022-30702-z  doi: 10.1038/s41467-022-30702-z

    99. [99]

      Ye, W.; Chen, S.; Lin, Y.; Yang, L.; Chen, S.; Zheng, X.; Qi, Z.; Wang, C.; Long, R.; Chen, M.; et al. Chem 2019, 5, 2865. doi: 10.1016/j.chempr.2019.07.020  doi: 10.1016/j.chempr.2019.07.020

    100. [100]

      Peng, L.; Yang, J.; Yang, Y.; Qian, F.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T.; Waterhouse, G. I. N. Adv. Mater. 2022, 34, 2202544. doi: 10.1002/adma.202202544  doi: 10.1002/adma.202202544

    101. [101]

      Xu, M.-J.; Liu, J.; Ge, J.-J.; Liu, C.-P.; Xing, W. J. Electrochem. 2020, 26, 464. doi: 10.13208/j.electrochem.200444  doi: 10.13208/j.electrochem.200444

    102. [102]

      Wang, X.; Zhang, L.; Liu, C.-P.; Ge, J.-J.; Zhu, J.-B.; Xing, W. J. Electrochem. 2022, 28, 2108501. doi: 10.13208/j.electrochem.210850  doi: 10.13208/j.electrochem.210850

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

Metrics
  • PDF Downloads(18)
  • Abstract views(932)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return